References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J....

75
References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial optimization. Wiley, Chich- ester/New York, 1989. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rasmussen, J. An introduction to the European Hydrologic System—Syst` eme Hy- drologique Europ´ een, “SHE” 1: History and philosophy of a physically based distributed modeling system. J. Hydrology, 87:45–59, 1986a. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rasmussen, J. An introduction to the European Hydrologic System—Syst` eme Hy- drologique Europ´ een, “SHE” 2: Structure of a physically based dis- tributed modeling system. J. Hydrology, 87:61–77, 1986b. Abdul, A.S. and Ang, C.C. In-situ surfactant washing of polychlorinated- biphenyls and oils from a contaminated field site—Phase-II, pilot study. Ground Water, 32:727–734, 1994. Abramowitz, M. and Stegun, I.A. Handbook of Mathematical Functions. Dover, 1972. Adamson, A.W. Physical Chemistry of Surfaces, 4th ed. Wiley, New York, 664 p., 1982. Aiken, G.R. and Kuniansky, E.l. (Eds.) U.S. Geological Survey Artificial Recharge Workshop Proceedings. Sacramento, California, U.S. Geologi- cal Survey Open-File Report 02-89, 88 p., 2002. Aitchison, G.D. and Donald, I.B. Effective stresses in unsaturated soils. Proc. 2nd Australian-New Zealand Conf. Soil Mech. Foundation Eng.. Inst. Engrs., 1956. Aivalioti, M.V. and Gidarakos, E.L. In-well air sparging efficiency in reme- diating the aquifer of a petroleum refinery site. J. Environ. Eng. Sci., 7:71–82, 2008. Aizinger, V., Dawson, C., Cockburn, B., and Castillo, P. The local discon- tinuous Galerkin method for contaminant transport. Adv. Water Res., 24:73–87, 2000. Ajiz, M.A. and Jennings, A. A robust incomplete Choleski-conjugate gradient algorithm. Int. J. Numer. Methods Eng., 20:949–966, 1984. 759 DOI 10.1007/978-1-4020-6682-5, © Springer Science+Business Media B.V. 2010 J. Bear, A.H.-D. Cheng, Modeling Groundwater Flow and Contaminant Transport, Theory and Applications of Transport in Porous Media 23,

Transcript of References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J....

Page 1: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

References

Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines.A stochastic approach to combinatorial optimization. Wiley, Chich-ester/New York, 1989.

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rasmussen,J. An introduction to the European Hydrologic System—Systeme Hy-drologique Europeen, “SHE” 1: History and philosophy of a physicallybased distributed modeling system. J. Hydrology, 87:45–59, 1986a.

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rasmussen,J. An introduction to the European Hydrologic System—Systeme Hy-drologique Europeen, “SHE” 2: Structure of a physically based dis-tributed modeling system. J. Hydrology, 87:61–77, 1986b.

Abdul, A.S. and Ang, C.C. In-situ surfactant washing of polychlorinated-biphenyls and oils from a contaminated field site—Phase-II, pilot study.Ground Water, 32:727–734, 1994.

Abramowitz, M. and Stegun, I.A. Handbook of Mathematical Functions.Dover, 1972.

Adamson, A.W. Physical Chemistry of Surfaces, 4th ed. Wiley, New York,664 p., 1982.

Aiken, G.R. and Kuniansky, E.l. (Eds.) U.S. Geological Survey ArtificialRecharge Workshop Proceedings. Sacramento, California, U.S. Geologi-cal Survey Open-File Report 02-89, 88 p., 2002.

Aitchison, G.D. and Donald, I.B. Effective stresses in unsaturated soils. Proc.2nd Australian-New Zealand Conf. Soil Mech. Foundation Eng.. Inst.Engrs., 1956.

Aivalioti, M.V. and Gidarakos, E.L. In-well air sparging efficiency in reme-diating the aquifer of a petroleum refinery site. J. Environ. Eng. Sci.,7:71–82, 2008.

Aizinger, V., Dawson, C., Cockburn, B., and Castillo, P. The local discon-tinuous Galerkin method for contaminant transport. Adv. Water Res.,24:73–87, 2000.

Ajiz, M.A. and Jennings, A. A robust incomplete Choleski-conjugate gradientalgorithm. Int. J. Numer. Methods Eng., 20:949–966, 1984.

759

DOI 10.1007/978-1-4020-6682-5, © Springer Science+Business Media B.V. 2010

J. Bear, A.H.-D. Cheng, Modeling Groundwater Flow and Contaminant Transport, Theory and Applications of Transport in Porous Media 23,

Page 2: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

760 References

Aleman, M.A. and Slattery, J.C. A linear stability analysis for immiscibleporous media contamination by organic compounds, 2. Numerical sim-ulation. Water Resour. Res., 21:19–26, 1985.

Aliewi, A.S., Mackay, R., Jayyousi, A., Nasereddin, K., Mushtaha, A., andYaqubi, A. Numerical simulation of the movement of saltwater underskimming and scavenger pumping in the Pleistocene aquifer of Gazaand Jericho areas, Palestine. Transp. Porous Media, 43:195–212, 2001.

Allaire, G. Homogenization of the Navier-Stokes equations in open sets per-forated with tiny holes. 1. Abstract framework, a volume distributionof holes. Arch. Rat. Mech. Analys., 113:209–259, 1991.

Allaire, G. One-phase Newtonian flow. Chap. 3. In: Homogenization andPorous Media, (ed.) U. Hornung, Springer, 45–76, 1997a.

Allaire, G. Mathematical approaches and methods, Appendix A. In: Homoge-nization and Porous Media, (ed.) U. Hornung, Springer, 226–250, 1997b.

Al-Lawatia, M., Sharpley, R.C., and Wang, H. Second-order characteris-tic methods for advection-diffusion equations and comparison to otherschemes. Adv. Water Res., 22:741–768, 1999.

Allen, R.G. Evaporation modeling: Potential. In: Encyclopedia of HydrologicalSciences, Vol. 1, Art. 41, (eds.) J.J. McDonnell and M.G. Anderson,603–613, 2005.

Allison, G.B., Gee, G.W., Tyler, S.W. Vadose-zone techniques for estimatinggroundwater recharge in arid and semiarid regions. Soil Sci. Soc. Am.J., 58:6–14, 1994.

Aly, A.H. and Peralta, R.C. Optimal design of aquifer cleanup systems un-der uncertainty using a neural network and a genetic algorithm. WaterResour. Res., 35:2523–2532, 1999.

Amaziane, B., Naji, A., Ouazar, D., and Cheng, A.H.-D. Chance-constrainedoptimization of pumping in coastal aquifers by stochastic boundary ele-ment method and genetic algorithm. Computers, Materials & Continua,2:85–96, 2005.

American Society of Civil Engineers. Hydrology Handbook, 2nd ed. ASCEManuals and Reports on Engineering Practices No. 28, 1996.

American Water Works Association. AWWA Standards: Water Wells. AWWA-A100-97, Denver, Colorado, 57 p., 1997.

Anderson, M.P., Ward, D.S., Lappala, E.G., and Prickett, T.A. Computermodels for subsurface water. Chap. 22 In: Handbook of Hydrology, (ed.)D.R. Maidment, McGraw-Hill, 22.1–22.34, 1993.

Anderson, M.P. and Woessner, W.W. The role of the postaudit in modelvalidation. Adv. Water Res., 15:167–173, 1992.

Anderson, W.G. Wettability literature survey—Part 4: Effects of wettabilityon capillary pressure. J. Petrol. Technol., 39:1283–1300, 1987.

Anthony, S.S. Electromagnetic methods for mapping fresh-water lenses onMicronesian atoll islands. J. Hydrology, 137:99–111, 1992.

Appelo, C.A.J. and Postma, D. Geochemistry, Groundwater and Pollution,2nd ed. CRC Press, 652 p., 2005.

Aris, R. Vectors, Tensors, and the Basic Equations of Fluid Mechanics.Prentice-Hall, Englewood Cliffs, NJ, 286 p., 1962.

Page 3: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

761

Arnold, J.G. and Fohrer, N. SWAT2000: Current capabilities and researchopportunities in applied watershed modeling. Hydrol. Process, 19:563–572, 2005.

Arrow, K.J. Social Choice and Individual Values. Wiley, New York, 1951.Arya, L.M., Leij, F.J., Shouse, P.J., and van Genuchten, M.Th. Relation-

ship between the hydraulic conductivity function and the particle-sizedistribution. Soil Sci. Soc. Am. J., 63:1063–1070, 1999a.

Arya, L.M., Leij, F.J., van Genuchten, M.Th., and Shouse, P.J. Scaling pa-rameter to predict the soil water characteristic from particle-size distri-bution data. Soil Sci. Soc. Am. J., 63:510–519, 1999b.

Arya, L.M. and Paris, J.F. Physicoempirical model to predict the soil mois-ture characteristic from particle size distribution and bulk density data.Soil Sci. Soc. Am. J., 45:1023–1030, 1981.

Asghar, M.N., Prathapar, S.A., and Shafique, M.S. Extracting relatively-freshgroundwater from aquifers underlain by salty groundwater. Agr. WaterManage., 52:119–137, 2002.

Ashby, S.F. and Falgout, R.D. A parallel multigrid preconditioned conjugategradient algorithm for groundwater flow simulations. Nucl. Sci. Eng.,124:145–159, 1996.

Atkins, P. and De Paula, J. Physical Chemistry. W.H. Freeman, 2006.Atlas, R.M. and Bartha, R. Hydrocarbon biodegradation and oil-spill biore-

mediation. Adv. Microb. Ecol., 12:287–338, 1992.Atluri, S.N. The Meshless Method (MLPG) for Domain and BIE Discretiza-

tions. Tech Science Press, 680 p., 2004.Atluri, S.N. and Shen, S. The Meshless Local Petrov-Galerkin (MLPG)

Method. Tech Science Press, 440 p., 2002.Atluri, S.N. and Zhu, T. A new meshless local Petrov-Galerkin (MLPG) ap-

proach in computational mechanics. Comput. Mech., 22:117–127, 1998.Auriault, J.-L., Geindreau, C. and Boutin, C. Filtration law in porous media

with poor separation of scales. Transp. Porous Media, 60:89–108, 2005.Auriault, J.-L., Lebaigue, O., and Bonnet, G. Dynamics of two immiscible

fluids flowing through deformable porous-media. Transp. Porous Media,4:105–128, 1989.

Avogadro, A. and Ragaini, R.C. Technologies for Environmental Cleanup:Soil and Groundwater. Springer, 466 p., 1993.

Avriel, M. Nonlinear Programming: Analysis and Methods. Dover, 2003.Avroam, D.G. and Payatakes, A.C. Flow regimes and relative permeabilities

during steady-state two-phase flow in porous media. J. Fluid Mech.,293:207–236, 1995.

Aziz, K. and Settari, A. Petroleum Reservoir Simulation. Appl. Sci. Publ.,London, 476 p., 1979.

Babuska, I. Homogenization approach in engineering. In: Lecture Notes inEconomics and Mathematical Systems, (eds.) M. Beckmann and H.P.Kunzi, Springer-Verlag, 137–153, 1975.

Babuska, I. Solution of interface by homogenization. I, II, III. SIAM J. Math.Anal., 7:603–634, 635–645, 1976, 8:923–937, 1977.

References

Page 4: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

762

Badiey, M., Cheng, A.H.-D., and Jaya, I. Deterministic and stochastic anal-yses of acoustic plane wave reflection from inhomogeneous porousseafloor. J. Acoust. Soc. Am., 99:903–913, 1996.

Badiey, M., Jaya, I., and Cheng, A.H.-D. A shallow water acoustic/geoacousticexperiment near the New Jersey Atlantic Generating Station site. J.Acoust. Soc. Am., 96:3593–3604, 1994.

Badon-Ghyben, W. Nota in verband met de voorgenomen putboring nabijAmsterdam (Notes on the probable results of well drilling near Amster-dam). Tijdschrift van het Koninklijk Instituut van Ingenieurs, Hague,1888/9, 8–22, 1888.

Bailey, J.E. and Ollis, D.F. Biochemical Engineering Fundamentals. McGraw-Hill, 928 p., 1986.

Bakhvalov, N. and Panasenko, G. Homogeneisation: Averaging Processes inPeriodic Media. Kluwer, Dordrecht, 1989.

Bakker, M. and Strack, O.D.L. Analytic elements for multiaquifer flow. J.Hydrology, 271:119–129, 2003.

Bakr, A.A., Gelhar, L.W., Gutjahr, A.L., and MacMillan, J.R. Stochasticanalysis of spatial variability in subsurface flows. 1. Comparison of one-dimensional and three-dimensional flows. Water Resour. Res., 14:263–271, 1978.

Baliga, B.R. and Patankar, S.V. A new finite-element formulation for convection-diffusion problems. Numer. Heat Tr. A-Appl., 3:393–409, 1980.

Banat, I.M., Makkar, R.S., and Cameotra, S.S. Potential commercial applica-tions of microbial surfactants. Appl. Microbiol. Biot., 53:495–508, 2000.

Barenblatt, G.I., Zheltov, I.P., and Kochina, I.N. Basic concepts in the the-ory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math.Mech. (P.M.M.), 24:852–864, 1960.

Barends, F.B.J., Brouwer, F.J.J., and Schroeder, F.H. (Eds.) Land Subsi-dence: Proc. 5th Int. Symp. on Land Subsidence. Hague, Netherlands,IHAS, 234, 1995.

Barrett, J.W. and Morton, K.W. Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems. Comp. Meth. Appl.Mech. Eng., 45:97–122, 1984.

Barrocu, G., Sciabica, M.G., and Muscas, L. Geographical information sys-tems and modeling of saltwater intrusion in the Capoterra Alluvial Plain(Sardinia, Italy). Chap. 9. In: Coastal Aquifer Management-Monitoring,Modeling, and Case Studies, (eds.) A.H.-D. Cheng and D. Ouazar, LewisPubl., 183–206, 2004.

Barry, D.A. and Sander, G.C. Exact-solutions for water infiltration with anarbitrary surface flux or nonlinear solute adsorption. Water Resour.Res., 27:2667–2680, 1991.

Bastian, W.C. and Lapidus, L. Longitudinal diffusion in ion exchange andchromatographic column, finite column. J. Phys. Chem., 60:816–817,1956.

Batchelor, G.K. The Theory of Homogeneous Turbulence. Cambridge Univ.Press, 1959.

References

Page 5: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

763

Bateman, H. The solution of a system of differential equations occurring inthe theory of radioactive transformation. Proc. Cambridge Phil. Soc.,15:423–427, 1910.

Batu, V. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic DataAnalysis. Wiley-Interscience, 752 p., 1998.

Bear, J. On the tensor form of dispersion. J. Geophys. Res., 66:1185–1197,1961a.

Bear, J. Some experiments on dispersion. J. Geophys. Res., 66:2455–2467,1961b.

Bear, J. Dynamics of Fluids in Porous Media. American Elsevier, 764 p.,1972 (also published by Dover, 1988; translated into Chinese).

Bear, J. Hydraulics of Groundwater. McGraw-Hill, New York, 569 p., 1979.(Also as Dover edition, 2007.)

Bear, J. Conceptual and mathematical modeling. Chap. 5. In: Seawater In-trusion into Coastal Aquifers—Concepts, Methods and Practices. (eds.)J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer,127–161, 1999.

Bear, J. Modeling Solute Transport Phenomena. Vol. 4, Pt. 13, Art. 152 inEncyclopedia of Hydrological Sciences, (eds.) J.J. McDonnell and M.G.Anderson, Wiley, 2341–2354, 2005a.

Bear, J. Sea water intrusion into coastal aquifers. Vol. 4, Pt. 13, Art. 157 inEncyclopedia of Hydrological Sciences, (eds.) J.J. McDonnell and M.G.Anderson, Wiley, 2431–2442, 2005b.

Bear, J. and Bachmat, Y. A generalized theory on hydrodynamic dispersionin porous media. I.A.S.H. Symp. Artificial Recharge and Managementof Aquifers, 72:7–16, 1967.

Bear, J. and Bachmat, Y. Macroscopic modeling of transport phenomena inporous media, 2. Applications to mass, momentum, and energy trans-port. Transp. Porous Media, 1:241–269, 1986.

Bear, J. and Bachmat, Y. Introduction to Modeling Phenomena of Transportin Porous Media. Kluwer, Dordrecht, 553 p., 1990.

Bear, J. and Bachmat Y. Deletion of nondominant effects in modeling trans-port in porous media. Transp. Porous Media, 7:15–38, 1992.

Bear, J., Braester, C., and Menier, P.C. Effective and relative permeabilitiesof anisotropic porous-media. Transp. Porous Media, 2:301–316, 1987.

Bear, J., Cheng, A.H.-D., Sorek, S., Ouazar, D, and Herrera, I. (Eds.) Seawa-ter Intrusion into Coastal Aquifers—Concepts, Methods and Practices.Kluwer, 625 p., 1999.

Bear, J. and Corapcioglu, M.Y. Mathematical-model for regional land sub-sidence due to pumping. 1. Integrated aquifer subsidence equations forvertical displacement only. Water Resour. Res., 17:937–946, 1981a.

Bear, J. and Corapcioglu, M.Y. Mathematical-model for regional land sub-sidence due to pumping. 2. Integrated aquifer subsidence equations forvertical and horizontal displacements. Water Resour. Res., 17:947–958,1981b.

References

Page 6: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

764

Bear, J., Corapcioglu, M.Y., and Bulkarishna, J. Modeling of centrifugal fil-tration in unsaturated deformable porous medium. Adv. Water Res.,7:150–167, 1984.

Bear, J. and Dagan, G. Moving interfaces in coastal aquifers. J. Hyd. Div.,ASCE, 90:193–216, 1964a.

Bear, J. and Dagan, G. Some exact solutions of interface problems by meansof the hodograph method. J. Geophys. Res., 69:1563–1572, 1964b.

Bear, J., Fel, L., and Zimmels, Y. Effects of material symmetry on coefficientsof transport in anisotropic porous media. Submitted for publication,2009.

Bear, J., Nichols, E., Ziagos, J., and Kulshrestha, A. Effect of contaminantdiffusion into and out of low-permeability zones, Lawrence LivermoreNational Laboratory, Rep. UCRL-JD-115626, 1994.

Bear, J. and Nitao, J.J. On equilibrium and primary variables in transportin porous media. Transp. Porous Media, 18:151–184, 1995.

Bear, J., Sorek, S., and Borisov, V. On the Eulerian-Lagrangian formulationof balance equation in porous media. Numer. Meth. Part. Diff. Eqs.,13:505–530, 1997.

Bear, J. and Sun, Y. Optimization of pump-treat-inject (PTI) design for theremediation of a contaminated aquifer: multistage design with chanceconstraints. J. Contam. Hydrol., 29:223–242, 1998.

Bear, J. and Verruijt, A. Modeling Groundwater Flow and Pollution. D. Rei-del Publ. Co., Dordrecht, the Netherlands, 414 p., 1987.

Bear, J., Zaslavsky, D., and Irmay, S. Physical Principles of Percolation andSeepage, UNESCO, 465 p., 1968.

Bear, J. and Zhou, Q. Sea water intrusion into coastal aquifers. Chap. 12. In:The Handbook of Groundwater Engineering, 2nd ed., (ed.) J.W. Delleur,CRC Press, 2006.

Beatson, R.K., Cherrie, J.B., and Mouat, C.T. Fast fitting of radial basisfunctions: Methods based on preconditioned GMRES iteration. Adv.Comput. Math., 11:253–270, 1999.

Beatson, R.K. and Light, W.A. Quasi-interpolation by thin-plate splines ona square. Constr. Approx., 9:407–433, 1993.

Beavers, G.S. and Joseph, D.D. Boundary conditions at a naturally permeablewall. J. Fluid Mech., 30:197–207, 1967.

Beck, A.E. Physical Principles of Exploration Methods. Wuerz Publ., Win-nipeg, 292 p., 1991.

Bellin, A. and Rubin, Y. HYDRO GEN: A spatially distributed random fieldgenerator for correlated properties. Stoch. Hydrol. Hydraul., 10:253–278,1996.

Belytschko, T., Lu, Y.Y. and Gu, L. Element-free Galerkin methods. Int. J.Numer. Methods Eng., 37:229–256, 1994.

Bendat, J.S. and Piersol, A.G. Random Data: Analysis & Measurement Pro-cedures, 3rd ed. Wiley-Interscience, 594 p., 2000.

Benner, S.G., Blowes, D.W., Gould, W.D., Herbert, R.B., and Ptacek, C.J.Geochemistry of a permeable reactive barrier for metals and acid minedrainage. Environ. Sci. Technol., 33:2793–2799, 1999.

References

Page 7: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

765

Bensabat, J., Zhou, Q. and Bear, J. An adaptive pathline-based particletracking algorithm for the Eulerian-Lagrangian method. Adv. WaterRes., 23:383–397, 2000.

Bensoussan, A., Lions, J.L., and Papanicolaou, G. Asymptotic Analysis ofPeriodic Structures. North-Holland, Amsterdam, 1978.

Bentsen, R.G. and Manai, A.A. On the conventional cocurrent and counter-current modeling of two-phase flow. Transp. Porous Media, 11:243–262,1993.

Berkowitz, B., Klafter, J., Metzler, R., and Scher, H. Physical pictures oftransport in heterogeneous media: Advection-dispersion, random-walkand fractional derivative formulations. Water Resour. Res., 38, art. no.1191, 2002.

Berkowitz, B. and Scher, H. The role of probabilistic approaches to trans-port theory in heterogeneous media. Transp. Porous Media, 42:241–263,2001.

Berkowitz, B., Scher, H., and Silliman, S.E. Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res., 36:149–158,Correction: 36:1371, 2000.

Beven, K., Calver, A., and Morris, E. The Institute of Hydrology DistributedModel. U.K. Institute of Hydrology Report No. 98, 1987.

Binning, P. and Celia, M.A. A finite volume Eulerian-Lagrangian localizedadjoint method for solution of the contaminant transport equations intwo-dimensional multiphase flow systems. Water Resour. Res., 32:103–114, 1996.

Binning, P. and Celia, M.A. A forward particle tracking Eulerian-Lagrangianlocalized adjoint method for solution of the contaminant transport equa-tion in three dimensions. Adv. Water Res., 25:147–157, 2002.

Biot, M.A. General theory of three-dimensional consolidation. J . Appl. Phys.,12:155–164, 1941.

Blandford, T.N. and Huyakorn, P.S. WHPA: A Modular Semi-Analytical Mo-del for The Delineation of Wellhead Protection Areas, Version 2.0. U.S.Environmental Protection Agency, 1991.

Blaney, H.F. and Criddle, W.D. Determining water requirements on irrigatedareas from climatological and irrigation data. USDA Soil Cons. Serv.SDS-TP-96, 1950.

Blowes, D.W., Ptacek, C.J., Benner, S.G., McRae, C.W.T., Bennett, T.A.,and Puls, R.W. Treatment of inorganic contaminants using permeablereactive barriers. J. Contam. Hydrol., 45:123–137, 2000.

Boender, C.G.E., Degraan, J.G., and Lootsma, F.A. Multi-criteria decision-analysis with fuzzy pairwise comparisons. Fuzzy Sets and Systems,29:133–143, 1989.

Boonstra, J. Well hydraulics and aquifer tests. Chap. 8. In: The Handbook ofGroundwater Engineering, (ed.) J.W. Delleur, CRC Press and Springer,1998.

Bouwer, H. Artificial recharge of groundwater: systems, design, and manage-ment. In: Hydraulic Design Handbook. (ed.) L.W. Mays, McGraw-Hill,New York, 24.1–24.44, 1999.

References

Page 8: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

766

Bouwer, E.J. and McCarthy, P.L. Modeling of trace organics biotransforma-tion in the subsurface. Ground Water, 22:433–440, 1984.

Bowen, R.M. Incompressible porous-media models by use of the theory ofmixtures. Int. J. Eng. Sci., 18:1129–1148, 1980.

Bowen, R.M. Porous media model formulations by the theory of mixtures.In: Fundamentals of Transport Phenomena in Porous Media, (eds.) J.Bear and M.Y. Corapcioglu, Martinus Nijhoff Publ., The Netherlands,63–120, 1984.

Boyd, J.P. Chebyshev and Fourier spectral methods, 2nd ed. Dover, 2001.Bozoki, S. and T. Rapcsak On Saaty’s and Koczkodaj’s inconsistencies

of pairwise comparison matrices. J. Global Optimization, 42:157–175,2008.

Braester, C. Moisture variation at soil surface and advance of wetting frontduring infiltration at constant flux. Water Resour. Res., 9:687–694,1973.

Bras, R.L. An Introduction to Hydrologic Science. Addison-Wesley, Reading,MA, 643 p., 1990.

Brebbia, C.A. The Boundary Element Method for Engineers. Pentech Press/Halstead Press, London/New York, 1978.

Brebbia, C.A. and Dominguez, J. Boundary element methods for potentialproblems. Appl. Math. Modelling, 1:372–378, 1977.

Brezzi, F., Bristeau, M.O., Franca, L.P., Mallet, M., and Roge, G. A relation-ship between stabilized finite-element methods and the Galerkin methodwith bubble functions. Comput. Meth. Appl. Mech. Eng., 96:117–129,1992.

Brezzi, F., Hughes, T.J.R., Marini, L.D., and Masud, A. Mixed discontinuousGalerkin methods for Darcy flow. J. Sci. Comput., 22:119–145, 2005.

Brinkman, H.C. Calculations of the flow of heterogeneous mixture throughporous media. Appl. Sci. Res., 2:81–86, 1948.

Broadbridge, P., Edwards, M.P., and Kearton, J.E. Closed-form solutions forunsaturated flow under variable flux boundary conditions. Adv. WaterRes., 19:207–213, 1996.

Broadbridge, P. and White, I. Constant rate rainfall infiltration—A versatilenonlinear model. 1. Analytical solution. Water Resour. Res., 24:145–154, 1988.

Brooks, A.N. and Hughes, T.J.R. Streamline upwind Petrov-Galerkin for-mulations for convection dominated flows with particular emphasis onthe incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech.Eng., 32:199–259, 1982.

Brooks, R.H. and Corey, A.T. Hydraulic properties of porous media. ColoradoState Univ., Hydrology Papers no. 3, Fort Collins, Colorado, 27 p., 1964.

Brooks, R.H. and Corey, A.T. Properties of porous media affecting fluid flow.J. Irrig. Drain. Div., ASCE, 92:61–87, 1966.

Broyden, C.G. Convergence of single-rank quasi-Newton methods. Math.Comput., 24:365–382, 1970.

References

Page 9: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

767

Brusseau, M.L., Jessup, R.E., and Rao, P.S.C. Modeling solute transport in-fluenced by multiprocess nonequilibrium and transformation reactions.Water Resour. Res., 28:175–182, 1992.

Brusturean, G.A., Todinca, T., Perju, D., Carre, J., and Rusnac, C. Soil vaporextraction of synthetic gasoline mixture: Experimental observations andmodel predictions. Revista De Chimie, 58:1268–1273, 2007.

Brutsaert, W. Probability laws for pore size distribution. Soil Sci., 101:85–192, 1966.

Brutsaert, W. The adaptability of an exact solution to horizontal infiltration.Water Resour. Res., 4:785–789, 1968.

Brutsaert, W. Evaporation into the Atmosphere: Theory, History, and Appli-cations. D. Reidel Publishing Company, Dordrecht, Holland, 1982.

Buckingham, E. Studies on the movement of soil moisture. Bull. No. 38.Bureau of Soils, USDA, Washington, DC, 1907.

Burnett, R.D. and Frind, E.O. Simulation of contaminant transport in 3dimensions. 2. Dimensionality effects. Water Resour. Res., 23:695–705,1987.

Campbell, G.S. Simple method for determining unsaturated conductivityfrom moisture retention data. Soil Sci., 117:311–314, 1974.

Carman, P.C. Fluid flow through granular bed. Trans. Inst. Chem. Engrs.(London), 15: 150–156, 1937.

Carsel, R.F. and Parrish, R.S. Developing joint probability-distributions ofsoil-water retention characteristics. Water Resour. Res., 24:755–769,1988.

Carslaw, H.S. and Jaeger, J.C. Conduction of Heat in Solids. Oxford Univ.Press, 1959.

Celia, M.A., Reeves, P.C., and Ferrand, L.A. Recent advances in pore scalemodels for multiphase flow in porous-media. Rev. Geophys., 33:1049–1057, 1995.

Celia, M.A., Russell, T.F., Herrera, I., and Ewing, R.E. An Eulerian-Lagrangianlocalized adjoint method for the advection-diffusion equation. Adv. Wa-ter Res., 13:187–206, 1990.

Cerny, V. Thermodynamical approach to the traveling salesman problem—an efficient simulation algorithm. J. Optimiz. Theory App., 45:41–51,1985.

Chang, L.C., Chu, H.J., and Hsiao, C.T. Optimal planning of a dynamicpump-treat-inject groundwater remediation system. J. Hydrology, 342:295–304, 2007.

Chang, R. and Cruickshank, B. Chemistry, 8th ed. McGraw-Hill, 1120 p.,2003.

Chankong, V. and Haimes, Y.Y. Multiobjective Decision Making: Theory andMethodology. North-Holland, 406 p., 1983.

Charnes, A. and Cooper, W.W. Chance-constrained programming. Mgmt.Sci., 6:73–79, 1959.

Charnes, A. and Cooper, W.W. Deterministic equivalents for optimizing andsatisfying under chance constraints. Oper. Res., 11:18–39, 1963.

References

Page 10: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

768

Chen, C.S., Ganesh, M., Golberg, M.A., and Cheng, A.H.-D. Multilevel com-pact radial functions based computational schemes for some ellipticproblems. Compt. Math. Applic., 43:359–378, 2002.

Chen, F., Mitchell, K., Xue, Y., Pan, H., Koren, V., Duan, Q.Y., Ek, M., andBetts, A. Modeling of land-surface evaporation by four schemes andcomparison with FIFE observations. J. Geophys. Res., 101:7251–7268,1996.

Chen, W. Symmetric boundary knot method. Eng. Anal. Bound. Elem.,26:489–494, 2002.

Chen, Z.X., Lyons, S.L. and Qin, G. Derivation of the Forchheimer law viahomogenization. Transp. Porous Media, 44:325–335, 2001.

Cheng, A.H.-D. Darcy’s flow with variable permeability—a boundary integralsolution. Water Resour. Res., 20:980–984, 1984.

Cheng, A.H.-D. Heterogeneities in flows through porous media by the bound-ary element method. Chap. 6. In: Topics in Boundary Element Research,4: Applications in Geomechanics, (ed.) C.A. Brebbia, Springer-Verlag,129–144, 1987.

Cheng, A.H.-D. Multilayered Aquifer Systems—Fundamentals and Applica-tions. Marcel Dekker, New York, 384 p., 2000.

Cheng, A.H.-D., Abousleiman, Y., Ruan, F. and Lafe, O.E. Boundary elementsolution for stochastic groundwater flow: Temporal weakly stationaryproblems. Water Resour. Res., 29:2893–2908, 1993.

Cheng, A.H.-D. and Cheng, D.T. Heritage and early history of the boundaryelement method. Eng. Anal. Bound. Elem., 29:268–302, 2005.

Cheng, A.H.-D., Golberg, M.A., Kansa, E.J., and Zammito, G. Exponentialconvergence and h-c multiquadric collocation method for partial differ-ential equations. Numer. Meth. Part. Diff. Eqs., 19:571–594, 2003.

Cheng, A.H.-D. and Lafe, O.E. Boundary element solution for stochasticgroundwater flow: Random boundary condition and recharge. WaterResour. Res., 27:231–242, 1991.

Cheng, A.H.-D. and Morohunfola, O.K. Multilayered leaky aquifer systems:I. Pumping well solution. Water Resour. Res., 29:2787–2800, 1993a.

Cheng, A.H.-D. and Morohunfola, O.K. Multilayered leaky aquifer systems:II. Boundary element solution. Water Resour. Res., 29:2801–2811,1993b.

Cheng, A.H.-D. and Ouazar, D. Theis solution under aquifer parameter un-certainty. Ground Water, 33:11–15, 1995.

Cheng, A.H.-D. and Ouazar, D. Analytical solutions. Chap. 6. In: SeawaterIntrusion in Coastal Aquifers—Concepts, Methods, and Practices, (eds.)J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer, 163–191, 1999.

Cheng, A.H.-D. and Ouazar, D. (Eds.) Coastal Aquifer Management-Monitoring,Modeling, and Case Studies. Lewis Publ., 280 p., 2003.

Cheng, A.H.-D., Sidauruk, P., and Abousleiman, Y. Approximate inversionof the Laplace transform. Mathematica J., 4:76–82, 1994.

References

Page 11: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

769

Cheng, R.T., V. Casulli, and Milford, S.N. Eulerian-Lagrangian solution ofthe convection-dispersion equation in natural coordinates. Water Re-sour. Res., 20:944–952,1984.

Chiang, C.Y., Wheeler, M.F., and Bedient, P.B. A modified method of char-acteristics technique and mixed finite-elements method for simulation ofgroundwater solute transport. Water Resour. Res., 25:1541–1549, 1989.

Chilakapati, A., Ginn, T., and Szecsody, J. An analysis of complex reactionsnetworks in groundwater modeling. Water Resour. Res., 34:1767–1780,1998.

Childs, E.C. The transport of water through heavy clay soils, I. J. Agr. Sci.,26:114–127, 1936.

Childs, E.C. An Introduction to the Physical Basis of Soil Water Phenomena.Wiley, New York, 1969.

Childs, E.C. and Collis-George, N. The permeability of porous materials.Proc. Roy. Soc. London, ser. A., 201:392–405, 1950.

Chin, P., Dazevedo, E.F., Forsyth, P.A., and Tang, W.P. Preconditionedconjugate-gradient methods for the incompressible Navier-Stokes equa-tions. Int. J. Numer. Methods Fluids, 15:273–295, 1992.

Chow, E. and Saad, Y. Experimental study of ILU preconditioners for indef-inite matrices. J. Computat. Appl. Math., 86:387–414, 1997.

Chow, V.T. Sequential generation of hydrological information. In: Hand-book of Applied Hydrology. (ed.) V.T. Chow, Chap. 8, pt. IV, 8.91–8.97,McGraw-Hill, New York, 1964.

Christie, I., Griffiths, D.F., Mitchell, A.R., and Zienkiewicz, O.C. Finite-element methods for 2nd order differential equations with significant1st derivatives. Int. J. Numer. Methods Eng., 10:1389–1396, 1976.

Cieniawski, S.E., Eheart, J.W., and Ranjithan, S. Using genetic algorithms tosolve a multiobjective groundwater monitoring problem. Water Resour.Res., 31:399–409, 1995.

Cioranescu, D. and Donato, P. An Introduction to Homogenization. OxfordUniv. Press, 1999.

Clement, T.P. RT3D: A Modular Computer Code for Simulating ReactiveMultispecies Transport in 3-Dimensional Groundwater Systems. PNNL-11720, Pacific Northwest National Laboratory, Richland, Washington,1997.

Clement, T.P. Generalized solution to multispecies transport equations cou-pled with a first-order reaction network. Water Resour. Res., 37:157–163, 2001.

Clement, T.P., Johnson, C.D., Sun, Y.W., Klecka, G.M., and Bartlett, C.Natural attenuation of chlorinated solvent compounds: Model develop-ment and field-scale application. J. Contam. Hydrol., 42:113–140, 2000.

Clement, T.P., Sun., Y.W., Hooker, B.S., and Petersen, J.N. Modelingmulti-species reactive transport in groundwater aquifers. Ground WaterMonit. Rem., 18:79–92, 1998.

Clough, R.W. The finite element method in plane stress analysis, ASCEStruct. Div. Proc. 2nd Conf. Electronic Computation, 345–378, 1960.

References

Page 12: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

770

Cohen, R.M., Mercer, J.W., and Greenwald, R.M. EPA Groundwater Is-sue, Design Guidelines for Conventional Pump-and-Treat Systems. EPA540/S-97/504, 1998.

Collins, R.E. Flow of Fluids Through Porous Media. Reinhold, New York,270 p., 1961.

Conkling, H., et al. Ventura County Investigations. California Div. WaterResour. Bull. 6, 244 p., 1934.

Cooper, H.H. and Jacob, C.E. A generalized graphical method for evaluat-ing formation constants and summarizing well-field history. Trans. Am.Geophys. Union, 27:526–534, 1946.

Corapcioglu, M.Y. and Brutsaert, W. Viscoelastic aquifer model applied tosubsidence due to pumping. Water Resour. Res. 13:597–604, 1977.

Corey, A.T. Measurement of water and air permeability in unsaturated soils.Proc. Soil Sci. Soc. Am., 21:7–10, 1957.

Corey, A.T., Rathjens, C.H., Henderson, J.H., and Wyllie, M.R.J. Three-phase relative permeability. Trans. AIME, 207:349–351, 1956.

Courant, R. Variation methods for the solution of problems of equilibriumand vibration. Bull. Amer. Math. Soc., 49:1–43, 1943.

Courant, R. and Hilbert, D. Methods of Mathematical Physics. Wiley Inter-science, New York, 1962.

Couto, P.R.L. and Malta, S.M.C. Interaction between sorption and biodegra-dation processes in the contaminant transport. Ecological Modelling,214:65–73, 2008.

Cowan, N. The magical number 4 in short-term memory: A reconsiderationof mental storage capacity. Behavioral and Brain Sciences, 24:87–185,2000.

Crank, J. Mathematics of Diffusion. Oxford Univ. Press, 347 p., 1956.Crank J. and Nicolson P. A practical method for numerical evaluation of

solutions of partial differential equations of the heat conduction type.Proc. Camb. Phil. Soc., 43:50–64, 1947.

Crawford, N.H. and Linsley, R.K. Digital Simulation in Hydrology: StanfordWatershed Model IV. Stanford Univ., Dept. Civil Eng. Tech. Rep. 39,1966.

Custodio, E. Studying, monitoring and controlling seawater intrusion incoastal aquifers. In: Guidelines for Study, Monitoring and Control, FAOWater Reports No. 11, 7–23, 1997.

Czurda, K.A. and Haus, R. Reactive barriers with fly ash zeolites for in situgroundwater remediation. Appl. Clay Sci., 21:13–20, 2002.

Dagan, G. Models of groundwater flow in statistically homogeneous porousformation. Water Resour. Res., 15:47–63, 1979.

Dagan, G. Stochastic modeling of groundwater-flow by unconditional andconditional probabilities. 1. Conditional simulation and the direct-problem. Water Resour. Res., 18:813–833, 1982a.

Dagan, G. Stochastic modeling of groundwater-flow by unconditional andconditional probabilities. 2. the solute transport. Water Resour. Res.,18:835–848, 1982b.

References

Page 13: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

771

Dagan, G. Solute transport in heterogeneous porous formations. J. FluidMech., 145:151–177, 1984.

Dagan, G. Stochastic modeling of groundwater-flow by conditional and un-conditional probabilities—the inverse problem. Water Resour. Res.,21:65–72, 1985.

Dagan, G. Time-dependent macrodispersion for solute transport in anisotropicheterogeneous aquifers. Water Resour. Res., 24:1491–1500, 1988.

Dagan, G. Flow and Transport in Porous Formations. Springer-Verlag, NewYork, 1989.

Dagan, G. and Bear, J. Solving the problem of interface upconing in a coastalaquifer by the method of small perturbations. J. Hydraul. Res., 6:15–44,1968.

Dagan, G. and Neuman, S.P. (Eds). Subsurface Flow and Transport: AStochastic Approach. Cambridge Univ. Press, Cambridge UK, 241 p.,1997.

Dagan, G. and Zeitoun, D.G. Seawater-freshwater interface in a strati-fied aquifer of random permeability distribution. J. Contam. Hydrol.,29:185–203, 1988.

Dalton, M.G., Huntsman, B.E., and Bradbury, K. Acquisition and interpreta-tion of water-level data. In: Practical Handbook of Ground-Water Mon-itoring, Lewis Publ., Chelsea, Michigan, 367–395, 1991.

Dane, J.H. and Topp, G. (Eds.). Methods of Soil Analysis Pt. 4: PhysicalMethods, Soil Sci. Soc. Am., Madison, Wisconsin, 1689 p., 2002.

Dantzig, G.B.Linear Programming and Extensions. Princeton Univ. Press,Princeton, N.J., 627 p., 1963.

Darcy, H. Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris, 647p., 1856.

Das, B.M. Advanced Soil Mechanics. Hemisphere Publ. Corp. New York, 511p., 1983.

Davies, B. and Martin, B. Numerical inversion of Laplace transform: A surveyand comparison of methods. J. Comp. Phys., 33:1–32, 1979.

Davis, L. Genetic Algorithms and Simulated Annealing. Morgan KaufmannPubl., San Francisco, 216 p., 1987.

Davis, S.N. and de Wiest, R.J.M. Hydrogeology. Wiley, New York, 463 p.,1966.

Day, S.R., O’Hannesin, S.F., and Marsden, L. Geotechnical techniques for theconstruction of reactive barriers. J. Hazardous Materials, 67:285–297,1999.

De Boer, R. Theory of Porous Media—Highlights in the Historical Develop-ment and Current State. Springer-Verlag, Berlin, 2000.

De Graan, J.G. Extensions to the multiple criteria analysis of T. L. Saaty.Report National Institute of Water Supply, the Netherlands, 1980

De Groot, S.R. and Mazur, P. Non-equilibrium Thermodynamics. North-Holland Pub. Co., Amsterdam, The Netherlands, 510 p., 1962.

De Josselin de Jong, G. Longitudinal and transverse diffusion in granulardeposits. Trans. Am. Geophys. Union, 39:67–74, 1958.

References

Page 14: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

772

De Josselin de Jong, G. Consolidatie in drie dimensies (in Dutch). L.G.M.-Mededelingen, 7:57–73, 1963.

De La Rosa-Perez, D.A., Teutli-Leon, M.M.M., and Ramirez-Islas, M.E. Pol-luted soils electroremediation, a technical review for field application.Revista Internacional De Contaminacion Ambiental, 23:129–138, 2007.

Delay, S., Bobek, C., Bill, B., and Bair, R. Wellhead protection software. U.S.Environmental Protection Agency, 1994.

Delesse, A. Pour determiner la composition des roches. Annales des MinesParis 4, 13:379–388, 1848.

De Marsily, G. Quantitative Hydrogeology. Academic Press, 440 p., 1986.Demirdzic, I., Lilek, Z., and Peric, M. Fluid flow and heat transfer test prob-

lems for non-orthogonal grids: bench-mark solutions. Int. J. Numer.Methods Fluids, 15:329–354, 1992.

Demirdzic, I. and Muzaferija, S. Numerical method for coupled fluid flow,heat transfer and stress analysis using unstructured moving meshes withcells of arbitrary topology. Comput. Meth. Appl. Mech. Eng. 125:235–255, 1995.

Demond, A.H., Desai, F.N., and Hayes, K.F. Effect of cationic surfactants onorganic liquid water capillary-pressure saturation relationships. WaterResour. Res., 30:333–342, 1994.

Denbigh, K.G. The Principles of Chemical Equilibrium, 4th ed. CambridgeUniv. Press, 1981.

Detay, M. Water Wells: Implementation, Maintenance and Restoration. Wi-ley, 1997.

Detournay, C. and Strack, O.D.L. A new approximate technique for thehodograph method in groundwater-flow and its application to coastalaquifers. Water Resour. Res., 24:1471–1481, 1988.

Detournay, E. and Cheng, A.H.D. Fundamentals of poroelasticity. Chap. 5.In: Comprehensive Rock Engineering: Principles, Practice and Projects,Vol. II, Analysis and Design Method, (ed.) C. Fairhurst, PergamonPress, 113–171, 1993.

Dettinger, M.D. and Wilson, J.L. First order analysis of uncertainty in numer-ical models of groundwater flow, I. Mathematical development. WaterResour. Res., 17:149–161, 1981.

Deutsch, C.V. and Journel, A.G. GSLIB, Geostatistical Software Library andUser’s Guide, 2nd ed. Oxford Univ. Press, 369 p., 1998.

Devlin, J.F. and Parker, B.L. Optimum hydraulic conductivity to limit con-taminant flux through cutoff walls. Ground Water, 34:719–726, 1996.

Diersch, H.J. Finite element modeling of recirculating density driven salt-water intrusion processes in groundwater. Adv. Water Res., 11:25–43,1988.

Dillon, P.J. (Ed.) Management of Aquifer Recharge for Sustainability: Proc.4th Int. Symp. Artificial Recharge of Groundwater, Adelaide, South Aus-tralia, Balkema, Amsterdam, 567 p., 2002.

Doherty, J. Ground water model calibration using pilot points and regular-ization. Ground Water, 41:170–177, 2003.

References

Page 15: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

773

Doherty, J. PEST: Software for Model-Independent Parameter Estimation,5th ed. Watermark Numerical Computing, Australia, 2005.

Dojka, M.A., Hugenholtz, P., Haack, S.K., and Pace, N.R. Microbial diversityin a hydrocarbon- and chlorinated-solvent-contaminated aquifer under-going intrinsic bioremediation. Appl. Environ. Microb., 64:3869–3877,1998.

Domenico, P.A. An analytical model for multidimensional transport of a de-caying contaminant species. J. Hydrology, 91:49–58, 1987.

Domenico, P.A. and Robbins, G.A. A dispersion scale effect in model cali-brations and field tracer experiments. J. Hydrology, 70:123–132, 1984.

Dominguez, J. and Brebbia, C.A. Boundary Elements: An IntroductoryCourse. McGraw-Hill, 1989.

Dougherty, D.E. and Marryott, R.A. Optimal groundwater management, 1,Simulated annealing. Water Resour. Res., 27:2493–2508, 1991.

Douglas, J. and Russell, T.F. Numerical-methods for convection-dominateddiffusion-problems based on combining the method of characteristicswith finite-element or finite-difference procedures. SIAM J. Numer.Anal., 9:871–885, 1982.

Driscoll, F.G. Groundwater and Wells, 2nd ed. Reynolds Guyar Designs,1986.

Duarte, C.A. and Oden, J.T. Hp clouds—an hp meshless method. Numer.Meth. Part. Diff. Eqs., 12:673–705, 1996.

Du Commun, J. On the cause of freshwater springs, fountains, etc. Am. J.Sci. Arts, 14:174–175, 1828.

Dullien, F.A.L. Porous Media, 2nd ed. Academic Press, San Diego, 574 p.,1992.

Dullien, F.A.L. and Dong, M. Experimental determination of the flow trans-port coefficients. Transp. Porous Media, 25:97–120, 1996.

Dupont, R.R. Fundamentals of bioventing applied to fuel contaminated sites.Environmental Progress, 12:45–53, 1993.

Dupuit, J. Etudes Theoriques et Pratiques sur les Mouvementdes des Eauxdans les Cannaux Decouverts et a Travers les Terrains Permeables ,2nd ed., Dunod, Paris, 304 p., 1863.

Duque, C., Calvache, M.L., Pedrera, A., Martn-Rosales, W., and Lopez-Chicano, M. Combined time domain electromagnetic soundings andgravimetry to determine marine intrusion in a detrital coastal aquifer(Southern Spain). J. Hydrology, 349:536–547, 2008.

Edelfsen, N.E. and Anderson, A.B. Thermodynamics of soil moisture. Hil-gardia, 15:31–298, 1943.

Ek, M. and Mahrt, L. OSU 1-D PBL model user’s guide. Dept. Atmos. Sci.,Oregon State Univ., Corvallis, Oregon, 1991.

Ekwurzel, B., Schlosser, P., Smethie, W.M., Plummer, L.N., Busenberg,E., Michel, R. L., Weppernig, R., and Stute, M. Dating of shallowgroundwater—Comparison of the transient tracers H-3/He-3 chloroflu-orocarbons, and KR-85. Water Resour. Res., 30:1693–1708, 1994.

References

Page 16: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

774

El Harrouni, K., Ouazar, D., Wrobel, L.C., and Cheng, A.H.-D. Uncertaintyanalysis of groundwater flow with DRBEM. Eng. Anal. Bound. Elem..19:217–221, 1997.

Ene, H.I. and Polisevski, D. Thermal Flow in Porous Media. D. Reidel Publ.,Dordrecht, 194 p., 1987.

Ene, H.I. and Sanchez-Palencia, E. Equations et phenomenes de surface pourl’ecoulement dan un modele de milieu poreux. J. Mec., 14:73–108, 1975.

Environmental and Water Resources Institute, ASCE Standard Guidelinesfor Artificial Recharge of Ground Water. ASCE, Reston, VA, 2001.

Espinoza, R.D. Infiltration. Chap. 6. In: The Handbook of Groundwater En-gineering, 2nd ed., (ed.) J.W. Delleur, CRC Press, 2006.

Essaid, H.I. The Computer Model SHARP, a Quasi-Three-Dimensional Finite-Difference Model to Simulate Freshwater and Saltwater Flow in LayeredCoastal Aquifer Systems. U.S. Geological Survey Water-Resources In-vestigations Report 90-4130, 181 p., 1990a.

Essaid, H.I. A multilayered sharp interface model of coupled freshwater andsaltwater flow in coastal systems—model development and application.Water Resour. Res., 26:1431–1454, 1990b.

Essaid, H.I. USGS SHARP model. Chap. 8. In: Seawater Intrusion in CoastalAquifers—Concepts, Methods, and Practices (eds.) J. Bear, A.H.-D.Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer, 213–247, 1999.

Essaid, H.I. and Bekins, B.A. BIOMOC, A multispecies solute-transport mo-del with biodegradation. U.S. Geological Survey Water-Resources Inves-tigations Report 97-4022, 68 p., 1997.

Ewing, R.E., Russell, T.F., and Wheeler, M.F. Convergence analysis of an ap-proximation of miscible displacement in porous-media by mixed finite-elements and a modified method of characteristics. Comp. Meth. Appl.Mech. Eng., 47:73–92, 1984.

Ewing, R.E. and Wang, H. A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Com-put. Appl. Math., 128:423–445, 2001.

Ezzedine, S.M. Stochastic modeling of flow and transport in porous and frac-tured media. In: Encyclopedia of Hydrological Sciences, Vol. 4, (ed.)M.G. Anderson, Wiley, 2367–2400, 2005.

Fair, G.M. and Hatch, L.P. Fundamental factors governing the streamlineflow of water through sand. J. Am. Water Works Assoc., 25:1551–1556,1933.

Fairweather, G. and Karageorghis, A. The method of fundamental solutionsfor elliptic boundary value problems. Adv. Comput. Math., 9:69–95,1998.

Fang, Y., Yabusake, S.B., and Yeh, G.T. A general simulator for reaction-based biogeochemical processes. Computat. Geosci., 32:64–72, 2006.

Fasshauer, G.E. Solving differential equations with radial basis functions:Multilevel methods and smoothing. Adv. Comput. Math., 11:139–159,1999.

Feddes, R.A., de Rooij, G.H., and van Dam, J.C. (Eds.) Unsaturated-ZoneModeling: Progress, Challenges and Applications. Springer, 364 p., 2007.

References

Page 17: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

775

Fel, L.G. and Bear, J. Dispersion and dispersivity tensors in saturated porousmedia with uniaxial symmetry. arXiv:0094.3447v1, 2009

Fetter, C.W. Contaminant Hydrogeology, 2nd ed. Prentice-Hall, 500 p., 1999.Fick, A. On liquid diffusion. Philos. Mag. J. Sci., 10:31–39, 1855.Fiorino, D.J. The New Environmental Regulation. MIT Press, 304 p., 2006.Fitterman, D.V. and Deszcz-Pan, M. Helicopter EM mapping of saltwater

intrusion in Everglades National Park, Florida. Exploration Geophysics,29:240–243, 1998.

Fitterman, D.V. and Stewart, M.T. Transient electromagnetic sounding forgroundwater. Geophysics, 51:995–1005, 1986.

Fleming, G. Deterministic Simulation in Hydrology. American Elsevier, NewYork, 1974.

Fletcher, R. A new approach to variable metric algorithms. Computer J.,13:317–322, 1970.

Forchheimer, P. Wasserbewegung durch boden. Z. Ver. Deutsch. Ing., 45:1782–1788, 1901.

Forsyth, P.A. A control volume finite-element approach to NAPL groundwa-ter contamination. SIAM J. Sci. Stat. Comp.. 12:1029–1057, 1991.

Forsyth, P.A., Wu, Y.S., and Pruess, K. Robust numerical-methods forsaturated-unsaturated flow with dry initial conditions in heterogeneousmedia. Adv. Water Res., 18:25–38, 1995.

Fountain, J.C. The role of field trials in development and feasibility assess-ment of surfactant-enhanced aquifer remediation. Water Environ. Res.,69:188–195, 1997.

Fountain, J.C., Klimek, A., Beikirch, M.G., and Middleton, T.M. The use ofsurfactants for in situ extraction of organic pollutants from a contami-nated aquifer. J. Hazardous Materials, 28:295–311, 1991.

Fountain, J.C., Starr, R.C., Middleton, T., Beikirch, M., Taylor, C., andHodge, D. A controlled field test of surfactant-enhanced aquifer reme-diation. Ground Water, 34:910–916, 1996.

Fourier, J.B.J. Theorie Analytique de la Chaleur. F. Didot, Paris, 1822.Franca, L.P. and Frey, S.L. Stabilized finite-element methods. 2. The incom-

pressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng.,99:209–233, 1992.

Franca, L.P., Frey, S.L., and Hughes, T.J.R. Stabilized finite-element meth-ods. 1. Application to the advective-diffusive model. Comput. Meth.Appl. Mech. Eng., 95:253–276, 1992.

Franke, O.L. and McClymonds, N.E. Summary of the Hydrologic Situation onLong Island, New York, as a Guide to Water-Management Alternatives.U.S. Geological Survey Professional Paper 627-F, 59 p., 1972.

Franke R. Scattered data interpolation: tests of some methods. Math. Com-put., 38:181–200, 1982.

Fraser, D.C. New multicoil aerial electromagnetic prospecting system. Geo-physics, 37:518–537, 1972.

Fraser, D.C. Resistivity mapping with an airborne multicoil electromagneticsystem. Geophysics, 43:144–172, 1978.

References

Page 18: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

776

Fraser, D.C. Multicoil-II airborne electromagnetic system. Geophysics, 44:1367–1394, 1979.

Freeze, R.A. A stochastic-conceptual analysis of one-dimensional ground-water flow in nonuniform homogeneous media. Water Resour. Res.,11:725–741, 1975.

Fretwell, J.D. and Stewart, M. Resistivity study of a coastal karst terrain.Ground Water, 19:219–223, 1981.

Freundlich, H. Uber die Adsorption in Losungen. Z. Phys. Chem., 57:385,1907.

Friedman, S.P. and Seaton, N.A. On the transport properties of anisotropicnetworks of capillaries. Water Resour. Res., 32:339–347, 1996.

Galeao, A.C., Almeida, R.C., Malta, S.M.C., and Loula, A.E. Finite elementanalysis of convection dominated reaction-diffusion problems. Appl. Nu-mer. Math., 48:205–222, 2004.

Galeati, G., Gambolati, G. and Neuman, S.P. Coupled and partially cou-pled Eulerian-Lagrangian model of freshwater-saltwater mixing. WaterResour. Res., 28:149–165, 1992.

Galerkin, B.G. Series solution of some problems of elastic equilibrium of rodsand plates (in Russian). Vestn. Inzh. Tech., 19:897–908, 1915.

Gambolati, G. and Freeze, R.A. Mathematical simulation of the subsidenceof Venice, 1, Theory. Water Resour. Res., 9:721–733, 1973.

Gambolati, G., Gatto, P., and Freeze, R.A. Mathematical simulation of thesubsidence of Venice, 2, Result. Water Resour. Res., 10:563–577, 1974.

Gambolati, G., Putti, M. and Paniconi, C. Three-dimensional model of cou-pled density-dependent flow and miscible salt transport. Chap. 10. In:Seawater Intrusion in Coastal Aquifers—Concepts, Methods, and Prac-tices, (eds.) J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera,Kluwer, 315-362, 1999.

Garabedian, P.R. Partial Differential Equations, 2nd ed. AMS/Chelsea Publ.,672 p., 1998.

Garabedian, S.P., LeBlanc, D.R., Gelhar, L.W., and Celia, M.A. Large-scale natural gradient tracer test in sand and gravel, Cape Code, Mas-sachusetts, 2. Analysis of spatial moments for a nonreactive tracer. Wa-ter Resour. Res., 27:911–924, 1991.

Gardner, W.R. Some steady state solutions of the unsaturated moisture flowequation, with application to evaporation from a water table. Soil Sci.,85:228–232, 1958.

Gavaskar, A.R., Gupta, N., Sass, B.M., Janosy, R.J. and O’Sullivan, D. Per-meable Barriers for Groundwater Remediation. Battelle Press, Colum-bus, OH, 176 p., 1998.

Gelhar, L.W. Stochastic analysis of flow in aquifers. AWRA Symp. on Ad-vances in Groundwater Hydrology, Chicago, Ill, 1976.

Gelhar, L.W. Stochastic subsurface hydrology from theory to applications.Water Resour. Res., 22:135S–145S, 1986.

Gelhar, L.W. Stochastic Subsurface Hydrology. Prentice-Hall, EnglewoodCliffs, NJ, 1993.

References

Page 19: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

777

Gelhar, L.W. and Axness, C.L. Three dimensional stochastic analysis ofmacrodispersion in aquifers. Water Resour. Res., 19:161–180, 1983.

Gelhar, L.W., Gutjhar, A.L., and Naff, R.L. Stochastic analysis of macrodis-persion in a stratified aquifer. Water Resour. Res., 15:1387–1397, 1979.

Gelhar, L.W., Welty, C., and Rehfekdt, K.R. A critical-review of data onfield-scale dispersion in aquifers. Water Resour. Res.. 28:1955–1974,1992.

Gelhar, L.W., Welty, C., and Rehfekdt, K.R. Reply. Water Resour. Res..29:1867–1869, 1993.

Gershon, N.D. and Nir, A. Effects of boundary conditions of models ontracer distribution in flow through porous mediums. Water Resour.Res., 54:830–839, 1969.

Gibbs, J.W. The Scientific Papers of J. Willard Gibbs, Longmans, Green andCo., 1906.

Gibbs, J.W. Elementary Principles in Statistical Mechanics. Longmans andGreen, New York, 1928.

Gieg, L.M., Kolhatkar, R.V., McInerney, M.J., Tanner, R.S., Harris, S.H.,Sublette, K.L., and Suflita, J.M. Intrinsic bioremediation of petroleumhydrocarbons in a gas condensate-contaminate aquifer. Environ. Sci.Technol., 33:2550–2560, 1999.

Glover, F. and Kochenberger, G.A. Handbook of Metaheuristics. Springer,2003.

Glover, R.E. The pattern of fresh-water flow in a coastal aquifer. J. Geophys.Res., 64:457–59, 1959.

Goldberg, D.E. Genetic Algorithms in Search, Optimisation and MachineLearning. Addison-Wesley, 1989.

Goldfarb, D. A family of variable-metric methods derived by variationalmeans. Math. Comput., 24:23–26, 1970.

Golub, G.H. and van Loan, C.F. Matrix Computations, 3rd ed. Johns HopkinsPress, 728 p., 1996.

Goode, D.J. Age, Double Porosity, and Simple Reaction Modifications forthe MOC3D Ground-Water Transport Model. U.S. Geological SurveyWater-Resources Investigations Report 99-4041, 34 p., 1999.

Goode, P. and Ramakrishnan, T.S. Momentum-transfer across fluid-fluid in-terfaces in porous-media—A network model. AIChE J., 39:1124–1134,1993.

Goovaerts, P. Geostatistics for Natural Resources Evaluation. Oxford Univ.Press, New York, 483 p., 1997.

Gordon, E., Shamir, U., and Bensabat, J. Optimal management of a regionalaquifer under salinization conditions. Water Resour. Res., 36:3193–3203, 2000.

Gordon, E., Shamir, U., and Bensabat, J. Optimal extraction of water fromregional aquifer under salinization. J. Water Resour. Plng. Mgmt.,ASCE, 127:71–77, 2001.

Gorelick, S.M., Freeze, R.A., and Donohue, D. Groundwater ContaminationOptimal Capture and Containment. CRC Press, 416 p., 1993.

References

Page 20: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

778

Goswami, R.R. and Clement, T.P. Laboratory-scale investigation of saltwaterintrusion dynamics. Water Resour. Res., 43:W04418, 2007.

Graham, W. and McLaughlin, D. Stochastic-analysis of nonstationary sub-surface solute transport. 1. Unconditional moments. Water Resour.Res., 25:215–232, 1989a.

Graham, W. and McLaughlin, D. Stochastic-analysis of nonstationary sub-surface solute transport. 2. Conditional moments. Water Resour. Res.,25:2331–2355, 1989b.

Gray, W.G. and O’Neill, K. On the general equations for flow in porous mediaand their reduction to Darcy’s law. Water Resour. Res., 12:148–154,1976.

Green, W.H. and Ampt, C.A. Studies on Soil Physics. 1: Flow of air andwater through soils. J. Agr. Sci., 4:1–24, 1911.

Greenberg, M.D. Application of Green’s Functions in Science and Engineer-ing. Prentice-Hall, 1971.

Greenberg, M. Advanced Engineering Mathematics, 2nd ed. Prentice-Hall,1998.

Grim, R.E. Clay Mineralogy, 2nd ed. McGraw-Hill, New York, 596 p., 1968.Guadagnini, A. and Neuman, S.P. Nonlocal and localized analyses of condi-

tional mean steady state flow in bounded, randomly nonuniform do-mains 1. Theory and computational approach. Water Resour. Res.,35:2999–3018, 1999a.

Guadagnini, A. and Neuman, S.P. Nonlocal and localized analyses of con-ditional mean steady state flow in bounded, randomly nonuniform do-mains 2. Computational examples. Water Resour. Res., 35:3019–3039,1999b.

Guarnaccia, J., Pinder, G.F., and Fishman, M. NAPL: Simulator Documen-tation. U.S. Environmental Protection Agency, EPA/600/SR-97/102,1997.

Gutjahr, A.L., Gelhar, L.W., Bakr, A.A. and MacMillan, JR. Stochastic anal-ysis of spatial variability in subsurface flows. 2. Evaluation and applica-tion. Water Resour. Res., 14:953–959, 1978.

Gvirtzman, H. and Gorelick, S.M. Dispersion and advection in unsaturatedporous-media enhanced by anion exclusion. Nature, 352:793-795, 1991.

Gvirtzman, H. and Magaritz, M. Water and anion transport in the unsatu-rated zone traced by environmental tritium. In: Inorganic Contaminantsin the Vadose Zone, (eds.) B. Bar-Yosef, N.J. Barrow and J. Goldsh-midt. Ecological Studies, 74, Springer-Verlag, Berlin, 190–198, 1989.

Hackbusch, W. Iterative Solution of Large Sparse Systems of Equations.Springer, 460 p., 1993.

Hagemeyer, T. and Stewart, M.T. Resistivity investigations of salt-water in-trusion near a major sea-level canal. In: Geotechnical and EnvironmentalGeophysics, v. II, Soc. Explor. Geophysicists, Inv. in Geophysics, n. 5,(ed.) S. Ward, 67–78, 1990.

Haimes, Y.Y. Hierarchial Analysis of Water Resources Systems: Modelingand Optimization of Large-Scale Systems. McGraw-Hill, 512 p., 1977.

References

Page 21: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

779

Haimes, Y.Y., Hall, W.A., and Freedman, H.T. Multiobjective Optimizationin Water Resources Systems. Elsevier, 200 p., 1975.

Haines, W.B. The hysteresis effect in capillary properties and the modes ofmoisture distribution associated therewith. J. Agric. Sci., 20:96–105,1930.

Haitjema, H.M. Analytic Element Modeling of Groundwater Flow. AcademicPress, 394 p., 1995.

Hammond, G.E., Valocchi, A.J., and Lichtner, P.C. Application of Jacobian-free Newton-Krylov with physics-based preconditioning to biogeochem-ical transport. Adv. Water Res., 28:359–376, 2005.

Hansbo, P. and Szepessy, A. A velocity pressure streamline diffusion finite-element method for the incompressible Navier-Stokes equations. Comp.Meth. Appl. Mech. Eng., 84:175–192, 1990.

Hantush, M.S. Analysis of data from pumping tests in leaky aquifers. Trans.Am. Geophys. Union, 37:702–714, 1956.

Hantush, M.S. Modification of the theory of leaky aquifers. J. Geophys. Res.,65:3713–3726, 1960.

Hantush, M.S. Hydraulics of wells. In: Advances in Hydroscience, Vol. 1, (ed.)V.T. Chow, Academic Press, 281–442, 1964.

Hantush, M.S. and Jacob, C.E. Non-steady radial flow in an infinite leakyaquifer. Trans. Am. Geophys. Union, 36:95–100, 1955.

Harbaugh, A.W. MODFLOW-2005, the U.S. Geological Survey ModularGround-Water model—the Ground-Water Flow Process. U.S. Geolog-ical Survey Techniques and Methods 6-A16, 2005.

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—UserGuide to Modularization Concepts and the Ground-Water Flow Process,U.S. Geological Survey Open-File Report 00-92, 121 p., 2000.

Hardy, R.L. Multiquadric equations of topography and other irregular sur-faces. J. Geophys. Res., 76:1905–1915, 1971.

Hargreaves, G.H. Moisture availability and crop production. Trans. Am. Soc.Agric. Eng., 18:980–984, 1975.

Harlan, R.L., Kolm, K.E., Gutentag, E.D. Water-Well Design and Construc-tion. Elsevier, 1989.

Harpez, Y. Artificial ground water recharge by means of wells in Israel. J.Hyd. Div., ASCE, 97:1947–1964, 1971.

Harr, M.E. Foundations of Theoretical Soil Mechanics. McGraw-Hill, NewYork, 381 p., 1966.

Hassanizadeh, S.M. Derivation of basic equations of mass transport in porousmedia: Generalized Darcy’s and Fick’s laws. Adv. Water Res., 9:207–233, 1986.

Haverkamp, R., Parlange, J.Y., Starr, J.L., Schmitz, G., and Fuentes, C.Infiltration under ponded conditions. 3. A predictive equation based onphysical parameters. Soil Sci., 149:292–300, 1990.

Healy, R.W. and Cook, P.G. Using groundwater levels to estimate recharge.Hydrogeology J., 10:91–109, 2002.

References

Page 22: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

780

Heinrich, J.C., Huyakorn, P.S., Zienkiewicz, O.C., and Mitchell, A.R. An ‘up-wind’ finite-element scheme for two-dimensional convective transport-equation. Int. J. Numer. Methods Eng., 11:131–143, 1977.

Helgeson, H.C. Thermodynamics of hydrothermal systems at elevated tem-peratures and pressures. Am. J. Sci., 267:729–804, 1969.

Herrera, I. Theory of multiple leaky aquifers. Water Resour. Res., 6:185–193,1970.

Herrera, I. Trefftz method. In: Topics in Boundary Element Research, 1,Basic Principles and Applications, (ed.) C.A. Brebbia, Springer, Berlin,225–253, 1984.

Herrera, I., Ewing, R.E., Celia, M.A., Russell, T.F. Eulerian-Lagrangian lo-calized adjoint method: The theoretical framework. Numer. Meth. Part.Diff. Eqs., 9:431–457, 1993.

Herrera, I. and Figueroa, G.E. A correspondence principle for the theory ofleaky aquifers. Water Resour. Res., 5:900–904, 1969.

Herzberg, A. Die Wasserversorgung einiger Nordseebder (The water supply ofparts of the North Sea coast in Germany). Z. Gasbeleucht. Wasserver-sorg., 44:815–819, and 45:842-844, 1901.

Hess, K.M., Wolf, S.H. and Celia, M.A. Large-scale natural gradient tracertest in sand and gravel, Cape Cod, Massachusetts. 3. Hydraulic con-ductivity variability and calculated macrodispersivities. Water Resour.Res., 28:2011–2027, 1992.

Hiemenz, P.C. and Rajagopalan, R. Principles of Colloid and Surface Chem-istry, 3rd ed. Marcel Dekker, 650 p., 1997.

Hill, M.C. A Computer Program (MODFLOWP) for Estimating Parametersof a Transient, Three-Dimensional, Ground-Water Flow Model UsingNonlinear Regression. U.S. Geological Survey Open-File Report 91-484,358 p., 1992.

Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—UserGuide to the Observation, Sensitivity, and Parameter-Estimation Pro-cesses and Three Post-Processing Programs, U.S. Geological SurveyOpen-File Report 00-184, 210 p., 2000.

Hill, M.C. and Tiedeman, C.R. Effective Groundwater Model Calibration:With Analysis of Data, Sensitivities, Predictions, and Uncertainty.Wiley-Interscience, 480 p., 2007.

Hillel, D. Fundamentals of Soil Physics. Academic Press, 413 p., 1980.Hinchee, R.E., Downey, D.C., Dupont, R.R., Aggarwal, P.K., and Miller,

R.N. Enhancing biodegradation of petroleum-hydrocarbons throughsoil-venting. J. Hazardous Materials, 27:315–325, 1991.

Hinchee, R.E. and Ong, S.K. A rapid in situ respiration test for measuringaerobic biodegradation rate of hydrocarbons in soil. J. Air & WasteManagement Assoc., 42:1305–1312, 1992.

Hoeksema, R.J. and Kitanidis, P.K. Analysis of spatial variability of proper-ties of selected aquifers. Water Resour. Res., 21:563–572, 1985a.

References

Page 23: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

781

Hoeksema, R.J. and Kitanidis, P.K. Comparison of Gaussian conditionalmean and kriging estimation in the geostatistical approach to the inverseproblem. Water Resour. Res., 21:825–836, 1985b.

Hoekstra, P. and Blohm, M.W. Case histories of time-domain electromagneticsoundings in environmental geophysics. In: Geotechnical and Environ-mental Geophysics, v. II, Soc. Explor. Geophysicists, Inv. in Geophysics,n. 5, (ed.) S. Ward, 1–16, 1990.

Hoeppel, R.E., Hinchee, R.E., and Arthur, M.F. Bioventing soils contami-nated with petroleum-hydrocarbons. J. Industrial Microbiology, 8:141–146, 1991.

Hoffman, F. Groundwater remediation using smart pump and treat. GroundWater, 31:98–106, 1993.

Holland, J.H. Adaptation in Natural and Artificial Systems. Ann Arbor Sci-ence Press, Ann Arbor, Michigan, 1975.

Holzbecher, E. and Sorek, S. Numerical models of groundwater flow andtransport. In: Encyclopedia of Hydrological Sciences, Vol. 4, Art. 155,(eds.) J.J. McDonnell and M.G. Anderson, 2401–2414, 2005.

Hornung, U. (Ed.) Homogenization and Porous Media. Springer, 1997.Horton, R.E. An approach towards a physical interpretation of infiltration

capacity. Proc. Soil Sci. Soc. Am., 5:399–417, 1940.Houlihan, M.F. and Berman, M.H. Remediation of contaminated groundwa-

ter. Chap. 36. In: The Handbook of Groundwater Engineering, 2nd ed.,(ed.) J.W. Delleur, CRC Press, 2007.

Huang, C.L. and Mayer, A.S. Pump-and-treat optimization using well lo-cations and pumping rates as decision variables. Water Resour. Res.,33:1001–1012, 1997.

Huang, C.S., Lee, C.-F., and Cheng, A.H.-D. Error estimate, optimal shapefactor, and high precision computation of multiquadric collocationmethod. Eng. Anal. Bound. Elem., 31:614–623, 2007.

Huang, H.P. and Fraser, D.C. The differential parameter method for multi-frequency airborne resistivity mapping. Geophysics, 61:100–109, 1996.

Hubbert, M.K. The theory of ground water motion. J. Geol., 48:785–944,1940.

Hughes, T.J.R. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the originsof stabilized methods. Comput. Meth. Appl. Mech. Eng., 127:387–401,1995.

Hughes, T.J.R. and Brooks, A.N. A multidimensional upwind scheme with nocrosswind diffusion. In: Finite Element Methods for Convection Domi-nated Flows, AMD Vol. 34, (ed.) T.J.R. Hughes, ASME, 19–35, 1979.

Hughes, T.J.R., Franca, L.P., and Hulbert, G.M. A new finite-element for-mulation for computational fluid-dynamics. VIII. The Galerkin least-squares method for advective-diffusive equations. Comput. Meth. Appl.Mech. Engng., 73:173–189, 1989.

Hughes, T.J.R. and Mallet, M. A new finite-element formulation for com-putational fluid-dynamics. III. The generalized streamline operator for

References

Page 24: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

782

multidimensional advective-diffusive systems. Comp. Meth. Appl. Mech.Eng., 58:305–328, 1986.

Hughes, T.J.R., Masud, A., and Wan, J. A stabilized mixed discontinuousGalerkin method for Darcy flow. Comput. Meth. Appl. Mech. Eng.,195:3347–3381, 2006.

Hult, M.F. Ground-water contamination by crude oil at the Bemidji, Min-nesota, research site; US Geological Survey Toxic Waste—ground-watercontamination study. USGS Water-Resources Investigations Report, No.84-4188, 1984.

Hunt, J.R., Sitar, N., and Udell, K.S. Non-aqueous phase liquid transport andcleanup, 1. Analysis of mechanisms. Water Resour. Res., 24:1247–1258,1988.

Huyakorn, P.S., Andersen, P.F., Mercer, J.W. and White, H.O. Salt intru-sion in aquifers: development and testing of a three dimensional finiteelement model. Water Resour. Res., 23:293–319, 1987.

Huyakorn, P.S. and Nilkuha, K. Solution of transient transport-equation us-ing an upstream finite-element scheme. Appl. Math. Modelling, 3:7–17,1979.

Huyakorn, P.S. and Pinder, G.F. Computational Methods in Subsurface Flow.Academic Press, 473 p., 1983.

Hydrocomp International Inc. Hydrocomp Simulation Programming Opera-tions Manual. Palo Alto, California, 1968.

Iben, I.E.T., Edelstein, W.A., Sheldon, R.B., Shapiro, A.P., Uzgiris, E.E.,Scatena, C.R., Blaha, S.R., Silverstein, W.B., Brown, G.R., Stegemeier,G.L., and Vinegar, H.J. Thermal blanket for in-situ remediation of sur-ficial contamination: A pilot test. Environ. Sci. Technol., 30:3144–3154,1996.

Idelsohn, S.R. and Onate, E. To mesh or not to mesh. That is the question.Comput. Methods Appl. Mech. Eng., 195:4681–4696, 2006.

IMSL IMSL Fortran Subroutines for Mathematical Applications, Math/LibraryVol. 1 & 2, 1997.

Irmay, S. On the hydraulic conductivity of unsaturated soil. Trans. Am. Geo-phys. Union, 35:463–468, 1954.

Irmay, S. Solutions of the non-linear diffusion equation with a gravity term inhydrology. I.A.S.H. Symp. Water in the Unsaturated Zone, Wageningen,1966.

Jacob, C.E. The flow of water in an elastic artesian aquifer. Trans. Am.Geophys. Union, 21:574–586, 1940.

Jacob, C.E. Flow of groundwater. Chap. 5. In: Engineering Hydraulics, (ed.)H. Rouse, Wiley, 321–386, 1950.

Jager, W. and Mikelic, A. On the interface boundary condition of Beavers,Joseph, and Saffman. SIAM J. Appl. Math., 60:1111–1127, 2000.

Jahnke, F.M. and Radke, C.J. Electrolyte diffusion in compacted montmoril-lonite engineered barriers. Chap. 22. In: Coupled Processes Associatedwith Nuclear Waste Repositories, (ed.) C.F. Tsang, Academic Press,287–297, 1987.

References

Page 25: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

783

Jang, M. and Choe, J. Stochastic optimization for global minimization andgeostatistical calibration. J. Hydrology, 266:40–52, 2002.

Jennings, A. and McKeown, J.J. Matrix Computation, 2nd ed. Wiley, 1992.Jensen, K.H., Bitsch, K., and Bjerg, P.L. Large-scale dispersion experi-

ments in a sandy aquifer in Denmark—Observed tracer movements andnumerical-analyses. Water Resour. Res., 29:673–696, 1993.

Ji, S.H., Park, Y.J., Sudicky, E.A., and Sykes, J.F. A generalized transforma-tion approach for simulating steady-state variably-saturated subsurfaceflow. Adv. Water Res., 31:313–323, 2008.

Jikov, V.V., Kozlov, S.M., and Oleinik, O.A. Homogenization of differentialoperators and integral functionals. Springer-Verlag, Berlin, New York,1994.

Joe, B. Delaunay triangular meshes in convex polygons. SIAM J. Sci. Stat.Comp., 7:514–539, 1986.

Johnson, A.I. (Ed.) Land Subsidence: Proc. 4rd Int. Symp. on Land Subsi-dence, UNESCO/IAHS, Houston, Texas, USA, IAHS, 200, 1991

Johnson, A.I., Carbognin, L. and Ubertini, L. (Eds.) Land Subsidence: Proc.3rd Int. Symp. on Land Subsidence, UNESCO/IAHS, Venice, IAHS,151, 1984.

Johnson, A.I. and Finlayson, D.J. (Eds.) Artificial Recharge of Ground Wa-ter, Proc. 1st Int. Symp. Artificial Recharge of Ground Water, Anaheim,California, ASCE Publications, New York, 644 p., 1988.

Johnson, A.I. and Pyne, R.D.G. (Eds.) Artificial Recharge of Ground Water,II, Proc. 2nd Int. Symp. Artificial Recharge of Ground Water, Orlando,Florida, ASCE Publications, Reston, VA, 938 p., 1994.

Johnson, C., Schatz, A.H., and Wahlbin, L.B. Crosswind smear and pointwiseerrors in streamline diffusion finite-element methods. Math. Comput.,49:25–38, 1987.

Johnson, C., Szepessy, A., and Hansbo, P. On the convergence of shockcapturing streamline diffusion finite-element methods for hyperbolicconservation-laws. Math. Comput., 54:107–129, 1990.

Johnson, R.L., Johnson, P.C., McWhorter, D.B., Hinchee, R.E., and Good-man, I. An overview of in-situ air sparging. Ground Water Monit. Rem.,13:127–135, 1993.

Johnson, T.A. and Whitaker, R. Saltwater intrusion in the coastal aquifers ofLos Angeles County, California. Chap. 2. In: Coastal Aquifer Management-Monitoring, Modeling, and Case Studies, (eds.) A.H.-D. Cheng and D.Ouazar, Lewis Publ., 29–48, 2004.

Jones, B.F., Vengosh, A., Rosenthal, E., and Yechieli, Y. Geochemical in-vestigations. Chap. 3. In: Seawater Intrusion into Coastal Aquifers—Concepts, Methods and Practices, (eds.) J. Bear, A.H.-D. Cheng, S.Sorek, D. Ouazar & I. Herrera, Kluwer, 51–71, 1999.

Journel, A.G. Geostatistics for conditional simulation of ore bodies. EconomicGeology, 69:673–687, 1974.

Journel, A.G. and Huijbregts, C.J. Mining Geostatistics. Academic Press,New York, 600 p., 1978.

References

Page 26: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

784

Jury, W.A. Chemical transport modeling: Current approaches and unresolvedproblems. In: SSSA Special Publication, 11, SSSA and ASA, MadisonWisconsin, 49–64, 1983.

Kalaydjian, F. A macroscopic description of multiphase flow in porous mediainvolving space-time evolution of fluid-fluid interface. Transp. PorousMedia, 2:537–552, 1987.

Kalaydjian, F. Origin and quantification of coupling between relative per-meabilities for two-phase flows in porous media. Transp. Porous Media,5:215–229, 1990.

Kansa, E.J. Multiquadrics—a scattered data approximation scheme with ap-plications to computational fluid-dynamics. 1. Surface approximationsand partial derivative estimates. Comput. Math. Applic., 19:127–145,1990a.

Kansa, E.J. Multiquadrics—a scattered data approximation scheme with ap-plications to computational fluid-dynamics. 2. Solutions to parabolic,hyperbolic and elliptic partial-differential equations. Comput. Math. Ap-plic., 19:147–161, 1990b.

Kansa, E.J. and Hon, Y.C. Circumventing the ill-conditioning problem withmultiquadric radial basis functions: Applications to elliptic partial dif-ferential equations. Comput. Math. Applic., 39:123–137, 2000.

Karimian, S.A.M. and Straatman, A.G. Discretization and parallel perfor-mance of an unstructured finite volume Navier-Stokes equation solver.Int. J. Numer. Methods Fluids, 52:591–615, 2006.

Kauahikaua, J. Description of a Fresh-Water Lens at Laura Atoll, MajuroAtoll, Republic of the Marshall Islands, Using Electromagnetic Profiling,U.S. Geol. Survey Open File Report 87-582, 32 p., 1987.

Keely, J.F. Performance evaluations of pump-and-treat remediations. EPAGround Water Issue, EPA/540/4-89/005, Ada, OK, 1989.

Kees, C.E., Farthing, M.W., and Dawson, C.N. Locally conservative, stabi-lized finite element methods for variably saturated flow. Comput. Meth.Appl. Mech. Eng., 197:4610–4625, 2008.

Kershaw, D.S. Incomplete Cholesky-conjugate gradient method for iterativesolution of systems of linear equations. J. Computat. Phys., 26:43–65,1978.

Khinchin, A. Mathematical Foundations of Statistical Mechanics. Dover,1949.

Kim, S. and Russel, W.B. Modeling of porous-media by renormalization ofthe Stokes equation. J. Fluid Mech., 154:269–286, 1985.

Kinzelbach, W. Numerische Methoden zur Modellierung des Transports vonSchadstoffen im Grundwasser, 2nd ed. Oldenbourg Verlag, Mnchen, 313p., 1992.

Kipp, K.L., Jr. HST3D: A Computer Code for Simulation of Heat and So-lute Transport in Three-Dimensional Ground-Water Flow Systems. U.S.Geological Survey Water-Resource Investigation Report 86-4095, 1987.

Kipp, K.L., Jr. Guide to the Revised Heat and Solute Transport Simulator:HST3D. U.S. Geological Survey Water-Resource Investigation Report97-4157, 149p., 1997.

References

Page 27: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

785

Kirchhoff, G. Vorlesungen uber die Theorie der Warme, Barth, Leipzig, 1894.Kirkham, D. and Powers, W.L. Advanced Soil Physics. Wiley-Interscience,

New York, 534 p., 1972.Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies.

J. Stat. Phys., 34:975–986, 1984.Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.Kitanidis, P.K. Introduction to Geostatistics: Applications in Hydrogeology.

Cambridge Univ. Press, 249 p., 1997.Kleineidam, S., Rugner, H., Ligouis, B. and Grathwohl, P. Organic matter

facies and equilibrium sorption of phenanthrene. Environ. Sci. Technol.,33:1637–1644, 1999.

Klinchuch, L.A., Goulding, N., James, S.R., and Gies, J. Deep air sparging-15to 46 m beneath the water table. Ground Water Monit. Rem., 27:118–126, 2007.

Klinkenberg, L.J. The permeability of porous media to liquids and gases.American Petroleum Institute, Drilling and Productions Practices, 200–213, 1941.

Knight, J. and Philip, J.R. Exact solutions in nonlinear diffusion. J. Eng.Math., 8:219–227, 1974.

Knudsen, M.H.C. The Kinetic Theory of gases. Methuen, London, 1934; (3rded.), 64 p., 1950.

Kock, D.L. and Prickett, T.A. User Manual for RD3D, a Three-DimensionalMass Transport Random Walk Model Attachment of the USGS MOD-FLOW Three-Dimensional Flow Model. Joint Eng. Tech. Assoc. & T.A.Prickett and Assoc., Sci. Publ. 3, Ellicott City, MD, 1989.

Koczkodaj, W.W. and Orlowski, M. Computing a consistent approximationto a generalized pairwise comparisons matrix. Comput. Math. Applic.,37:79–85, 1999.

Kohr, M. and Sekhar, G.P.R. Existence and uniqueness result for the problemof viscous flow in a granular material with a void. Quart. Appl. Math.,65:683–704, 2007.

Kollet, S.J. and Maxwell, R.M. Integrated surface-groundwater flow mod-eling: A free-surface overland flow boundary condition in a parallelgroundwater flow model. Adv. Water Res., 29:945–958, 2006.

Konikow, L.F. and Bredehoeft, J.D. Computer Model of Two-DimensionalSolute Transport and Dispersion in Ground Water, Tech. Water-ResourcesInvestigations, U.S. Geological Survey, Book 7, 1978.

Konikow, L.F., Goode, D.J., and Hornberger, G.Z. A Three-DimensionalMethod-of-Characteristics Solute-Transport Model (MOC3D). U.S. Ge-ological Survey Water-Resources Investigations Report 96-4267, 87 p.,1996.

Konikow, L.F. and Reilly, T.E. Seawater Intrusion in the United States. Chap.13. In: Seawater Intrusion into Coastal Aquifers—Concepts, Methodsand Practices, (eds.) J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar & I.Herrera, Kluwer, 463–506, 1999.

References

Page 28: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

786

Kontar, E.A. and Ozorovich, Y.R. Geo-electromagnetic survey of the fresh/saltwater interface in the coastal southeastern Sicily. Continental Shelf Re-search, 26:843–851, 2006.

Kool, J.B. and Parker, J.C.P. Development and evaluation of closed-formexpressions for hysteretic soil hydraulic properties. Water Resour. Res.,23:105–114, 1987.

Kool, J.B., Parker, J.C.P., and Van Genuchten, M.Th. Parameter estima-tion for unsaturated flow and transport models–A review. J. Hydrology,91:255–293, 1987.

Koplik, J., Levine, H., and Zee, A. Viscosity renormalization in the Brinkmanequation. Phys. Fluids, 26:2864–2870, 1983.

Korolev, V.A., Romanyukha, O.V., and Abyzova, A.M. Electrokinetic re-mediation of oil-contaminated soils. J. Environ. Sci. Health A—Toxic/Hazardous Substances & Environ. Eng., 43:876–880, 2008.

Krautle, S. and Knabner, P. A new numerical reduction scheme for fullycoupled multicomponent transport-reaction problems in porous media.Water Resour. Res., 41:W09414, 2005.

Krautle, S. and Knabner, P. A reduction scheme for coupled multicompo-nent transport-reaction problems in porous media: Generalization toproblems with heterogeneous equilibrium reactions. Water Resour. Res.,43:W03429, 2007.

Krige, D.G. A statistical approach to some mine valuations and allied prob-lems at the Witwatersrand. Master’s thesis, University of Witwater-srand, 1951.

Krumbein, W.C. and Monk, G.D. Permeability as a function of the sizeparameters of unconsolidated sands. Trans. Inst. Min. Met. Engrs.,15:153–163, 1943.

Kubik, J. Elements of constitutive modelling of saturated porous materials.In: Modelling Coupled Phenomena in Saturated Porous Materials, (eds.)J. Kubik, M. Kaczmarek, and I. Murdoch, Institute of FundamentalTechnological Research, Polish Academy of Sciences, Warsaw, Poland,279–347, 2004.

Kuiper, L.K. A comparison of the incomplete Cholesky-conjugate gradient-method with the strongly implicit method as applied to the solutionof two-dimensional groundwater-flow equations. Water Resour. Res.,17:1082–1086, 1981.

Ladyzhenskaya, O.A. The mathematical theory of viscous incompressible flow.Gordon and Breach, 1963.

Lafe, O. and Cheng, A.H.-D. Stochastic indirect boundary element method.Chap. 14. In: Computational Stochastic Mechanics: Theory, Computa-tional Methodology and Engineering Application, (eds.) A.H.-D. Chengand C.Y. Yang, CMP/Elsevier, 301–322, 1993.

Lall, U. and Sharma, A. A nearest neighbor bootstrap for resampling hydro-logic time series. Water Resour. Res., 32:679–693, 1996.

Lallemand-Barres, A. and Peaudecerf, P. Recherche de relationsentre lesvaleurs measurees de la dispersivite macroscopique d’un milieu aqiufere,

References

Page 29: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

787

ses autres caracteritsique et les conditions de mesure. Bull. Bur. Rech.Geol. Min. Ser, 2(Sec. III):277–284, 1978.

Land, C.S. Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. Trans. Amer. Instit. Mining Metal. andPetrol. Engineering, 243:149–156, 1968.

Langevin, C.D., Oude Essink, G.H.P., Panday, S., Bakker, M., Prommer, H.,Swain, E.D., Jones, W., Beach, M. and Barcelo, M. MODFLOW-basedtools for simulation of variable-density groundwater flow. Chap. 2. In:Coastal Aquifer Management—Monitoring, Modeling, and Case Studies,(eds.) A.H.-D. Cheng and D. Ouazar, Lewis Publ., 49–76, 2004.

Langevin, C.D., Shoemaker, W.B., and Guo, W. MODFLOW-2000, the U.S.Geological Survey Modular Ground-Water Model-Documentation of theSEAWAT-2000 Version with the Variable-Density Flow Process (VDF)and the Integrated MT3DMS Transport Process (IMT). U.S. GeologicalSurvey Open-File Report 03-426, 43 p., 2003.

Langmuir, I. Chemical reactions at low temperatures. J. Amer. Chem. Soc.,37:1139, 1915.

Langmuir, I. The adsorption of gases on plane surfaces of glass, mica andplatinum. J. Amer. Chem. Soc., 40:1361–1403, 1918.

La Rocca, A. and Power, H. A double boundary collocation Hermitian ap-proach for the solution of steady state convection-diffusion problems.Comput. Math. Applic., 55:1950–1960, 2008.

La Rocca, A., Rosales, A.H., and Power, H. Radial basis function Hermitecollocation approach for the solution of time dependent convection-diffusion problems. Eng. Anal. Bound. Elem., 29:359–370, 2005.

Lasaga, A.C. and Kirpatrick, R.J. (Eds.) Kinetics of Geochemical Processes.Rev. in Mineralogy, Mineralogical Soc. of America, Book Crafters Inc.,Chelsea, Michigan, 1981.

Lasseux, D., Quintard, M., and Whitaker, S. Determination of the perme-ability tensors for two-phase flow. Transp. Porous Media, 24:107–137,1996.

Lawler, G.F. Introduction to Stochastic Processes, 2nd ed. Chapman & Hall,248 p., 2006.

Lazarov, R.D., Mishev, I.D., and Vassilevski, P.S. Finite volume methods forconvection-diffusion problems. SIAM J. Numer. Anal., 33:31–55, 1996.

LeBlanc, D.R., Garabedian, S.P., Hess, K.M., Gelhar, L.W., Quadri, R.D.,Stollenwerk, K.G., and Wood, W.W. Large-scale natural gradient tracertest in sand and gravel, Cape Cod, Massachusetts. 1. Experimental de-sign and observed tracer movement. Water Resour. Res., 27:895–910,1991.

Lee, T.H., Byun, I.G., Kim, Y.O., Hwang, I.S., and Park, T.J. Monitoringbiodegradation of diesel fuel in bioventing processes using in situ respi-ration rate. Water Sci. Technol., 53:263–272, 2006.

Lehr, J., Hurlburt, S., Gallagher, B., and Voytek, J. Design and Constructionof Water Wells: A Guide for Engineers. Van Nostrand Reinhold, 1988.

References

Page 30: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

788

Lenhard, R.J., Parker, J.C., and Kaluarachchi, J.J. A model for hystereticconstitutive relations governing multiphase flow, 3. Refinement and nu-merical simulations. Water Resour. Res., 25:1727–1736, 1989.

Leroux, V. and Dahlin, T. Time-lapse resistivity investigations for imag-ing saltwater transport in glaciofluvial deposits. Environmental Geology,49:347–358, 2006.

Letniowski, F.W. and Forsyth, P.A. A control volume finite-element methodfor 3-dimensional NAPL groundwater contamination. Int. J. Numer.Methods Fluids, 13:955–970, 1991.

Leveque, R.J. Finite Volume Methods for Hyperbolic Problems. CambridgeUniv. Press, 558 p., 2002.

Leveque, R.J. Finite Difference Methods for Ordinary and Partial DifferentialEquations: Steady-State and Time-Dependent Problems, SIAM, 350 p.,2008.

Lever, D.A. and Jackson, C.P. On the equations for the flow of a concentratedsalt solution through a porous medium, Harwell Rep. AERE-R. 11765,HMSO, London, 1985.

Leverett, M.C. Capillary behaviour in porous media. Trans. AIME, 142:341–358, 1941.

Lewis, R.W., Masters, I., and Rees, I. Coupled and uncoupled contami-nant transport using advanced finite volume methods. Comput. Mech.,37:292–310, 2006.

Li, S. and Liu, W.K. Meshfree Particle Methods. Springer, 502 p., 2007Li, Z.C., Lu, T.T., Hu, H.Y., and Cheng, A.H.-D. Trefftz and Collocation

Methods. WIT Press, 2008.Li, Z.C., Lu, T.T., Huang, H.T., and Cheng, A.H.-D. Trefftz, collocation,

and other boundary methods—A comparison. Numer. Meth. Part. Diff.Eqs., 23:93–144, 2008.

Liang, Q. and Lohrenz, J. Dynamic method of measuring coupling coefficientsof transport equations of two-phase flow in media flow. Transp. PorousMedia, 15:771–779, 1994.

Lichtner, P.C. Continuum model for simultaneous chemical reactions andmass transport in hydrothermal systems. Gmchimica n CosmochimicaActa, 49:779–800, 1985.

Lichtner, P.C. Scaling properties of kinetic mass transport equations. Am. J.Sci., 293, 257–296, 1993.

Lichtner, P.C. Principles and practice of reactive transport modelling. Mat.Res. Soc. Symp. Proc., Kyoto, Japan, 353:117-130, 1995.

Lichtner, P.C. Continuum formulation of multicomponent-multiphase reac-tive transport. In: Reactive Transport in Porous Media, (eds.) P.C.Lichtner, C.I. Steefel, and E.H. Oelkers, 1–81, 1996.

Lichtner, P.C. and Carey, J.W. Incorporating solid solutions in reactive trans-port equations using a kinetic discrete-composition approach. Geochim-ica Et Cosmochimica Acta, 70:1356–1378, 2006.

Lichtner, P.C., Kelkar, S., and Robinson, B.A. New form of dispersion tensorfor axisymmetric porous media with implementation in particle track-ing. Water Resour. Res., 38:DOI 10.1029/200wr000100, 2002.

References

Page 31: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

789

Lichtner, P.C., Kelkar, S., and Robinson, B.A. Critique of Burnett-Frinddispersion tensor for axisymmetric porous media. Los Alomos NationalLaboratory Report, LA-UR-08-04495, 2008.

Liggett, J.A. Location of free surface in porous media. J. Hyd. Div., ASCE,103:353–365, 1977.

Liggett, J.A. and Liu, P.L.-F. Unsteady flow in confined aquifers: A compari-son of two boundary integral methods. Water Resour. Res., 15:861–866,1979.

Liggett, J.A. and Liu, P.L.-F. The Boundary Integral Equation Method forPorous Media Flow. George Allen and Unwin, 1983.

Limayem, F. and Yannou, B. Generalization of the RCGM and LSLR pairwisecomparison methods. Comput. Math. Applic., 48:539–548, 2004.

Lin, H.C., Richards, D.R., Yeh, G.T., Cheng, J.R., Chang, H.P., and Jones,N.L. FEMWATER: A Three-Dimensional Finite Element ComputerModel for Simulating Density Dependent Flow and Transport, U.S.Army Engineer Waterways Experiment Station Technical Report, 129p., 1996.

Lindstrom, F.T., Boersma, L., and Stockard, D. A theory on the mass trans-port of previously distributed chemicals in a water saturated sorbingporous medium. Soil Sci., 112:291–300, 1971.

Ling, L. Multivariate quasi-interpolation schemes for dimension-splitting mul-tiquadric. Appl. Math. Computat., 161:195–209, 2005.

Lions, J.-L. Some methods in the mathematical analysis of systems and theircontrol, Kexue Chubanshe Science Press, Beijing, 1981.

Liu, H. and Cheng, A.H.-D. Modified Fickian model for predicting dispersion.J. Hyd. Div., ASCE, 106:1021–1040, 1980. (Also: Closure. 108:152,1982.)

Liu, P.L.-F., Cheng, A.H.-D., Liggett, J.A., and Lee, J.H. Boundary integralequation solutions to moving interface between two fluids in porousmedia. Water Resour. Res., 17:1445–1452, 1981.

Liu, W.K., Chang, H., Chen, J.S., and Belytschko, T. Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite-elements for nonlinear continua. Comp.Meth. Appl. Mech. Eng., 68:259–310, 1988.

Liu, W.K., Jun, S., and Zhang, Y.F. Reproducing kernel particle methods.Int. J. Numer. Methods Fluids, 20:1081–1106, 1995.

Lo, I.M.C., Mak, R.K.M., and Lee, S.C.H. Modified clays for waste contain-ment and pollutant attenuation. J. Env. Eng., ASCE, 12:25–32, 1997.

Lohman, S.W. Ground-Water Hydraulics, U.S. Geological Survey Profes-sional Paper 708, 70 p., 1972.

Lootsma, F.A. Performance evaluation of nonlinear optimization methodsvia multi-criteria decision analysis and via linear model analysis. In:Nonlinear Optimization, Vol. 1, (ed.) M.J.D. Powell, Academic Press,419–453, 1982.

Loudyi, D. A 2D finite volume model for groundwater flow simulations: In-tegrating non-orthogonal grid capability into MODFLOW. Ph.D. Dis-sertation, Cardiff University, UK, 2005.

References

Page 32: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

790

Loudyi, D., Falconer, R.A. and Lin, B. Mathematical development and ver-ification of a non-orthogonal finite volume model for groundwater flowapplications. Adv. Water Res., 30:29–42, 2007.

Low, P.F. Viscosity of interlayer water in montmorillonite. Soil Sci. Soc. Am.J., 40:500–505, 1976.

Lu, Z.M., Zhang, D.X., and Robinson, B.A. Explicit analytical solutionsfor one-dimensional steady state flow in layered, heterogeneous unsat-urated soils under random boundary conditions. Water Resour. Res.,43:W09413, 2007.

Luckner, L., van Genuchten, M. Th., and Nielsen, D.R. A consistent set ofparametric models for the two-phase flow of immiscible fluids in thesubsurface. Water Resour. Res., 25:2187–2193, 1989.

Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H. (Eds.) Adsorption coeffi-cients for soils and sediments. In: Handbook of Chemical Property Esti-mation Methods, McGraw-Hill, New York, 1982.

Ma, T.-S., Sophocleous, M., Yu, Y.-S., and Buddemeier, R.W. Modeling salt-water upconing in a freshwater aquifer in south-central Kansas. J. Hy-drology, 201:120–137, 1997.

Machackova, J., Wittlingerova, Z., Vlk, K., Zima, J., and Linka, A. Com-parison of two methods for assessment of in situ jet-fuel remediationefficiency. Water Air & Soil Pollution, 187:181–194, 2008.

Mackay, D.M. and Cherry, J.A. Groundwater contamination—pump-and-treat remediation, 2. Environ. Sci. Technol., 23:630–636, 1989.

Macnaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.J.,and White, D.C. Microbial population changes during bioremediation ofan experimental oil spill. Appl. Environ. Microb., 65:3566–3574, 1999.

Madych, W.R. Miscellaneous error bounds for multiquadric and related in-terpolators. Comput. Math. Applic., 24:121–138, 1992.

Maidment, D.R. (Ed.) Handbook of Hydrology. McGraw-Hill, 1993.Maimone, M., Harley, B., Fitzgerald, R., Moe, H., Hossain, R., and Hey-

wood, B. Coastal aquifer planning elements. Chap. 1. In: Coastal AquiferManagement-Monitoring, Modeling, and Case Studies, (eds.) A.H.-D.Cheng and D. Ouazar, Lewis Publ., 1–27, 2004.

Malta, S.M.C. and Loula, A.F.D. Numerical analysis of finite element meth-ods for miscible displacements in porous media. Numer. Meth. Part.Diff. Eqs., 14:519–548, 1998.

Manabe, S. Climate and the ocean circulation, 1, The atmospheric circulationand the hydrology of the earth’s surface. Mon. Weather Rev., 97:739–774, 1969.

Mansell, R.S., Rhue, R.D., Ouyang, Y., and Bloom, S.A. Microemulsion-mediated removal of residual gasoline from soil columns. J. Soil Con-tamination, 5:309–327, 1996.

Mantoglou, A. and Gelhar, L.W. Stochastic modeling of large-scale transientunsaturated flow systems. Water Resour. Res., 23:37–46, 1987.

Mantoglou, A. and Wilson, J.L. The turning bands method for simulation ofrandom-fields using line generation by a spectral method. Water Resour.Res., 18:1379–1394, 1982.

References

Page 33: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

791

Marin, L.E., Perry, E.C., Essaid, H.I., and Steinich, B. Hydrogeological in-vestigations and numerical simulation of groundwater flow in the karsticaquifer of northwestern Yucatan, Mexico. Chap. 12. In: Coastal AquiferManagement-Monitoring, Modeling, and Case Studies, (eds.) A.H.-D.Cheng and D. Ouazar, Lewis Publ., 257–277, 2004.

Marley, M.C., Hazebrouck, D.J., and Walsh, M.T. The application of in situair sparging as an innovative soils and ground-water remediation tech-nology. Ground Water Monit. Rem., 12:137–145, 1992.

Marryott, R.A., Dougherty, D.E., and, Stollar, R.L. Optimal groundwater-management, 2. Application of simulated annealing to a field-scale con-tamination site. Water Resour. Res., 29:847–860, 1993.

Marshall, T.J. and Holmes, J.W. Soil Physics. Cambridge Univ. Press, Cam-bridge, 1979.

Martinez, M.I., Troester, J.W., and Richards, R.T. Surface electromagneticgeophysical exploration of the groundwater resources of Isla de Mona,Puerto-Rico, a Caribbean carbonate island. Carbonates and Evaporites,10:184–192, 1995.

Martinez, M.J. Comparison of Galerkin and control volume finite element foradvection-diffusion problems. Int. J. Numer. Methods Fluids, 50:347–376, 2006.

Masud, A. and Hughes, T.J.R. A stabilized mixed finite element method forDarcy flow. Comput. Meth. Appl. Mech. Engng., 191:4341–4370, 2002.

Matalas, N.C. and Wallis, J.R. Generation of synthetic sequences. Chap. 3.In: Systems Approach to Water Management, (ed.) A.K. Biswas, 54–79,McGraw-Hill, New York, 1976.

Matheron, G. Principles of geostatistics. Economic Geology, 58:1246–1266,1963.

Matheron, G. The intrinsic random functions and their applications. Adv.Appl. Probability, 5:439–468, 1973.

Mathon, R. and Johnston, R.L. The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal.,14:638–650, 1977.

Mavis, F.T. and Tsui, T.P. Percolation and capillarity movements of waterthrough sand prisms. Studies in Eng. Bull., 18, Univ. Iowa, Iowa City,1939.

Maxwell, R.M. and Miller, N.L. Development of a coupled land surface andgroundwater model. J. Hydrometeorology, 6:233–247, 2005.

Mayer, K.U., Frind, E.O., and Blowes, D.W. Multicomponent reactive trans-port modeling in variably saturated porous media using a generalizedformulation for kinetically controlled reactions. Water Resour. Res.,38:WR000862, 2002.

McCarty, P.L., Reinhard, M., and Rittman, B.E. Trace organics in ground-water. Science and Technology, 15:40–51, 1981.

McCord, J.T., Stephens, D.B. and Wilson, J.L. Hysteresis and state-dependentanisotropy in modeling unsaturated hillslope hydrologic processes. Wa-ter Resour. Res., 27:1501–1518, 1991.

References

Page 34: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

792

McCuen, R.H., Rawls, W.J., and Brakensiek, D.L. Statistical-analysis of theBrooks-Corey and the Green-Ampt parameters across soil texture. Wa-ter Resour. Res. 17:1005–1013, 1981.

McDonald, M.G. and Harbaugh, A.W. A modular Three-Dimensional Finite-Difference Ground-Water Flow Model, U.S. Geological Survey Open-File Report 83-875, 528 p., 1984.

McKenzie, D. Water-Resources Potential of the Freshwater Lens at KeyWest, Florida, U.S. Geological Survey Water-Resources InvestigationReport 90-4115, 24 p., 1990.

McKinney, D.C. and Lin, M.D. Genetic algorithm solution of groundwater-management models. Water Resour. Res., 30:1897–1906, 1994.

McKinney, D.C. and Lin, M.D. Approximate mixed-integer nonlinear pro-gramming methods for optimal aquifer remediation design. Water Re-sour. Res. 31:731–740, 1995.

McNaughton, K.G. and Black. T.A. A study of evapotranspiration from aDouglas Fir forest using the energy balance approach. Water Resour.Res., 9:1579–1590, 1973.

McNeill, J.D. Use of electromagnetic methods for groundwater studies. In:Geotechnical and Environmental Geophysics, v. I, Soc. Explor. Geo-physicists, Inv. in Geophysics, n. 5, (ed.) S. Ward, 191–218, 1990.

McQuarrie, D.A. Statistical Mechanics, 2nd ed. University Science Books,641 p., 2000.

Meaner, O.E. (Ed.) Hydrology. Dover, New York, 712 p., 1942.Means, J.C., Woods, S.G., Hassett, J.J., and Banwart, W.N. Sorption of

polynuclear aromatic hydrocarbons by sediments and soils. Envir. Sci.and Technol., 14:1524–1528, 1980.

Mei, C.C. and Auriault, J.-L. Mechanics of heterogeneous porous media withseveral spatial scales. Proc. Roy. Soc. Lond., A, 426, 391–423, 1989.

Melenk, J.M. and Babuska, I. The partition of unity finite element method:basic theory and applications. Comp. Meth. Appl. Mech. Eng., 139:289–314, 1996.

Melloul, A.J. and Zeitoun, D.G. A semi-empirical approach to intrusionmonitoring in Israeli coastal aquifer. Chap. 16. In: Seawater Intrusioninto Coastal Aquifers—Concepts, Methods and Practices, (eds.) J. Bear,A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer, 543–558,1999.

Meng, Q.M., Hu, H., and Yu, Q.F. The application of an airborne electromag-netic system in groundwater resource and salinization studies in Jilin,China. J. Environ. Eng. Geophys., 11:103–109, 2006.

Mercer, J.W., Skipp, D.C., and Giffin, D. Basics of Pump-and-Treat Ground-Water Remediation Technology, EPA-600/8-90/003, 65 p., 1990.

Metcalf and Eddy, Inc., University of Florida, and Water Resources Engi-neers, Inc. Storm Water Management Model, Vol. 1, Final Report. Wa-ter Pollution Control Research Series 11024 DOC 07/71, U.S. Environ-mental Protection Agency, 1971.

References

Page 35: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

793

Meyer, P.D., Valocchi, A.J., and Eheart, J.W. Monitoring network design toprovide initial detection of groundwater contamination. Water Resour.Res., 30:2647–2659, 1994.

Meyers, R.A. Encyclopedia of Environmental Analysis and Remediation. Wi-ley, 5400 p., 1998.

Michaelis, L. and Menten, M.L. Die Kinetik der Invertinwerkung. Biochemis-che Zeitschrift, 49:333–369, 1913. (For excerpted translation, see MikulsTeich. A Documentary History of Biochemistry, 1770-1940, FairleighDickinson University Press, Rutherford, NJ, 1992.)

Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Pro-grams. Springer-Verlag, New York, 1992.

Mikelic, A. Homogenization theory and applications to filtration throughporous media. In: Filtration in Porous Media and Industrial Application,(ed.) A. Fasano, Lecture Notes in Mathematics Vol. 1734, Springer-Verlag, Berlin, 127–214, 2000.

Miller, C.T. and Rabideau, A.J. Development of split-operator, Petrov-Galerkin methods to simulate transport and diffusion-problems. WaterResour. Res., 29:2227–2240, 1993.

Miller, G.A. The magical number seven, plus or minus two: Some limits onour capacity for processing information. Psychological Review, 63:81–97,1956.

Millington, R.J. Gas diffusion in porous media. Science, 130:100–102, 1959.Mishra, S., Parker, J.C., and Singhal, N. Estimation of soil hydraulic-

properties and their uncertainty from particle-size distribution data.J. Hydrology, 108:1–18, 1989.

Mitsuhata, Y., Uchida, T., Matsuo, K., Marui, A., and Kusunose, K. Various-scale electromagnetic investigations of high-salinity zones in a coastalplain. Geophysics, 71:B167–B173, 2006.

Modaressi, H. and Aubert, P. Element-free Galerkin method for deformingmultiphase porous media. Int. J. Numer. Methods Eng., 42:313–340,1998.

Mohamed, A.M.I., El-menshawy, N., and Saif, A.M. Remediation of saturatedsoil contaminated with petroleum products using air sparging with ther-mal enhancement. J. Environ. Manage., 83:339–350, 2007.

Mohan, R.K., Brown, M.P., and Barnes, C.R. Design criteria and theoreticalbasis for capping contaminated marine sediments. Appl. Ocean Res.,22:85–93, 2000.

Molins S., Carrera, J., Ayora, C., and Saaltink, M.W.A. A formulation fordecoupling components in reactive transport problems, Water Resour.Res., 40:w10301, 2004.

Moller, J., Winther, P., Lund, B., Kirkebjerg, K., and Westermann, P.Bioventing of diesel oil-contaminated soil: Comparison of degradationrates in soil based on actual oil concentration and on respirometric data.J. Industrial Microbiology, 16:110–116, 1996.

Mollerup, M. Philip’s infiltration equation for variable-head ponded infiltra-tion. J. Hydrology, 347:173–176, 2007.

References

Page 36: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

794

Mollerup, M. and Hansen, S. Power series solution for falling head pondedinfiltration with evaporation. Water Resour. Res., 43:W03425, 2007.

Molz, F.J., Widdowson, M.A., and Benefield, L.D. Simulation of microbial-growth dynamics coupled to nutrient and oxygen-transport in porousmedia. Water Resour. Res., 22:1207–1216, 1986.

Monteith, J.L. Evaporation and the environment. Symp. Soc. ExploratoryBiology, 19:205–234, 1965.

Moore, C. and Doherty, J. The cost of uniqueness in groundwater modelcalibration. Adv. Water Res., 29:605–623, 2006.

Morel-Seytoux, H.J. Two-phase flows in porous media. Advances in Hydro-science, 9, (ed.) V.T. Chow, Academic Press, New York, 119–202, 1973.

Morrison, S.J. and Spangler, R.R. Chemical barriers for controlling ground-water contamination. Environmental Progress, 12:175–181, 1993.

Morse, P.M. and Feshbach, H. Methods of Theoretical Physics. McGraw-Hill,1953.

Mualem, Y. Modified approach to capillary hysteresis based on a similarityhypothesis. Water Resour. Res., 9:1324–1331, 1973.

Mualem, Y.A. A conceptual model of hysteresis. Water. Resour. Res., 10:514–520, 1974.

Mualem, Y.A. Hysteretical models for prediction of the hydraulic conduc-tivity of unsaturated porous media. Water Resour. Res., 12:1248–1254,1976.

Mualem, Y.A. Extension of the similarity hypothesis used for modeling thesoil water characteristics. Water Resour. Res., 13:773–780, 1977.

Mualem, Y.A. Theory of universal hysteretical properties of unsaturatedporous media. In: Surface and Subsurface Hydrology, Proc. 3rd Int.Hydrology Symp., (ed.) H.J. Morel-Seytoux, 387–399. Water ResourcesPubl., Fort Collins, Colorado, 1979.

Mualem, Y.A. A modified dependent domain theory of hysteresis. Soil Sci.,137:283–291, 1984.

Munson, B.R., Young, D.F. and Okiishi, T.H. Fundamentals of Fluid Me-chanics, 5th ed. McGraw-Hill, 2005.

Muskat, M. The Flow of Heterogeneous Fluids through Porous Media. McGraw-Hill, 763 p., 1937.

Naar, J. and Henderson, J.H. An imbibition model–Its application to flow be-havior and the prediction of oil recovery. Trans. Soc. Pet. Eng., AIME,222:61–70, 1961.

NAG NAG Library Manual, 2006.Naji, A., Cheng, A.H.-D., and Ouazar, D. Analytical stochastic solutions

of saltwater/freshwater interface in coastal aquifers. Stoch. Hydrol. Hy-draul., 12:413–430, 1998a.

Naji, A., Cheng, A.H.-D., and Ouazar, D. BEM solution of stochastic seawa-ter intrusion problems. Eng. Anal. Bound. Elem., 23:529–537, 1999.

Naji, A., Ouazar, D., and Cheng, A.H.-D. Locating the saltwater-freshwaterinterface using nonlinear programming and h-adaptive BEM. Eng. Anal.Bound. Elem., 21:253–259, 1998b.

References

Page 37: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

795

Narasimhan, T.N. Hydraulic characterization of aquifers, reservoir rocks, andsoils: A history of ideas. Water Resour. Res., 34:33–46, 1998.

Narasimhan, T.N. Central ideas of Buckingham, 1907: A century later. Va-dose Zone J., 4:434–441, 2005.

Nasseri, M., Shaghaghian, M.R., Daneshbod, Y., and Seyyedian, H. An ana-lytic solution of water transport in unsaturated porous media. J. PorousMedia, 11:591–601, 2008.

Nayfeh, A.H. Perturbation Methods. Wiley, 437 p., 2000.Nayroles, B., Touzot, G., and Villon, P. Generalizing the finite element

method: diffuse approximation and diffuse elements. Comput. Mech.,10:307–318, 1992.

Neitsch, S.l., Arnold, J.G., Kiniry, J.R., and Williams, J.R., Soil and WaterAssessment Tool Theoretical Documentation, Grassland, Soil and WaterResearch Laboratory, Agricultural Research Service, 2005.

Neuman, S.P. Transient flow of groundwater to wells in multiple-aquifer sys-tems. Doctoral dissertation, Univ. California, Berkeley, 1968.

Neuman, S.P. A Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids. J. Comput. Phys.,41:270–294, 1981.

Neuman, S.P. Adaptive Eulerian-Lagrangian finite element method for advection-dispersion. Int. J. Numer. Methods Eng., 20:321–337, 1984.

Neuman, S.P. Universal scaling of hydraulic conductivities and dispersivitiesin geologic media. Water Resour. Res., 26:1749–1758, 1990.

Neuman, S.P. and Orr, S. Prediction of steady-state flow in nonuniform ge-ologic media by conditional moments—exact nonlocal formalism, ef-fective conductivities, and weak approximation. Water Resour. Res.,29:341–364, 1993.

Neuman, S.P. and Witherspoon, P.A. Theory of flow in confined two aquifersystem. Water Resour. Res., 5:803–816, 1969a.

Neuman, S.P. and Witherspoon, P.A. Applicability of current theories of flowin leaky aquifers. Water Resour. Res., 5:817–829, 1969b.

Nichols, W.E., Aimo, N.J., Oostrom, M., and White, M.D. STOMP Subsur-face Transport Over Multiple Phases: Application Guide. PNNL-11216(UC-2010), Pacific Northwest National Laboratory, Richland, Washing-ton, 1997.

Nield, D.A. Resolution of a paradox involving viscous dissipation Theory ofuniversal hysteretical and nonlinear drag in a porous medium. Transp.Porous Media, 41:349–357, 2000.

Nield, D.A. and Bejan, A. Convection in Porous Media, 3rd ed. Springer, 640p., 2006.

Nielsen, L., Jørgensen, N.O., and Gelting, P. Mapping of the freshwater lensin a coastal aquifer on the Keta Barrier (Ghana) by transient electro-magnetic soundings. J. Appl. Geophys., 62:1–15, 2007.

Nikolaevski, V.N. Convective diffusion in porous media, J. Appl. Math. Mech.(P.M.M.), 23:1042–1050, 1959.

Niqui-Arroyo, J.L., Bueno-Montes, M., Posada-Baquero, R., and Ortega-Calvo, J.J. Electrokinetic enhancement of phenanthrene biodegradation

References

Page 38: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

796

in creosote-polluted clay soil. Environmental Pollution, 142:326–332,2006.

Nitao, J.J. Reference Manual for the NUFT Flow and Transport Code, Ver-sion 2.0. Lawrence Livermore National Laboratory, UCRL-MA-130651,1998.

Nitao, J.J. and Bear, J. Potentials and their role in transport in porous media.Water Resour. Res., 32:225–250, 1996.

Nowroozi, A.A., Horrocks, S.B., and Henderson, P. Saltwater intrusion intothe freshwater aquifer in the eastern shore of Virginia: a reconnaissanceelectrical resistivity survey. J. Appl. Geophys., 42:1–22, 1999.

Nyer, E. Practical Techniques for Groundwater and Soil Remediation. CRCPress, 224 p., 1992.

Ochoa-Tapia, J.A. and Whitaker, S. Momentum-transfer at the boundarybetween a porous-medium and a homogeneous fluid. 2. Comparison withexperiment. Int. J. Heat & Mass Transfer, 38:2647–2655, 1995.

Odeh, A.S. Effect of viscosity ratio on relative permeability. Trans. AIME,216:346–352, and discussion by C. F. Wienaug, 352–353, 1959.

Ogata, A. and Banks, R.B. A Solution of the Differential Equation of Longitu-dinal Dispersion in Porous Media, U.S. Geological Survey, ProfessionalPaper, 411-A, 1961.

Ohm, G.S. Die Galvanische kette, mathematisch bearbeitet. T.H. Riemann,Berlin 1827. (English translation: The Galvanic Circuit InvestigatedMathematically, van Nostrand, New York, 269 p., 1891).

Olsen, S.R. and Kemper, W.D. Movement of Nutrients to plant roots. Adv.Agron., 20:91–151, 1968.

O’Neill, K. Highly efficient, oscillation free solution of the transport equationover long times and large spaces. Water Resour. Res., 17:1665–1675,1981.

Orr, S. and Neuman, S.P. Operator and integrodifferential representations ofconditional and unconditional stochastic subsurface flow. Stoch. Hydrol.Hydraul., 8:157–172, 1994.

Osman, I.H. and Laporte, G. Metaheuristics: A bibliography. Annals of Op-erations Research, 63:513–623, 1996

Oude Essink, G.H.P. Impact of sea level rise in the Netherlands. Chap. 14.In: Seawater Intrusion into Coastal Aquifers—Concepts, Methods andPractices, (eds.) J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Her-rera, Kluwer, 507–530, 1999.

Oude Essink, G.H.P. Salt water intrusion in a three-dimensional groundwatersystem in the Netherlands: a numerical study. Transp. Porous Media,43:137–158, 2001.

Oude Essink, G.H.P. Modeling three-dimensional density dependent ground-water flow at the Island of Texel, the Netherlands. Chap. 4. In: CoastalAquifer Management—Monitoring, Modeling, and Case Studies, (eds.)A.H.-D. Cheng and D. Ouazar, Lewis Publ., 77–94, 2004.

Ozisik, M.N. Finite Difference Methods in Heat Transfer. CRC Press, 432 p.,1994.

References

Page 39: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

797

Palermo, M.R. Design considerations for in-situ capping of contaminatedsediments. Water Sci. Technol., 37:315–321, 1998.

Pan, C.X., Hilpert, M., and Miller, C.T. Pore-scale modeling of saturated per-meabilities in random sphere packings. Phys. Rev. E, 64, DOI 066702,2001.

Pan, H.-L. and Mahrt, L. Interaction between soil hydrology and boundary-layer development. Boundary Layer Meteorol., 38:185–202, 1987.

Pardieck, D.L., Bouwer, E.J., and Stone, A.T. Hydrogen-peroxide use to in-crease oxidant capacity for in situ bioremediation of contaminated soilsand aquifers—A review. J. Contam. Hydrol., 9:221–242, 1992.

Parker, J.C. and Lenhard, R.J. A model for hysteretic constitutive relationsgoverning multiphase flow, 1. Saturation-pressure relations. Water Re-sour. Res., 23:2187–2196, 1987.

Parker, J.C. and Valocchi, A.J. Constraints on the validity of equilibrium andfirst-order kinetic transport models in structured soils. Water Resour.Res., 22:399–407, 1986.

Parkhurst, D.L. and Appelo, C.A.J. User’s Guide to PHREEQC (Version 2)–A Computer Program for Speciation, Batch-Reaction, One-DimensionalTransport, and Inverse Geochemical Calculations. U.S. Geological Sur-vey Water-Resources Investigations Report 99-4259, 310 p., 1999.

Parkhurst, D.L., Kipp, K.L., Engesgaard, P., and Charlton, S.R. PHASTAProgram for Simulating Ground-Water Flow, Solute Transport, andMulticomponent Geochemical Reactions. U.S. Geological Survey Tech-niques and Methods 6-A8, 2004.

Parlange, J.Y. Theory of water-movement in soils. 1. One-dimensional ab-sorption. Soil Sci., 111:134–137, 1971.

Parlange, J.Y. Theory of water movement in soils. 8. One-dimensional infil-tration with constant flux at surface. Soil Sci., 114:1–4, 1972.

Parlange, J.Y., Haverkamp, R., and Touma, J. Infiltration under pondedconditions. 1. Optimal analytical solution and comparison with experi-mental observations. Soil Sci., 139:305–311, 1985.

Parlange, M.B. and Hopmans, J.W. (Eds.) Vadose Zone Hydrology: CuttingAcross Disciplines. Oxford Univ. Press. 480 p., 1999.

Paul, E.A. and Clark, F.E. Soil Microbiology and Biochemistry, 2nd ed. Aca-demic Press, 340 p., 1996.

Pedras, M.H.J. and de Lemos, M.J.S. Macroscopic turbulence modeling forincompressible flow through undeformable porous media. Int. J. Heat& Mass Transfer, 44:1081–1093, 2001.

Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc.Royal Soc. London, Ser. A, 193:120–145, 1948.

Percival, R.V., Miller, A.S., Schroeder, C.H., and Leape, J.P. EnvironmentalRegulation: Law, Science, And Policy, 5th ed. Aspen Publ., 1202 p.,2006.

Peters, J.H. (Ed.) Artificial Recharge of Groundwater, Proc. 3rd Int. Symp.Artificial Recharge of Groundwater, Amsterdam, Balkema, Amsterdam,492 p., 1998.

References

Page 40: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

798

Philip, J.R. The theory of infiltration. 1. The infiltration equation and itssolution. Soil Sci., 83:345–357, 1957a.

Philip, J.R. The theory of infiltration. 2. The profile at infinity. Soil Sci.,83:435–448, 1957b.

Philip, J.R. The theory of infiltration. 3. Moisture profile and relation toexperiments. Soil Sci., 84:163–178, 1957c.

Philip, J.R. The theory of infiltration. 4. Sorptivity and algebraic infiltrationequations. Soil Sci., 84:257–264, 1957d.

Philip, J.R. The theory of infiltration. 5. The influence of initial moisturecontent. Soil Sci., 84:329–339, 1957e.

Philip, J.R. The theory of infiltration. 6. Effect of water depth over soil. SoilSci., 85:278–286, 1958a.

Philip, J.R. The theory of infiltration. 7. Soil Sci., 85:333–337, 1958b.Philip, J.R. Theory of Infiltration. In: Advances in Hydrosciences. (ed.) V.T.

Chow, 215–296, Academic Press, New York, 1969.Philip, J.R. Flow through porous media. Ann. Rev. Fluid Mech., 2:177–204,

1970.Philip, L.K. An investigation into contaminant transport processes through

single-phase cement-bentonite slurry walls. Engineering Geology, 60:209–221, 2001.

Phillips, D.H., Gu, B., Watson, D.B., Roh, Y., Liang, L., and Lee, S.Y. Per-formance evaluation of a zerovalent iron reactive barrier: Mineralogicalcharacteristics. Environ. Sci. Technol., 34:4169–4176, 2000.

Pinder, G.F. and Cooper, H.H. A numerical technique for calculating thetransient position of the saltwater front. Water Resour. Res., 6:875–882, 1970.

Pinder, G.F. and Gray, W.G. Finite Element Simulation in Surface and Sub-surface Hydrology. Academic Press, New York, 295 p., 1977.

Pitzer, K.S. Theory: Ion interaction approach. In: Activity Coefficients inElectrolyte Solutions, Vol. I, (ed.) R.M. Pytkowicz, CRC Press, 157–208, 1979.

Plumb, O.A. and Whitaker, S. Diffusion, dispersion and adsorption in porousmedia: Small scale averaging and local volume averaging. In: Dynamicsof Fluids in Hierarchial Porous Media, (ed.) J.H. Cushman, Academic,London, 1990.

Poland, J.F. Guidebook to studies of land subsidence due to ground-waterwithdrawal, UNESCO International Hydrological Programme, Paris, 331p., 1984.

Poling, B.E., Prausnitz, J.M., and O’Connell, J.P. Properties of Gases &Liquids, 5th ed. McGraw-Hill, 2000.

Pollock, D.W. User’s Guide for MODPATH/MODPATH-PLOT, Version 3:A Particle Tracking Post-Processing Package for MODFLOW, the U.S.Geological Survey Finite-Difference Ground-Water Flow Model. U.S.Geological Survey Open-File Report 94-464, 6 ch., 1994.

Polubarinova-Kochina, P.Ya. Theory of filtration of liquids in porous media.In: Advances in Applied Mechanics, (eds.) R. von Mises and Th. vonKarman, 2:153–225, Academic Press, New York, 1951.

References

Page 41: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

799

Polubarinova-Kochina, P.Ya. Theory of Ground Water Movement. PrincetonUniv. Press, Princeton, NJ, 1962.

Pomerol, J.-C. Multicriterion Decision in Management. Springer, 395 p.,2000.

Poreh, M. Dispersivity tensor in isotropic and axisymmetric mediums. J.Geophys. Res., 70:3909–3914, 1965.

Poulovassilis, A. The hysteresis of pore water: An application concept ofindependent domains. Soil Sci., 97:405–412, 1962.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. NumericalRecipes, the Art of Scientific Computing, 3rd ed. Cambridge Univ. Press,1256 p., 2007.

Prickett, T.A., Naymik, T.G., and Lonnquist, C.G. A random-walk solutetransport model for selected groundwater quality evaluations. Bull. Illi-nois State Water Survey, 65, 103 p., 1981.

Priestley, C.H.B. and Taylor, R.J. On the assessment of surface heat fluxand evaporation using large scale parameters. Monthly Weather Review,100:81–92, 1972.

Priestley, M.B. Power spectral analysis of nonstationary random processes.J. R. Stat. Soc. B, 27:204–236,1965.

Priestley, M.B. Evolutionary spectra and nonstationary processes. J. SoundVib., 6:86–89, 1967.

Probstein, R.L. Physicochemical Hydrodynamics: An Introduction, 2nd ed.Wiley, 400 p., 1994.

Pruess, K., Oldenburg, C., and Moridis, G. TOUGH2 User’s Guide, ver. 2.0.Lawrence Berkeley National Laboratory, 1999.

Puls, R.W., Paul, C.J., and Powell, R.M. The application of in situ perme-able reactive (zero-valent iron) barrier technology for the remediationof chromate-contaminated groundwater: A field test. Applied Geochem-istry, 14:989–1000, 1999.

Putti, M. and Paniconi, C. Picard and Newton linearization for the coupledmodel of saltwater intrusion in aquifers. Adv. Water Res., 18:159–170,1995.

Pyne, R.D.G. Groundwater Recharge and Wells: A Guide to Aquifer StorageRecovery. CRC Press, 400 p., 1995.

Raats, P.A.C. Analytical solutions of a simplified flow equation. Trans.ASAE, 19:683–689, 1976.

Rafai, H.S., Newell, J., Gonzales, J.R., Dendrou, S., Dendrou, B., Kennedy,L., and Wilson, J.T. BIOPLUME III: Natural Attenuation DecisionSupport System, User’s Manual. U.S. Environmental Protection Agency,EPA/600/R-98/010, 1998.

Ramadhyani, S. and Patankar, S.V. Solution of the convection-diffusion equa-tion by a finite-element method using quadrilateral elements. Numer.Heat Tr., 8:595–612, 1985.

Ramarao, B. S., Lavenue, A.M., Demarsily, G., and Marietta, M.G. Pilotpoint methodology for automated calibration of an ensemble of condi-tionally simulated transmissivity fields. 1. Theory and computationalexperiments. Water Resour. Res., 31:475–493, 1995.

References

Page 42: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

800

Rao, P.S.C. and Davidson, J.M. Estimation of pesticide retention and trans-formation parameters required in nonpoint source models. In: Environ-mental Impact of Nonpoint Source Pollution, (eds.) J.M. Overcash andJ.M. Davidson, 23–67, Ann Arbor Science Publ. Inc., 1980.

Rao, P.S.C., Davidson, J.M., Jessup, R.E., and Selim, H.M. Evaluation ofconceptual models for describing non-equilibrium adsorption-desorptionof pesticides during steady-flow in soils. Soil Sci. Soc. Am. J., 43:22–28,1979

Rao, S.V.N., Kumar, S., Shekhar, S., and Chakraborty, D. Optimal pumpingfrom skimming wells. J. Hydrol. Eng., ASCE, 11:464–471, 2006.

Rawls, W.J. and Brakensiek, D.L. Estimating soil-water retention from soilproperties. J. Irrig. Drain. Div., ASCE, 108:166–171, 1982.

Rayner, J.L., Snape, I., Walworth, J.L., Harvey, P.M., and Ferguson, S.H.Petroleum-hydrocarbon contamination and remediation by microbiovent-ing at sub-Antarctic Macquarie Island. Cold Regions Sci. Technol.,48:139–153, 2007.

Rechtschaffen, C. and Gauna, E.P. Environmental Justice: Law, Policy, andRegulation. Carolina Academic Press, 467 p., 2002.

Reilly, T.E. and Goodman, A.S. Quantitative analysis of saltwater-freshwaterrelationships in ground-water systems—A historical perspective. J. Hy-drology, 80:125–160, 1985.

Reilly, T.E. and Goodman, A.S. Analysis of saltwater upconing beneath apumping well. J. Hydrology, 89:169–204, 1987.

Renard, P. Hydraulics of Wells and Well Testing. Vol. 4, Pt. 13, Art. 154, inEncyclopedia of Hydrological Sciences, (eds.) J.J. McDonnell and M.G.Anderson, Wiley, 2323–2340, 2005.

Renard, P. and de Marsily, G. Calculating equivalent permeability: a review.Adv. Water Res., 20:253–278, 1997.

Richards, L.A. Capillary conduction of liquids through porous mediums.Physics, 1:318–333, 1931.

Richards, L.A. and Gardner, W. Tensiometers for measuring the capillarytension and soil water. J. Am. Soc. Agron., 28:352–358, 1936.

Rider, N.E. Water loss from various land surfaces. Quart. J. Roy. Meteoro-logical Soc., 83:181–193, 1957.

Rifai, H., Newwell, C.J., Miller, R., Taffinder, S., and Rounsaville, M. Sim-ulation of natural attenuation with multiple electron acceptors. Biore-mediation, 3:53–58, 1995.

Ritz, W. Uber eine neue methode zur Losung gewissen variations—Problemsder mathematischen physik. J. Reine Angew. Math., 135:1–61, 1908.

Ritzel, B.J., Eheart, J.W., and Ranjithan, S. Using genetic algorithms to solvea multi-objective groundwater pollution containment-problem. WaterResour. Res., 30:1589–1603, 1994.

Riviere, B., Wheeler, M.F., and Banas, K. Part II. Discontinuous Galerkinmethod applied to a single phase flow in porous media. Computat.Geosci., 4:337–349, 2000.

References

Page 43: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

801

Roberts, J. Numerical transpiration. In: Encyclopedia of Hydrological Sci-ences, Vol. 1, Art. 42, (eds.) J.J. McDonnell and M.G. Anderson, 615–625, 2005.

Robertson, H.P. The invariant theory of isotropic turbulence. Proc. Cam-bridge Phil. Soc., 36:209–223, 1940.

Robin, M.J.L., Gutjahr A.L., Sudicky, E.A. and Wilson, J.L. Cross-correlatedrandom-field generation with the direct Fourier-transform method. Wa-ter Resour. Res., 29:2385–2397, 1993.

Robock, A., Vinnikov, K., Scholsser, C.A., Speranskaya, N.A., and Xue, Y.K.Use of midlatitude soil moisture and meteorological observations to val-idate soil moisture simulations with biosphere and bucket model. J.Clim., 9:15–35, 1995.

Robson, S.G. Feasibility of digital water-quality modeling illustrated by appli-cation at Barstow, California. U.S. Geological Survey Water-ResourcesInvestigations Report 46-73, 66 p., 1974.

Robson, S.G. Application of digital profile modeling techniques to groundwatersolute transport at Barstow, California. U.S. Geological Survey WaterSupply Paper, 2050, 28 p., 1978.

Rodda, J.C. (Ed.) Land Subsidence: Proc. 2nd Int. Symp. on Land Subsi-dence, UNESCO/IAHS, Anaheim, CA, USA, IAHS, 121, 1976.

Rohrs, J., Ludwig, G., and Rahner, D. Electrochemically induced reactions insoils-a new approach to the in-situ remediation of contaminated soils?Part 2: Remediation experiments with a natural soil containing highlychlorinated hydrocarbons. Electrochimica Acta, 47:1405–1414, 2002.

Rose, W. Some problems connected with the use of classical descriptions offluid/fluid displacement processes. In: Fundamentals of Transport Phe-nomena, (ed.) J. Bear, 229–240, 1972.

Rose, W. Measuring transport coefficients to describe coupled two-phase flowsin porous media. Transp. Porous Media, 3:163–171, 1988.

Rose, W. Coupling-coefficient for two-phase flow in porous space of simplegeometry. Transp. Porous Media, 5:97–102, 1990.

Rose, W. An upgraded viscous coupling measurement methodology. Transp.Porous Media, 28:221–23, 1997.

Rose, W. and Rose, D. An upgraded porous medium coupled transport pro-cess algorithm. Transp. Porous Media, 59:357–372, 2005.

Rosenzweig, R. and Shavit, U. The laminar flow field at the interface of aSierpinski carpet configuration. Water Resour. Res., 43, w10402, 2007.

Ross, J.L., Ozbek, M.M. and Pinder, G.F. Aleatoric and epistemic uncer-tainty in groundwater flow and transport simulation. Water Resour.Res., 45, W00B15, 2009.

Ross, P.J. and Bristow, K.L. Simulating water-movement in layered andgradational soils using the Kirchhoff transform. Soil Sci. Soc. Am. J.,54:1519–1524, 1990.

Rowe, R.K. Long-term performance of contaminant barrier systems. Geotech-nique, 55:631–677, 2005.

Rubin, Y. Applied Stochastic Hydrogeology. Oxford Univ. Press, 2003.

References

Page 44: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

802

Rubin, Y. and Dagan, G. Stochastic-analysis of boundaries effects on headspatial variability in heterogeneous aquifers. 1. Constant head boundary.Water Resour. Res., 24:1689–1697, 1988.

Rubin, Y. and Dagan, G. Stochastic-analysis of boundaries effects on headspatial variability in heterogeneous aquifers. 1. Impervious boundary.Water Resour. Res., 25:707–712, 1989.

Russell, T.F. and Celia, M.A. An overview of research on Eulerian-Lagrangianlocalized adjoint methods (ELLAM). Adv. Water Res., 25:1215–1231,2002.

Russo, D. and Bouton, M. Statistical-analysis of spatial variability in unsat-urated flow parameters. Water Resour. Res., 28:1911–1925, 1992.

Rutledge, A.T. Model-Estimated Ground-Water Recharge and Hydrograph ofGround-Water Discharge to a Stream. U.S. Geological Survey WaterResources Investigations Report 97-4253, 1997.

Rutledge, A.T. Computer Programs for Describing the Recession of Ground-Water Discharge and for Estimating Mean Ground-Water Recharge andDischarge from Streamflow Records–Update. U.S. Geological Survey Wa-ter Resources Investigations Report 98-4148, 1998.

Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM, 528 p.,2003.

Saaltink, M.W., Ayora, C., and Carrera, J. A mathematical formulation forreactive transport that eliminates mineral concentrations. Water Re-sour. Res., 34:1649–1656, 1998.

Saaltink, M.W., Batlle, F., Ayora, C., Carrera, J., and Olivella, S. RE-TRASO, a code for modeling reactive transport in saturated and un-saturated porous media. Geologic Acta, 2:235–251, 2004.

Saaltink, M.W., Carrera, J., and Ayora, C. A comparison of two alternativesto simulate reactive transport in groundwater. J. Geochemical Explo-ration, 69–70:97–101, 2000.

Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math-ematical Psychology, 15:234–281, 1977.

Saaty, T.L. The Analytic Hierarchy Process—Planning, Priority Setting, Re-source Allocation. McGraw-Hill, 1980.

Saaty, T.L. How to make a decision—The analytic hierarchy process. Inter-faces, 24:19–43, 1994.

Sadana, A. Biocatalysis, Fundamentals of Enzyme Deactivation Kinetics.Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

Saeed, M.M. Skimming Wells: Current practices and Guidelines for Improv-ing Design and Operation. Higher Education Commission, Pakistan,2008.

Saeed, M.M. and Ashraf, M. Feasible design and operational guidelines forskimming wells in the Indus basin, Pakistan. Agr. Water Manage.,74:165-188, 2005.

Saffman, P.G. A theory of dispersion in a porous medium. J. Fluid Mech.,6:321–349, 1959.

Sagar, B. Galerkin finite-element procedure for analyzing flow through ran-dom media. Water Resour. Res., 14:1035–1044, 1978.

References

Page 45: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

803

Sakurai, H. and Kawahara, M. Three-dimensional groundwater flow analysissystem using the element-free Galerkin method. Int. J. Computat. FluidDyn., 18:309–315, 2004.

Salanitro, J.P. The role of bioattenuation in the management of aromatichydrocarbon plumes in aquifers. Ground Water Monit. Rem., 13:150–161, 1993.

Salanitro, J.P., Dorn, P.B., Huesemann, M.H., Moore, K.O., Rhodes, I.A.,Jackson, L.M.R., Vipond, T. E., Western, M.M., and Wisniewski, H.L.Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment.Environ. Sci. Technol., 31:1769–1776, 1997.

Salas, J.D. Analysis and modeling of hydrologic time series. Chap. 19. In:Handbook of Hydrology, (ed.) D.R. Maidment, McGraw-Hill, 1993.

Sanchez-Palencia, E. Comportement local et macroscopique d’un type demilieu physiques heterogenes. Int. J. Engng. Sci., 12:331-352, 1974.

Sanchez-Palencia, E. Non-homogeneous Media and Vibration Theory. LectureNotes in Physics, 127, Springer-Verlag, N.Y., 1980.

Sanford, W.E. and Konikow, L.F. A Two-Constituent Solute Transport Mo-del for Ground Water Having Variable Density. U.S. Geological SurveyWater Resources Investigation Report 85-4279, 89 p., 1985.

Santamarina, J.C., Klein, K.A., Wang, Y.H. and Prenke, E. Specific surface:determination and relevance. Can. Geotech. J., 39:233–241, 2002.

Satterfield, C.N. Heterogeneous Catalysis in Industrial Practice, 2nd ed.McGraw-Hill, 554 p., 1991.

Sawyer, C.N., McCarty, P.L. and Parkin, G.F. Chemistry for EnvironmentalEngineering and Science, 5th ed. McGraw-Hill, 768 p., 2002.

Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K., and Chen, F. Simplewater balance model for estimating runoff at different spatial and tem-poral scales. J. Geophys. Res. Atmosphere, 101(D3):7461–7475, 1996.

Schaap, M.G., Leij, F.J., and van Genuchten, M.Th. Neural network analysisfor hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am.J., 62:847–855, 1998.

Scheidegger, A.E. General theory of dispersion in porous media. J. Geophys.Res., 66:3273–3278, 1961.

Scherer, M.M., Richter, S., Valentine, R.L., and Alvarez, P.J.J. Chemistryand microbiology of permeable reactive barriers for in situ groundwaterclean up. Critical Rev. Environ. Sci. Technol., 30:363–411, 2000.

Schmorak, S. and Mercado, A. Upconing of freshwater-saltwater interface be-low pumping wells, field study. Water Resour. Res., 5:1290–1311, 1969.

Schneider, F.N. and Owens, W.W. Sandstone and carbonate two- and three-phase relative permeability characteristics. Soc. Pet. Eng. J., 10:75–84,1970.

Schneider, G.E. and Raw, M.J. A skewed, positive influence coefficient up-winding procedure for control-volume-based finite-element convection-diffusion computation. Numer. Heat Tr., 9:1–26, 1985.

Schowalter, T.T. Mechanics of secondary hydrocarbon migration and entrap-ment. Water Sci. Technol., 23:467–476, 1979.

References

Page 46: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

804

Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M. EnvironmentalOrganic Chemistry, 2nd ed. Wiley Interscience, 1328 p., 2002.

Scott, R.F. Principles of Soil Mechanics. Addison-Wesley, Reading, Mass.,550 p., 1963.

Selim, H.M., Mansell, R.S., and Zelazny, L.W. Modeling reactions and trans-port of potassium in soils. Soil Sci., 122:77–84, 1976.

Sengpiel, K.P. Resistivity depth mapping with airborne electromagnetic sur-vey data. Geophysics, 48:181–196, 1983.

Sengpiel, K.P. Approximate inversion of airborne em data from a multilayeredground. Geophysical Prospecting, 36:446–459, 1988.

Sengpiel, K.P. and Siemon, B. Advanced inversion methods for airborne elec-tromagnetic exploration. Geophysics, 65:1983–1992, 2000.

Serrano, S.E. Forecasting scale-dependent dispersion from spills in heteroge-neous aquifers. J. Hydrology, 169:151–169, 1995.

Serrano, S.E. Analytical decomposition of the nonlinear unsaturated flowequation. Water Resour. Res., 34:397–407, 1998.

Serrano, S.E. Modeling infiltration with approximate solutions to Richard’sequation. J. Hydrol. Eng., ASCE, 9:421–432, 2004.

Shanno, D.F. Conditioning of quasi-Newton methods for function minimiza-tion. Math. Comput., 24:647–656, 1970.

Shavit, U., Rosenzweig, R., and Assouline, S. Free flow at the interface ofporous surfaces: A generalization of the Taylor brush configuration.Transp. Porous Media, 54:345–360, 2004.

Sherif, M. Nile Delta Aquifer in Egypt. Chap. 17. In: Seawater Intrusioninto Coastal Aquifers—Concepts, Methods and Practices, (eds.) J. Bear,A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer, 559–590,1999.

Shinozuka, M. and Jan, C.M. Digital simulation of random processes and itsapplications. J. Sound Vib., 25:111–128, 1972.

Shuttleworth, W.J. Evaporation. Chap. 4. In: Handbook of Hydrology, (ed.)D.R. Maidment, McGraw-Hill, New York, 4.1–4.53, 1993.

Shuttleworth, W.J. and Wallace, J.S. Evaporation from sparse crops-an en-ergy combination theory. Quart. J. Royal Meteorological Soc., 111:839–855, 1985.

Si, B.C. and Kachanoski, R.G. Unified solution for infiltration and drainagewith hysteresis: Theory and field test. Soil Sci. Soc. Am. J., 64:30–36,2000.

Silin-Bekchurin, A.I. Dynamics of Groundwater. (in Russian) Moscow Izdat.,Moscow Univ., 258 p., 1958.

Simmers, I. (Ed.) Estimation of Natural Groundwater Recharge, Nato ScienceSeries, C 222. Reidel, Dordrecht, 1988.

Simunek, J., Sejna, M., and van Genuchten, M.Th. The HYDRUS-2D soft-ware package for simulating two-dimensional movement of water, heat,and multiple solutes in variably saturated media. Version 2.0, IGWMC-TPS-53, International Ground Water Modeling Center, Colorado Schoolof Mines, Golden, Colorado, 251 p., 1999.

References

Page 47: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

805

Singh, V.P. Computer Models of Watershed Hydrology. Water ResourcesPubl., 1995.

Sirotine, Y. and Chaskolskaya, M. Fondaments de la physique des crystaux.Edition Mir, 680 p., (Russian Ed., 1975) 1984.

Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Dif-ference Methods, 3rd ed. Oxford Univ. Press, 350 p., 1986.

Smith, L. and Freeze, R.A. Stochastic analysis of steady state groundwa-ter flow in a bounded domain, 2. Two-dimensional simulations. WaterResour. Res., 15:1543–1559, 1979.

Snell, R.W. Three phase relative permeability and residual oil data. J. Inst.Petrol., 12:80–88, 1962.

Soldal, O., Mauring, E., Halvorsen, E., and Rye, N. Seawater intrusionand fresh groundwater hydraulics in fjord delta aquifers inferred fromground penetrating radar and resistivity profiles–Sunndalsøra and Ese-botn, western Norway. J. Appl. Geophys., 32:305–319, 1994.

Sophocleous, M.A. Combining the soil water balance and water-level fluc-tuation methods to estimate natural groundwater recharge—practicalaspects. J. Hydrology, 124:229–241, 1991.

Sorek, S., Borisov, V., and Yakirevich, A. Modified Eulerian Lagrangianmethod for density dependent miscible transport. Chap. 11. In: Sea-water Intrusion in Coastal Aquifers—Concepts, Methods, and Practices,(eds.) J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer,363–398, 1999.

Sorek, S. and Pinder, G.F. Survey of computer codes and case histories.Chap. 12. In: Seawater Intrusion in Coastal Aquifers—Concepts, Meth-ods, and Practices, (eds.) J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar& I. Herrera, Kluwer, 399–461, 1999.

Sparks, D.L. Environmental Soil Chemistry. Academic Press, 352 p., 2003.Sposito, G. The Surface Chemistry of Natural Particles. Oxford Univ. Press,

New York, 256 p., 2004.Srinivasan, V. and Clement, T.P. Analytical solutions for sequentially cou-

pled one-dimensional reactive transport problems—Part I: Mathemati-cal derivations. Adv. Water Res., 31:203–218, 2008a.

Srinivasan, V. and Clement, T.P. Analytical solutions for sequentially coupledone-dimensional reactive transport problems—Part II: Special cases, im-plementation and testing. Adv. Water Res., 31:219–232, 2008b.

Srivastava, R. and Yeh, T.C.J. Analytical solutions for one-dimensional, tran-sient infiltration toward the water-table in homogeneous and layeredsoils. Water Resour. Res., 27:753–762, 1991.

Stakelbeek, A. Movement of brackish groundwater near a deep-well infil-tration system in the Netherlands. Chap. 15. In: Seawater Intrusioninto Coastal Aquifers—Concepts, Methods and Practices, (eds.) J. Bear,A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer, 531–541,1999.

Stallman, R.W. Flow in the zone of aeration. In: Advances in Hydroscience,4, (ed.) V.T. Chow, Academic Press, New York, 151–195, 1967.

References

Page 48: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

806

Starr, R.C. and Cherry, J.A. In-situ remediation of contaminated ground-water—The funnel-and-gate system.” Ground Water, 32:465–476, 1994.

Steefel, C.I. and MacQuarrie, K.T.B. Approaches to modeling of reactivetransport in porous media. In: Reactive Transport in Porous Media,(eds.) P.C. Lichtner, C.I. Steefel, and E.H. Oelkers, 83–129, 1996.

Steefel, C.I. and Yabusaki, S.B. OS3D/GIMRT, Software for Modeling Multi-component-Multidimensional Reactive Transport, User Manual and Pro-grammer’s Guide. Pac. Northwest Lab., Richland, Wash., 1995.

Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging. Springer,247 p., 1999.

Stephens, D.B. Vadose Zone Hydrology. CRC Press, 347 p., 1996.Stephens, D.B. and Heermann, S. Dependence of anisotropy on saturation in

a stratified sand. Water Resour. Res., 24:770–778, 1988.Steuer, A., Siemon, B., and Eberle, D. Airborne and ground-based electro-

magnetic investigations of the freshwater potential in the tsunami-hitarea Sigli, northern Sumatra. J. Environ. Eng. Geophys., 13:39–50,2008.

Stewart, M.T. Rapid reconnaissance mapping of fresh-water lenses on smalloceanic islands. In: Geotechnical and Environmental Geophysics, v. II,Soc. Explor. Geophysicists, Inv. in Geophysics, n. 5, (ed.) S. Ward, 57–66, 1990.

Stewart, M.T. Geophysical investigations. Chap. 2, In; Seawater Intrusioninto Coastal Aquifers—Concepts, Methods and Practices, (eds.) J. Bear,A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera, Kluwer, 9–50, 1999.

Stewart, M.T., Layton, M., and Lizanec, T. Application of resistivity sur-veys to regional hydrogeologic reconnaissance. Ground Water, 21:42–48,1983.

Stone, H.L. Probability model for estimating three-phase relative permeabil-ity. Trans. Soc. Pet. Eng., AIME, 249:214–218, 1970.

Stone, H.L. Estimation of three-phase relative permeability and residual oildata. J. Can. Petrol. Technol., 12:53–61, 1973.

Strack, O.D.L. A single-potential solution for regional interface problems incoastal aquifers. Water Resour. Res., 12:1165–1174, 1976.

Strack, O.D.L. Groundwater Mechanics. Prentice-Hall, 732 p., 1989.Strack, O.D.L. Theory and applications of the analytic element method. Rev.

Geophysics, 41, ISI:000183886400001, 2003.Stumm, W. and Morgan, J.J. Aquatic Chemistry, Chemical Equilibria and

Rates in Natural Waters, 3rd ed. Wiley Interscience, 1040 p., 1995.Sudicky, E.A. A natural gradient experiment on solute transport in a sand

aquifer—spatial variability of hydraulic conductivity and its role in thedispersion process. Water Resour. Res., 22:2069–2082, 1986.

Suer, P. and Lifvergren, T. Mercury-contaminated soil remediation by iodideand electroreclamation. J. Env. Eng., ASCE, 129:441–446, 2003.

Sun, N.-Z. Inverse Problems in Groundwater Modeling. Kluwer, 1994.Sun, N.-Z. and Sun, A.Y. Inverse methods for parameter estimation. In: En-

cyclopedia of Hydrological Sciences, Vol. 4, Article 162, (eds.) J.J. Mc-Donnell and M.G. Anderson, Wiley, 2415–2430, 2005.

References

Page 49: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

807

Sun, S.Y. and Wheeler, M.F. Discontinuous Galerkin methods for coupledflow and reactive transport problems. Appl. Numer. Math., 52:273–298,2005.

Sun, Y., Buscheck, T.A., and Hao, Y. Modeling reactive transport usingexact solutions for first-order reaction networks. Transp. Porous Media,71:217–231, 2008.

Sun, Y., Petersen, J.N., and Clement, T.P. Analytical solutions for multiplespecies reactive transport in multiple dimensions. J. Contam. Hydrol.,35:429–440, 1999a.

Sun, Y., Petersen, J.N., Clement, T.P., and Skeen, R.S. Development of an-alytical solutions for multispecies transport with serial and parallel re-actions. Water Resour. Res., 35:185–190, 1999b.

Suthersan, S.S. and Payne, F.C. In Situ Remediation Engineering. CRCPress, 536 p., 2004.

Swartz, J.H. Resistivity studies of some salt-water boundaries in the HawaiianIslands. Trans. Am. Geophys. Union, 18:387–393, 1937

Swartz, J.H. Geophysical investigations in the Hawaiian Islands. Trans. Am.Geophys. Union, 20:292–298, 1939.

Swartzendruber, D. The flow of water in unsaturated soils. Chap. 6. In:Flow Through Porous Media, (ed.) R.J.M. De Wiest, 215–292, AcademicPress, New York, 1969.

Swarzenski, P.W. and Kindinger, J.L. Leaky coastal margins: Examples ofenhanced coastal groundwater and surface-water exchange from TampaBay and Crescent Beach submarine spring, Florida, USA. Chap. 5. In:Coastal Aquifer Management-Monitoring, Modeling, and Case Studies,(eds.) A.H.-D. Cheng and D. Ouazar, Lewis Publ., 95–114, 2004.

Taigbenu, A.E., Liggett, J.A. and Cheng, A.H.-D. Boundary integral solu-tion to seawater intrusion into coastal aquifers. Water Resour. Res.,20:1150–1158, 1984.

Tartakovsky, D.M., Neuman, S.P., and Lu, Z.M. Conditional stochastic av-eraging of steady state unsaturated flow by means of Kirchhoff trans-formation. Water Resour. Res., 35:731–745, 1999.

Taylor, G.I. Dispersion of soluble matter in solvent flowing slowly through atube. Proc. Royal Soc., London, Ser. A, 219:186–203, 1953.

Taylor, G.I. The dispersion of matter in turbulent flow through a pipe. Proc.Royal Soc., London, Ser. A, 223:446–468, 1954.

Telford, W.M., Geldart, L.P. and Sheriff, R.E. Applied Geophysics. Cam-bridge Univ. Press, Cambridge, 770 p., 1990.

Terminology Committee of Commission I of the International Soil ScienceSociety (ISSS) Terminology in Soil Physics. ISSS Bull., 49:914–920,1976.

Terzaghi, K. Die berechnung der durchlassigkeitsziffer des tones aus dem ver-lauf der hydrodynamischen spannungserscheinungen. Sitz. Akad. Wis-sen., Wien Math. Naturwiss. Kl., Abt. IIa, 132:105–124, 1923.

Terzaghi, K. Soil moisture and capillary phenomena in soils. Chap. 10-A. In:Hydrology, (ed.) O.E. Meaner, McGraw-Hill, New York, 331–363, 1942.

Terzaghi, K. Theoretical Soil Mechanics. Wiley, New York, 528 p., 1943.

References

Page 50: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

808

Testa, S.M. and Winegardner, D.L. Restoration of Contaminated Aquifers:Petroleum Hydrocarbons and Organic Compounds, 2nd ed. CRC Press,464 p., 2000.

Tezduyar, T.E., Behr, M., and Liou, J. A new strategy for finite-element com-putations involving moving boundaries and interfaces—the deforming-spatial-domain space-time procedure. 1. The concept and the prelim-inary numerical tests. Comput. Meth. Appl. Mech. Eng., 94:339–351,1992a.

Tezduyar, T.E., Behr, M., Mittal, S., and Liou, J. A new strategy for finite-element computations involving moving boundaries and interfaces—thedeforming-spatial-domain space-time procedure. 2. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Com-put. Meth. Appl. Mech. Eng., 94:353–371, 1992b.

Theis, C.V. The relation between the lowering of the piezometric surface andthe rate and duration of discharge of a well using ground-water storage.Trans. Am. Geophys. Union, 16:519–524, 1935.

Therrien, R. and Sudicky, E.A. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous me-dia. J. Contam. Hydrol., 23:1–44, 1996.

Thomas, H.A. Jr. and Fiering, M.B. Mathematical synthesis of streamflowsequences for the analysis of river basins by simulation. Chap. 12. In:Design of Water-Resources Systems, (eds.) R. Dorfman, H.A. Thomas,Jr., S.A. Marglin, and G. Fair, 459–493, Harvard Univ. Press, Cam-bridge, Mass., 1962.

Thornthwaite, C.W. An approach toward a rational classification of climate.Geographical Review, 38:55–94, 1948.

Thornthwaite, C.W. and Hare, F.K. The loss of water to the air. Meteorolog-ical Monographs, 6:163–180, 1965.

Thurstone, L.L. A law of comparative judgments. Psychological Reviews,34:273–286, 1927.

Tindall, J.A. and Kunkel, J.R. Unsaturated Zone Hydrology for Scientistsand Engineers. Prentice-Hall, 642 p., 1999.

Tison, L.J. (Ed.) Land Subsidence: Proc. 1st Int. Symp. on Land Subsidence,Tokyo, Japan, IAHS, 89, 1969.

Todd, D.K. Annotated Bibliography on Artificial Recharge of Ground Waterthrough 1954. U.S. Geological Survey Water-Supply Paper 1477, 115 p.,1959.

Todd, D.K. Groundwater Hydrology, 2nd ed. Wiley, 535 p., 1980.Tompson, A.F.B Numerical simulation of chemical migrations in physi-

cally and chemically heterogeneous porous media. Water Resour. Res.,29:3709–3726, 1993.

Tompson, A.F.B., Ababou, R. and Gelhar, L.W. Implementation of the 3-dimensional turning bands random field generator. Water Resour. Res.,25:2227–2243, 1989.

Tompson, A.F.B., Carle, S.F., Rosenberg, N.D., and Maxwell, R.M. Analy-sis of groundwater migration from artificial recharge in a large urban

References

Page 51: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

809

aquifer: A simulation perspective. Water Resour. Res., 35:2981–2998,1999.

Tompson, A.F.B. and Gelhar, L.W. Numerical-simulation of solute transportin 3-dimensional, randomly heterogeneous porous-media. Water Resour.Res., 26:2541–2562, 1990.

Topp, G.C. Soil water hysteresis measured in a sandy loam compared with thehysteretic domain model. Soil Sci. Soc. Am. Proc., 33:645–651, 1969.

Topp, G.C. Soil water hysteresis in silt loam and clay loam soils. WaterResour. Res., 7:914–920, 1971.

Tracy, F.T. 1-D, 2-D, and 3-D analytical solutions of unsaturated flow ingroundwater. J. Hydrology, 170:199–214, 1995.

Tracy, F.T. Clean two- and three-dimensional analytical solutions of Richards’equation for testing numerical solvers. Water Resour. Res., 42, W08503,2006.

Tronicke, J., Blindow, N., Gross, R., and Lange, M.A. Joint application ofsurface electrical resistivity- and GPR-measurements for groundwaterexploration on the island of Spiekeroog–northern Germany. J. Hydrol-ogy, 223:44–53, 1999.

Tse, K.K.C., Lo, S.L., and Wang, J.W.H. Pilot study of in-situ thermal treat-ment for the remediation of pentachlorophenol-contaminated aquifers.Environ. Sci. Technol., 35:4910–4915, 2001.

University of Texas. UTCHEM-9.0 A Three-Dimensional Chemical FloodSimulator, Vol. I: User’s Guide, Vol. II: Technical Documentation,Reservoir Engineering Research Program Center for Petroleum andGeosystems Engineering, University of Texas at Austin, 2000.

U.S. Environmental Protection Agency. Storm Water Management Model(SWMM), ver. 4.3, 1994.

U.S. Environmental Protection Agency. Hydrological Simulation Program–FORTRAN (HSPF), ver. 11, 1997.

U.S. Environmental Protection Agency. The Manual of Individual Water Sup-ply Systems. Fredonia Books, 168 p., 2001.

U.S. Environmental Protection Agency. WhAEM2000, Wellhead Analytic El-ement Model, ver. 3.2.0, 2005.

Van Dam, J.C. Exploitation, restoration and management. Chap. 4. In: Sea-water Intrusion into Coastal Aquifers—Concepts, Methods and Prac-tices, (eds.) J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera,Kluwer, 73–125, 1999.

Van Genuchten, M.Th. Mass Transfer Studies of Sorbing Porous Media. Ph.DThesis, New Mexico State Univ., La Cruz, NM, 1974.

Van Genuchten, M.Th. Models for describing water and solute movementthrough soils with large pores. Agronomy Abstracts, Amer. Soc. Agron.,1980.

Van Genuchten, M.Th. and Dalton, F.N. Models for simulating salt move-ment in aggregated field soils. Geoderma, 38:165–183, 1986

Van Laarhoven, P.J.M. and Aarts, E.H.L. Simulated Annealing: Theory andApplications. Springer, 204 p., 1987.

References

Page 52: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

810

Varoglu, E. and Finn, W.D.L. Utilization of the method of characteristics tosolve accurately two-dimensional transport problems by finite elements.Int. J. Numer. Methods Fluids, 2:173–184, 1982.

Vauclin, M., Haverkamp, R. and Vachaud, G. Resolution Numerique d’uneEquation de Diffusion Non-Lineare. Presses Univer, 1979.

Venosa, A.D., Suidan, M.T., Wrenn, B.A., Strohmeier, K.L., Haines, J.R.,Eberhart, B.L., King, D., and Holder, E. Bioremediation of an experi-mental oil spill on the shoreline of Delaware bay. Environ. Sci. Technol.,30:1764–1775, 1996.

Verhoff, A. and Campbell, C.L. Evaporation measurement. In: Encyclopediaof Hydrological Sciences, Vol. 1, Art. 40, (eds.) J.J. McDonnell and M.G.Anderson, 589–601, 2005.

Verruijt, A. Elastic storage in aquifers. In: Flow Through Porous Media. (ed.)R.J.M. De Wiest, Academic Press, New York, 331–376, 1969.

Verruijt, A. Steady dispersion across an interface of a porous medium. J.Hydrology, 14:337–347, 1971.

Verruijt, A. Computational Geomechanics. Kluwer, 1995.Versteeg, H.K. and Malalasekera, W. An Introduction to Computational Fluid

Dynamics. Pearson/Prentice-Hall, 257 p., 1995Voss, C.I. SUTRA—Saturated Unsaturated Transport—A Finite-Element

Simulation Model for Saturated-Unsaturated, Fluid-Density-DependentGround-Water Flow with Energy Transport or Chemically-Reactive Single-Species Solute Transport, U.S. Geological Survey Water-Resources In-vestigation Report 84-4369, 409 p., 1984.

Voss, C.I. USGS SUTRA Code—History, practical use, and application inHawaii. Chap. 9. In: Seawater Intrusion in Coastal Aquifers—Concepts,Methods, and Practices, (eds.) J. Bear, A.H.-D. Cheng, S. Sorek, D.Ouazar & I. Herrera, Kluwer, 249–313, 1999.

Voss, C.I. and Provost, A.M. SUTRA, A Model for Saturated-UnsaturatedVariable-Density Ground-Water Flow with Solute or Energy Transport.U.S. Geological Survey Water-Resources Investigations Report 02-4231,250 p., 2002.

Voss, C.I. and Souza, W.R. Variable density flow and solute transport sim-ulation of regional aquifers containing a narrow freshwater-saltwatertransition zone. Water Resour. Res., 23:1851–1866, 1987.

Vukovic, M., and Soro, A. Hydraulics of Water Wells, Theory and Applica-tion. Water Resources Publ., 354 p., 1992.

Walton, W.C. Groundwater Resources Evaluation. McGraw-Hill, New York,1970.

Walton, W.C. Groundwater Pumping Tests. CRC Press, 216 p., 1990.Wang, F.C. Approximate theory for skimming well formulation in indus plain

of West Pakistan. J. Geophys. Res., 70:5055–5063, 1965.Wang, H., Ewing, R.E., Qin, G., Lyons, S.L., Al-Lawatia, M., and Man,

S. A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations. J. Computat. Phys., 152:120–163, 1999.

References

Page 53: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

811

Wang, H., Ewing, R.E., and Russell, T.F. Eulerian-Lagrangian localized ad-joint methods for convection-diffusion equations and their convergenceanalysis. IMA J. Numer. Anal., 15:405–459, 1995.

Wang, K.X., Wang, H., and Al-Lawatia, M. An Eulerian-Lagrangian dis-continuous Galerkin method for transient advection-diffusion equations.Numer. Meth. Part. Diff. Eqs., 23:1343–1367, 2007.

Ward, A.L., White, M.D., Freeman, E.J., and Zhang, Z.F. STOMP Sub-surface Transport Over Multiple Phase. Addendum: Sparse VegetationEvapotranspiration Model for the Water-Air-Energy Operational Mode.PNNL-15465, Pacific Northwest National Laboratory, Richland, Wash-ington, 2005.

Ward, C.H., Cherry, J.A., and Scalf, M.R. Subsurface Restoration. CRCPress, 500 p., 1997.

Ward, D.S., Reeves, M., and Duda, L.E. Verification and field comparisonof the Sandia Waste-Isolation Flow and Transport Model (SWIFT).NUREG/CR-3316, SAND-83-1154, Sandia National Laboratories, Al-buquerque, New Mexico, 168 p., 1984.

Ward, S.H. Geotechnical and Environmental Geophysics, Soc. ExplorationGeophysicists, Inv. in Geophysics, n. 5, vols. I, II, III., 1990.

Warrick, A.W., Islas, A., and Lomen, D.O. An analytical solution to Richardsequation for time-varying infiltration. Water Resour. Res., 27:763–766,1991.

Weber, W.J. Physicochemical processes for Water Quality. Wiley, New York,640 p., 1972.

Wendland, H. Error estimates for interpolation by compactly supported ra-dial basis functions of minimal degree. J. Approx. Theory, 93:258–272,1998.

Whitaker, S. Diffusion and dispersion in porous media. AIChE J., 13:420–427, 1967.

Whitaker, S. Flow in porous media. 1. A theoretical derivation of Darcy’slaw. Transp. Porous Media, 1:3–25, 1986a.

Whitaker, S. Flow in porous media. 2. The governing equations for immisci-ble, two-phase flow. Transp. Porous Media, 1:105–125, 1986b.

White, M.D. and Oostrom, M. STOMP Subsurface Transport Over Multi-ple Phase: Theory Guide. PNNL-11216 (UC-2010), Pacific NorthwestNational Laboratory, Richland, Washington, 2000.

White, M.D. and Oostrom, M. STOMP Subsurface Transport Over MultiplePhase: User’s Guide. PNNL-15782 (UC-2010), Pacific Northwest Na-tional Laboratory, Richland, Washington, 2006.

White, W.N. A Method of Estimating Ground Water Supplies Based on Dis-charge by Plants and Evaporation from Soil. U.S. Geological SurveyWater Supply Paper 659, 1932.

Wiener, A. The Role of Water in Development. McGraw-Hill, New York, 483p., 1972.

Williams, G.A., Miller, C.T., and Kelley, C.T. Transformation approachesfor simulating flow in variably saturated porous media. Water Resour.Res., 36:923–934, 2000.

References

Page 54: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

812

Williams, J.R., Nicks, A.D., and Arnold, J.G. Simulator for water resourcesin rural basins. J. Hyd. Eng., ASCE, 111:970–986, 1985.

Wilson, J.L. and Miller, P.J. Two-dimensional plumes in uniform groundwa-ter flow. J. Hyd. Div., ASCE, 104:503–514, 1978.

Wilson, L.G., Everett, L.G., and Cullen, S.J. Handbook of Vadose Zone Char-acterization & Monitoring. CRC Press, 752 p., 1994.

Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., and Stottmeister,U. (Eds.) Remediation Engineering of Contaminated Soils. CRC Press,1008 p., 2000a.

Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., and Stottmeister, U.(Eds.) Bioremediation of Contaminated Soils. CRC Press, 903 p., 2000b.

Wodie, J.C. and Levy, T. Correction non lineaire de la Loi de Darcy. C. R.Acad. Sci. Paris, Serie II, 1991.

Wolery, T.J. EQ3NR a computer program for geochemical aqueous speciation-solubility calculations: user’s guide and documentation, Lawrence Liv-ermore National Laboratory, report no. UCRL-53414, Livermore, Cali-fornia, 1983.

Wong, S.M., Hon, Y.C., and Golberg, M.A. Compactly supported radial basisfunctions for shallow water equations. Appl. Math. Computa., 127:79–101, 2002.

Wosten, J.H.M., Pachepsky, Y.A., and Rawls, W. J. Pedotransfer functions:Bridging the gap between available basic soil data and missing soil hy-draulic characteristics. J. Hydrology, 251:123–150, 2001.

Wright, W.F., Schroeder, E.D., Chang, D.P.Y., and Romstad, K. Perfor-mance of a pilot-scale compost biofilter treating gasoline vapor. J. Env.Eng., ASCE, 123:547–555, 1997.

Xue, Y., Sellers, J.J., Kinter, J.L., and Shukla, J. A simplified biospheremodel for global climate studies. J. Clim., 4:346–364, 1991.

Yeh, G.T. 3DFEMWATER: A three-dimensional finite element model ofwater flow through saturated-unsaturated media. ORNL-5567/R1, OakRidge National Laboratory, Oak Ridge, TN, 1987.

Yeh, G.T. 3DLEWASTE: A hybrid Lagrangian-Eulerian finite element modelof waste transport through saturated-unsaturated media. PennsylvaniaState University Technical Report, Department of Civil Engineering,Pennsylvania State University, University Park, PA, 1990.

Yeh, G.T. and Tripathi, V.S. A Lagrangian-Eulerian approach to model-ing hydrogechemical transport of multi-component systems. Proc. Int.Conf. Groundwater Contaminant: Use of Models in Decision-Making inthe European Year of Environment, Martin-Nijhoff, 1987.

Yeh, G.T. and Tripathi, V.S. Critical evaluation of recent developments inhydrogeochemical transport models of reactive multicomponents. WaterResour. Res., 31:93–108, 1989.

Yeh, G.T. and Tripathi, V.S. A model for simulating transport of reactivemultispecies components: Model development and demonstration. Wa-ter Resour. Res., 27:3075–3094, 1991.

Yeh, T.C.J. One-dimensional steady-state infiltration in heterogeneous soils.Water Resour. Res., 25:2149–2158, 1989.

References

Page 55: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

813

Yeung, A.T. Contaminant extractability by electrokinetics. Environ. Eng.Sci., 23:202–224, 2006.

Yih, C.S. A transformation for free-surface flow in porous media. Phys. Flu-ids, 1:20–24, 1964.

Yukselen, Y. and Kaya, A. Comparison of methods for determining specificsurface area of soils. J. Geotech. Geoenviron. Eng., ASCE, 132:931–936,2006.

Yuster, S.T. Theoretical considerations of multiphase flow in idealized capil-lary systems. Proc. 3rd World Petroleum Congress, II:437–445, 1951.

Zeitoun, D.G. and Braester, C. A Neumann expansion approach to flowthrough heterogeneous formations. Stoch. Hydrol. Hydraul., 5:207–226,1991.

Zhang, D. Stochastic Methods for Flow in Porous Media, Coping with Un-certainties. Academic Press, 2002.

Zhang, F., Yeh, G.-T., Parker, J.C., Brooks, S.C., Pace, M.N., Kim, Y.-J.,Jardine, P.M., and Watson, D.B. A reaction-based paradigm to modelreactive chemical transport in groundwater with general kinetic andequilibrium reactions. J. Contam. Hydrol., 92:10–32, 2007.

Zheng, C. MT3D, A Modular Three-Dimensional Transport Model for Sim-ulation of Advection, Dispersion and Chemical Reactions of Contami-nants in Groundwater Systems, Report to the U.S. Environmental Pro-tection Agency, 170 p., 1990.

Zheng, C. MT3DMS v5.2 Supplemental User’s Guide, Technical Report tothe U.S. Army Engineer Research and Development Center, Departmentof Geological Sciences, University of Alabama, 24 p., 2006.

Zheng, C. and Bennett, C.D. Applied Contaminant Transport Modeling, The-ory and Practice. Van Nostrand Reinhold, 440 p., 1995.

Zheng, C. and Wang, P.P. MT3DMS, A Modular Three-Dimensional Multi-Species Transport Model for Simulation of Advection, Dispersion andChemical Reactions of Contaminants in Groundwater Systems; Docu-mentation and User’s Guide. U.S. Army Engineer Research and Devel-opment Center Contract Report SERDP-99-1, Vicksburg, MS, 202 p.,1999.

Zhou, Q. Modeling seawater intrusion in coastal aquifers. Ph.D. thesis,Technion-Israel Institute of Technology, 1999.

Zhou, Q., Bear, J., and Bensabat J. Saltwater upconing and decay beneath awell pumping above an interface zone. Transp. Porous Media, 61:337–363, 2005.

Zhou, Q., Bensabat, J., and Bear, J. Accurate calculation of specific dis-charge in heterogeneous porous media. Water Resour. Res., 37:3057–3069, 2001.

Zhu, J. A low-diffusive and oscillation-free convection scheme. Comm. Appl.Numer. Meth., 7:225–232, 1991.

Zienkiewicz, O.C. The Finite Element Method in Engineering Science, 3rded. McGraw-Hill, 787 p., 1977.

References

Page 56: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index

Abrupt boundary

between immiscible fluids, 184

between miscible fluids, 184

Absorption, 422

Accretion, 193, 212

rate of, 193, 194, 212

Activation energy, 399

Activity, 396, 409

coefficient, 396, 509, 511

Adatom, 351

Adhesive fluid, 256

Adsorbate, 401

Adsorbent, 401

Adsorption, 382, 401, 402

chemisorption, 401

equilibrium, 401

hydrophobic organic, 404

intragranular, 421, 462

two-site equilibrium-kinetic model, 420

Adsorption isotherm, see Isotherm

Advection, 473

Advection-dominated transport, 418, 467,555, 570, 579

Advection-only transport, 467, 473, 476

Advective flux, 164, 165, 346, 347, 357

Aeration zone, 67, 251

Aerobic, see Biodegradation

Air dissolution, 386

Air entry pressure, 264, 266, 296

Air sparging, see Remediation technique

Air stripping, see Remediation technique

Airborne electromagnetic method, seeGeophysical method

Algebraic mean, 145

Algebraic-differential equation, 491

Alkalinity, 495

Anaerobic, see Biodegradation

Analytic element method, 560, 589

Analytic hierarchy process, 739

Analytical solution, 526

reactive solute transport, 455

retardation, 437

saltwater intrusion, 613

solute transport, 446

stochastic, 678

unsaturated flow, 305, 315, 322

Anisotropic

hydraulic conductivity, see Hydraulicconductivity

permeability, see Permeability

Anthropogenic materials, 11

Apparent phase, 459

Apparent saturation, see Saturation

Aquifer, 65, 69

artesian, 195

classification of, 69

coastal, 593

confined, 69, 533, 568

equivalent homogeneous, 55

function of, 8

inhomogeneous, 55, 77, 533

layered, 143

leaky, 545, 745

confined, 70

phreatic, 70

mining of, 10, 22

multilayered, 220, 226, 589, 620

perched, 69

phreatic, 69, 84

sustainable yield, 22

two-aquifer system, 228

unconfined, 69, 678

Aquifer-aquitard system, 226

Aquifuge, 65

Aquitard, 65, 70, 83

storage change, 223

Arrhenius equation, 399, 432

Artesian well, see Well

815

Page 57: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

816 Index

Artificial dispersion, 557

Artificial recharge, 28, 89, 108clogging, 95

ditches and furrows, 93infiltration basin, 93methods of, 93

objectives of, 89surface spreading, 93

wells, 95Asymptotic

expansion, 62, 129, 130solution, 57

Atmospheric circulation, 2Autocorrelation, 646, 647

coefficient, 647spatial, 649temporal, 649

Autocovariance, 646, 679, 682, 685isotropic, 649

spatial, 649temporal, 649

Autoregressive method, 86Average

intrinsic phase, 46–48, 138, 291mass, 47phase, 47

velocity, 115volume, 46, 51

Averagingover μREV, 49, 53

over area, 138over macroscopic heterogeneity, 54

over microscopic heterogeneity, 50over REV, 43, 45, 46, 48, 49over RMV, 54, 373

over volume, 138Avogadro’s number, 344

Backward difference approximation, seeFinite difference method

Balance equation, 34, 178

2-D, 2182-D by integration, 207

confined aquifer, 213leaky aquifer, 214, 215

linearized, 218macroscopic, 165of an extensive quantity, 163

phreatic aquifer, 215regional, 107

single species, 376vertically integrated, 208

Base flow, 10, 98Basis function, 542, 547, 659, 755

Batch adsorption experiment, 403

Beaver-Joseph condition, see Boundarycondition

BEM, see Boundary element methodBentonite, 351

Berger equation, 323BFGS method, 715, 717, 718

Binary system, 347

Biodegradation, 424, 425, 523aerobic, 425, 426

anaerobic, 425, 426rate, 427

respiration, 425

Biofilm, 424Biomass, 425

BIOMOC, see Computer code

BIOPLUME, see Computer codeBioremediation, see Remediation

technique, 590

Biosparging, see Remediation techniqueBiot model, 177, 179, 238, 246

Biotransformation, 424, 426, 523, 590

Bioventing, see Remediation techniqueBoltzmann transform, 323

Boundary condition, 34, 182, 185, 310, 535,602, 625, 626

2-D flow, 221artificial boundary, 202, 444

artisian well, 196Beavers-Joseph, 202

between porous media, 189, 440

boundary layer, 442buffer zone, 442

Cauchy, 566

clogged river bed, 222concentration, 439

concentration flux, 439constant-flow cell, 536

Dirichlet, 187, 312, 439, 535, 542, 553,564

essential, 542first type, 187, see Dirichlet

flowing water, 199flux, 188, 222, 312

general macroscopic for extensivequantity, 186

head, 187, 221, 311impervious, 188, 312, 439

infiltration, 317

moisture content, 311natural, 542

Neumann, 188, 313, 439, 535, 542, 564open channel flow, 202

phreatic surface, 192, 442

Page 58: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 817

pressure, 187, 311

pumping wellhead, 196

specific discharge, 196Robin, 189, 198, 313, 439, 536saturation, 311

second type, see Neumann, 313seepage face, 194, 443

semipervious, 189, 198, 222, 536spring, 196, 222

confined aquifer, 197phreatric aquifer, 196

suction, 311third type, see Robin, 313transition zone, 442

type 1, see Dirichlettype 2, see Neumann

type 3, see Robinwith a fluid body, 440

Boundary element method, 543, 560, 680stohastic, 678

Boundary integral equation, 563

Boundary value problemill-posed, 566

well-posed, 542, 564Boussinesq equation, 216

Bracketing method, 715Breakthrough curve, 353

Brinkmanequation, 149, 187, 201law, 131

Brownian motion, 346, 355Bubbling pressure, 264, 268, 270, 284, 296

Bulk density, 75

Calcite, 498

Calcium carbonate, 498Calibration, see ModelCanonical form, 486, 489

Cap, see Remediation techniqueCapillary

barrier, 284diffusivity, see Diffusivity

fringe, 68, 152, 283, 335pressure, 252, 256, 259, 331

macroscopic, 259pressure curve, 261, 264, 267, 270, 332

hysteresis, 282

scanning curves, 280pressure head, 259

equivalent, 336threshold, 264

rise, 154typical value, 153

tube, 258

zone, 68Capture zone, 517, 589, 608

Carbonate system, 493

Catalyst, 425Cation exchange capacity, 498

Cauchy-Riemann condition, 235Cell-centered approach, see Finite

difference method

Central difference approximation, seeFinite difference method

Chance constrained programming, 727Channel routing, 588

Characteristiccurve, 475

function, 51

line, 571, 573Characteristic length, 49, 50, 54, 468, 472,

474

of aquifer, 102of dimensional analysis, 146, 147

of heterogeneity, 77

of void space, 146Charge exclusion, 371

Chemicalcomponent, 344, 346, 348, 386, 486

definition of, 43

equilibrium, 409, 434kinetics, 412, 413, 428, 430

nonequilibrium, 412potential, see Potential

species, 344, 346, 386

basis, 486, 489definition of, 43

primary, 486, 489reacting, 482

Chemisorption, see Adsorption

Chlorinated solvents, 19Choleski decomposition, 582

Clay blanket, see Remediation techniqueClogging, 120

Code, see Computer code

Code verification, 36CODESA-3D, see Computer code

Coefficientexperimental determination of, 37

interpretation of, 35model, 45

of inconsistency, 736

randeom, 737of variation, 691

Cohesive force, 253Cokriging, 659, 758

Collector well, see Well

Page 59: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

818 Index

Collocation method, 544, 564

Compaction, 237Compartmental model, see Model

Complete model, see Model

Compressibilitycoefficient of fluid, 170

coefficient of porous medium, 179coefficient of rock, 174

coefficient of soil, 174coefficient of vertical, 246

of water, 171Computer code, 36, 525, 526, 583

BIOMOC, 590

BIOPLUME, 590CODESA-3D, 588, 628

DSTRAM, 628FEAS, 628

FEFLOW, 330, 587, 628FEMWATER, 330, 586

GMS, 586, 587

HSPF, 85HST3D, 586, 591

Hydrocomp, 85HYDRUS, 330, 587

IHDM, 86MIN3P, 509

MLAEM, 589MOC, see MOC3D

MOC3D, 574, 584, 585, 590, 601

MOCDENSE, see MOCDENSE3DMOCDENSE3D, 585, 628

MODFLOW, 533–535, 584–588MODFLOWP, 584

MODPATH, 584, 586MT3D, see MT3DMS

MT3DMS, 574, 585–588

NAPL Simulator, 590NUFT, 589

ParFlow, 588PEST, 586, 587

PHAST, 508, 591PHREEQC, 488, 508, 590, 591

PULSE, 88Random Walk, 586

RETRASO, 508

RORA, 88RT3D, 586

SEAWAT, 588, 628SHARP, 588

SHE, 85SLAEM, 589

STOMP, 589

SUTRA, 330, 587, 601, 628SWAT, 586

SWIFT, 628

SWM, 85SWMM, 85

SWRRB, 86

TOUGH, 508, 588UTCHEM, 586, 590

WHPA, 589Computer program, see Computer code

Concentrationmass, 344

molar, 344, 392, 396thermodynamic, 406

total, 489

Conceptual model, see ModelCondensation, 2

Condition number, 569, 581Conditional probability, 692

Conditionally stable, see StabilityCone of depression, 618, 745

Confined aquifer, see Aquifer

Conjugate gradient method, 580, 717incomplete Choleski, 582

incomplete LU, 582Conjunctive water use, 695

Connectivity data, 558Conservation principle, 538

Consolidation, 237, 238vertical only, 179

Constitutive equation, 34, 178, 182, 205

Constraint, 696, 699, 700, 723deterministic, 726

equality, 700, 714examples, 697

flow model as, 699, 709, 711, 714, 725inequality, 700

linear, 700

nonlinear, 700, 712nonnegative, 706

primary, 701, 708, 714probabilistic, 726

Contact angle, 254, 261Contaminant, 251, 341

transport, see Solute transportContamination

control measures, 515

source, see Pollution sourceContinuity equation, 131–133, 137, 447

Continuum, 1, 42, 43, 50, 53approach, 42–44, 46

concept, 43heterogeneous, see inhomogeneous

homogeneous, 50

inhomogeneous, 50model, see Model, 53

Page 60: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 819

Contour map, 229, 230

typical features of, 232Control volume, 162, 163, 570, 745

Control volume finite element method, 559Convergence, 527

Cooper-Jacob solution, 747, 749Correlation, 642

coefficientauto, 647

cross, 647length scale, 647

time scale, 647Coupled surface-subsurface flow, 588Covariance, 645, 672, 679, 758

parameter, 757Cross permeability coefficient, 290

Cumulative probability density function,727

Cutoff wall, see Remediation technique

Damkohler number, see Dimensionlessnumber

Darcy number, see Dimensionless number

Darcy unit, 118Darcy’s law, 53, 109, 110, 623

anisotropic, 120

empirical, 109general form of, 126

inhomogeneous porous medium, 117, 561theoretical derivation, 125

unsaturated, 289, 291validity of, 145

Darcy, Henri, 109Darcy-Forchheimer equation, 148

Darinagechannel network, 93

gravity, 68of pores, 262–265, 267, 278, 280

retention curve, 264system, 16, 88, 515, 516

DC resistivity, see Geophysical methodDead-end pore, 74, 115, 458

Debye-Huckel equation, 509Decay, 10, 92, 382, 384, 398, 400, 445, 455,

456, 480, 586

first order, 380, 433, 445, 446, 450, 468in porous medium, 400

radioactive, 380, 385, 397, 398, 400, 434,452, 454, 468, 480, 482

rate constant, 446, 455, 460, 468, 480

Decision variable, 23, 89, 614, 698–701,704–708, 710, 712, 713, 715–717, 719,723, 728, 729, 756, 758

examples, 696

fictitious, 708

space, 698, 724, 730

Deformable porous medium, 242Deformation, 172

Degrees of freedom, 446number of, 505

Delauney triangulation, 559

Delayed storage, 224Dense nonaqueous phase liquid, see

DNAPL

Density dependent solute transport, seeSolute transport

Design variable, see Decision variableDesorption, 401, 402

curve, 264Deterministic

approach, 637

model, 638, 639, 692process, 639

Diffuse element method, 559Diffusion equation, 531

nonlinear, 323, 327

Diffusion-dominated transport, 418Diffusive flux, 164, 165, 346, 347

definition of, 164

mass, 347Diffusivity, 324, 327, 348, 351, 465

capillary, 293moisture, 35, 293, 318

molecular, 293, 418, 460

of aquifer, 214, 215of porous media, 180

Dilation, 169Dimensionless number

Damkohler number, 389, 391, 416, 470

1st kind, 470, 4712nd kind, 470, 471

3rd kind, 470, 471

Darcy number, 146Fourier number, 215, 469, 472

Peclet number, 359, 389, 391, 416, 467,469, 470, 473–475, 555, 558, 624

Reynolds number, 145–147, 472

Strouhal number, 389, 391, 416, 469,470, 472

Dirac delta function, 180, 214, 388, 562Direct problem, see Forward problem

Direct substitution approach, 509

Dirichlet boundary condition, seeBoundary condition

Discharge

groundwater, 88per unit width, 237

pumping, 108

Page 61: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

820 Index

spring, 81, 100, 101

streamflow, 86Discontinuous Galerkin method, 576

Dispersion

coefficient, 361, 363, 625advective, 358

hydrodynamic, 371isotropic porous medium, 362

longitudinal, 362mechanical, 358

transverse, 362

effect of molecular diffusion, 355hydrodynamic, 351, 353, 356, 595

longitudinal, 353mechanical, 354

principal directions, 361tensorial nature, 362

transverse, 353

Dispersive flux, 165, 356–358, 624of total mass, 624

Dispersivity, 360, 631anisotropic, 362

components of, 360, 361horizontal transverse, 376

isotropic porous medium, 361

longitudinal, 360, 375, 628scale effect, 375

transverse, 360, 367, 628transverse isotropy, 362

vertical transverse, 376Displacement, 177

Dissolution, 382

Distribution coefficient, see IsothermDivergence

of flux, 162physical interpretation of, 163

theorem, 138, 139, 142DNAPL, 19–21, 342, 513, 517

definition of, 19

ganglion, 288Dominance of effects, 467

Double index convention, 122Double porosity

model, 55porous medium, 402, 421, 422, 458, 462,

463, 585, 588

Drag, 126

Stokes, 126viscous, 148

water-air interface, 290Drainage, 7, 24, 105, 108

Drainage curve, see retention curveDrainage system, 106

Drawdown, 663

Drift, 757

parameter, 757Drilling mud, see Pollution source

Dryingfront, 320

scanning curve, 280Dual continuum, see Double porosity

Dupre equation, 255Dupuit assumption, 154, 155, 157, 208,

588, 589, 604, 606, 607, 610, 613–616

phreatic aquifer, 152Dupuit-Forchheimer discharge formula,

157, 158, 230

Effective hydraulic conductivity, seeHydraulic conductivity

Effective permeability, see PermeabilityEffective porosity, see Porosity

Effective stress, 171, 173, 300Einstein summation convention, 122, 143,

350

Electric heating, see Remediationtechnique

Electrical conductivity, 345

Electro-kinetic enhanced remediation, seeRemediation technique

Electromagnetic field

primary, 598secondary, 598

Electromagnetic method, see Geophysicalmethod

Electron acceptor, 425

terminal, 426Electroneutrality, 349

Element-free Galerkin method, 559Element-free method, 559

Elevation head, 112Energy

due to pressure, 112potential, 112

Ensemble, 643average, 643–646, 651, 671, 679–682

space, 642statistics, 643, 648, 666

Entrapped air, 94, 280, 281, 295, 302, 318Entropy, 409

rate of production, 358Envelope function, 672

Enzymes, 425Equilibrium

coefficient, 406constant, 395, 396

equation, 171, 242Equipotential, 154, 229–231, 235, 236, 240

Page 62: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 821

boundary, 221

refraction law, 191surface, 113, 229

vertical, 78, 80, 151, 154–156, 159, 208,214

Equivalent

concentration, 345per liter, 345

per million, 345unit, 344, 498weight, 345

Equivalent hydraulic conductivity, seeHydraulic conductivity

Ergodicity, 650, 651

hypothesis, 652, 653, 668Error

roundoff, 527truncation, 527, 530

Essentially horizontal flow, 149, 207Essentially vertical flow, 225

Euler’s method, 478Eulerian

approach, 570

formulation, 466Eulerian-Lagrangian

formulation, 466localized adjoint method, 576

method, 444, 570, 574, 585, 586, 588modified, 578

Evaporation, 2, 103, 313models, 104

Evapotranspiration, 28, 103, 108, 314methods for determining, 104

potential, 103Excess pressure, 243Excess stress, 243

Existence of solution, 203Expectation, 643

Exponential integral, 248, 746Extensive quantity, 46, 52, 163

Fair and Hatch formula, 119Faraday’s constant, 349

FDEM, see Frequency domain electromag-netic method

FDM, see Finite difference method

Feasible solution, 698, 701, 702, 725, 729boundary of

hyperplane, 706plane, 706

domain of, 704region of

polygon, 706polyhedron, 706

polytope, 706

FEFLOW, see Computer codeFEM, see Finite element method

FEMWATER, see Computer code

Fertilizer, 18Fick’s law, 293, 346, 348, 358, 370, 417

averaged, 355macroscopic, 349, 350

Field capacity, 18, 68, 285, 286, 318

Film flow, 294Finite difference method, 527, 537, 543

backward difference, 529, 531, 556boundary cell, 535

cell-centered, 533, 535, 711

central difference, 529, 531code, 584, 586, 588, 590

constant-head cell, 535Crank-Nicolson scheme, 531, 533, 534

diffusion equation, 531

explicit scheme, 531, 532, 534forward difference, 478, 529, 531

grid-centered, 528implicit scheme, 531, 533, 534

Laplace equation, 528, 530

no-flow cell, 535variable-head cell, 535

Finite element method, 535, 538, 541, 559,586–588, 590

control volume, 559

Galerkin formulation, 541, 543, 547, 550,552, 565, 587

meshless, 558Petrov-Galerkin, 576

stabilized, 558stochastic, 678

streamline diffusion, 576

strong formulation, 553weak formulation, 552, 555

weighted residual formulation, 541, 542Finite volume method, 533, 535, 537, 559,

703

cell-centered, 539

edge-centered, 539solute transport equation, 538

vertex-centered, 539First order reaction, see Reaction

Flow equation, 161, 1793-D saturated, 180

unsaturated, 302

in terms of pressure, 302Flow line, 479

Flow model2-D, 207

complete, 219

Page 63: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

822 Index

complete 3-D, 203

content of, 205Flow net, 233, 236

inhomogenous medium, 237Fluid velocity, 115

Flux equation, 34Fokker-Planck equation, 322, 677

Forchheimer law, 131Forecasting problem, see Forward problem

Forward difference approximation, seeFinite difference method

Forward problem, 742Fractional wettability, see Wettability

Free product, 19, 411Frequency domain electromagnetic

method, see Geophysical method

Freundlich isotherm, see IsothermFundamental solution, 543, 560, 562

Funicular saturation, 261FVM, see Finite volume method

Galerkin method, see Finite elementmethod

Ganglia, 19, 518Gasoline compound, 15

Gauss elimination, 579Gaussian distribution, 645, see Normal

distribution

Genetic algorithm, 700, 720, 721binary code, 724

chromosome, 724crossover, 721, 725

family, 721fitness, 724

individual, 721mutation, 721, 725population, 721

pseudo-code, 725selection, 721, 725

Geochemical method, 599Geological method, 596

Geophysical method, 597airborne electromagnetic, 598

DC resistivity, 597frequency domain electromagnetic, 598

ground penetrating radar, 599loop-loop electromagnetic, 599

time domain electromagnetic, 598very low frequency electromagnetic, 599

Geostatistics, 653, 654Ghyben-Herzberg approximation, 595,

605–607, 613–615, 690

Gibbsfree energy, 409

phase rule, 506

Global minimum, 719, 720

Glover solution, 691

GMS, see Computer code

Gradient search method, 713, 715, 716

gradient method, 700, 715

search method, 715

second order method, 715, 717

unconstrained, 713

Grain diameter

effective, 119

harmonic mean, 153

mean, 146

Grain size distribution, see Soil

Gravel pack, 112

Gravity potential, see Potential

Green’s

function, 562

function method, 678

second identity, 561

theorem, 561

Green-Ampt model, 316

Grid

structured, 537, 539

Thiessen network, 538

unstructured, 537, 539, 541

Ground penetrating radar, see Geophysicalmethod

Groundwater, 2, 65

balance, 81

characteristics, 5

contamination, 11, 341

definition, 65

development, 7

divide, 231, 232, 619

in water resources systems, 2

legal aspect, 7

management, 695, 696

map, 228

model, see Model

motion, 109

mound, 618

pollution source, 12

potential, see Potential

quality, 6, 341

recharge, see Recharge

regulation, 513

remediation, see Remediation

reservoir, 65

table, see Water table

unsaturated, 251

zones, 67

Grout curtain, see Remediation technique

Page 64: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 823

H-p clouds method, 559

Haines jump, 279Harmonic

potential, see Potential

function, 113mean, 145

Heat transport, 586–588Henry’s law, 308, 380, 387, 411, 504

coefficient, 504

Hermite interpolation, 569Hessian matrix, 715, 717, 718

Heterogeneity, 637, 640field scale, 371

microscopic scale, 373

pore scale, 372scale of, 50, 372

Hill slope runoff, 588Hodograph method, 619

Homogenization, 49, 55, 56, 62, 125, 128,129, 132, 200

Darcy’s law, 128, 134effective hydraulic conductivity, 140

layered aquifer, 143mathematical theory of, 55

of ordinary differential equation, 57

two scales, 58Horton infiltration equation, 316

HSPF, see Computer codeHST3D, see Computer code

Hubbert’s potential, see Potential

Hydraulicapproach, 78, 207

containment, see Remediation techniquegradient, 83, 114, 116, 150

radius, 118, 146

Hydraulic conductivity, 111, 118anisotropic, 63, 120, 122, 123, 143, 145,

157

effective, 292equivalent, 56, 125, 143, 145

equivalent anisotropic, 63

hysteresis in, 297isotropic, 118

principal directions of, 123representative values, 118

second rank tensor, 120unit of, 118

Hydraulics of wells, 195, 745

Hydrocomp, see Computer codeHydrodynamic dispersion, see Dispersion,

621

Hydrological cycle, 1, 2, 65, 109Hydrophobic, 404, 406

compound, 523

HYDRUS, see Computer code

Hygroscopiccoefficient, 68

water, 68Hyperbolic partial differential equation,

see Partial differential equation

Hysteresis, 278–280, 282in water capacity, 302

ink bottle effect, 279raindrop effect, 279

Identification problem, see Inverse problemIHDM, see Computer code

Ill-conditioned, 569Ill-posed problem, 38, 203, 743, 756

Imbibition, 264, 278curve, 264

Immiscible fluids, 42, 601

Immobile water, 458balance equation, 458

Immobile wetting liquid, 459Impervious boundary, see Boundary

condition

Independent domain theory, 282Indifference curve, 732

Induced recharge, 96Inertial effect, 148

Infeasible solution, 698, 714Infiltration, 3, 84, 109, 251, 313, 315, 317

capacity, 314, 315, 317, 326rate, 319

Influence

function, 707matrix, 707, 708

Inhibitor, 429Initial condition, 34, 182, 185, 221, 310,

438, 602, 625

2-D flow, 221solute transport, 438

Injection, 387Insular saturation, see Saturation

Integral scale, 647, 672Integrodifferential equation, 228, 324Intensive quantity, 52

Interface, 253, 602condition, 603

equation of, 603moving, 601, 603, 604

slope of, 605Interfacial

free energy, 253tension, 254

Interference test, 750Intergranular stress, 172, 173

Page 65: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

824 Index

Intermediate wetting, 331

Intermediate zone, 68Interpolation function

global, 542, 552local, 543, 550, 552piecewise continuous, 543, 550

Intragranular adsorption, see AdsorptionIntrinsic permeability, see Permeability

Intrinsic phase average, see AverageInverse method, 598

Inverse multiquadric function, 568Inverse problem, 37, 269, 662, 742, 743, 755

Ionexchange, 405

exclusion, 371, 491Ionic

solid, 407

strength, 397charge, 345

Irreduciblemoisture content, 192, 265

water saturation, 152, 267, 274, 294Irreversible process, 353

Irrigation return flow, 18, 28, 88, 108, 314Irrotational flow, 113Iso-preference surface, 732

Isotherm, 401, 404, 434, 435adsorption, 402, 434

balance equation, 379definition of, 402

distribution coefficient, 403equilibrium, 401, 403, 420, 448, 472

equilibrium ion-exchange, 351Freundlich, 403, 434Langmuir, 403

linear, 379, 400, 403, 420, 436, 437, 448,460, 464, 472

nonlinear, 379, 403, 437

partitioning coefficient, 403Isotopes, 600

Isotropy, 76, 143, 360

Kanat, 105

Kelvin equation, 277Kelvin’s law, 274, 275

Kinetic approach, 383Kinetic energy head, 112Kirchhoff transform, 322

Kriging, 639, 647, 652–654, 672, 675, 757ordinary, 657

sample point, 655simple, 656

universal, 658unsampled point, 655

unsmapled point, 660

with a trend, 658

Lagrangianmethod, 444

approach, 570, 572balance equation, 466multiplier, 658

Lame’s coefficients, 176Laminar flow, 145Land subsidence, see Subsidence

Landfill, 6, 11–13, 342, 515Langmuir isotherm, see Isotherm

Laplace equation, 113, 167, 181, 219, 235,528, 562

Laplace formula, 257, 258, 265, 273, 332Law of mass action, see Mass reaction law

LEA, see Local equilibrium assumptionLeachate, 6, 12, 13, 16, 17, 342, 515Leakage, 83

factor, 745Leakance, 215, 537

Leaky confined aquifer, see AquiferLeaky phreatic aquifer, see AquiferLeast square method, 540, 751

Leibnitz’ rule, 151, 209Light nonaqueous phase liquid, see LNAPLLinear algebraic equation, 530, 543

Linear least square method, 751Linear programming, 700

standard form, 700, 701

Liquid waste disposal, 92LNAPL, 19, 20, 342, 516

definiton of, 19spill, 333

Local derivative, 572

Local equilibrium assumption, 389, 509Local minimum, 719, 720Local Petrov-Galerkin method, 559

Log-normal distribution, 653, 669Longitudinal dispersion, see Dispersion

Loop-loop electromagnetic method, seeGeophysical method

LP, see Linear programmingLU decomposition, 582

Lumped parameter model, see ModelLyophobic, 401

Macrodispersion, 661

Macrodispersive flux, 212, 373Macropore, 402Macroscopic scale, see Scale

Managementalternatives, 695–697

Page 66: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 825

coastal aquifer, 633

decisions, 697problem types, 695

sustainable, 1, 634

Mass action law, 396, 406, 507Mass average, see Average

Mass balance, 88, 104, 218

Mass balance equation, 27, 125, 130, 161,162, 166–169, 175, 177–179, 181, 182,187, 200, 205, 212, 219, 223, 233, 241,483, 533, 538, 624, 625

3-D saturated, 179

averaged, 213compressible fluid, 176, 239

confiend aquifer, 219

deformable porous medium, 177, 239integrated, 239

leaky aquifer, 215, 220linearized, 247

macroscopic, 133, 140, 166, 218

phreatic aquifer, 216, 219solid, 167

unsaturated, 297Mass balance law, 199

Mass concentration, see Concentration

Mass fraction, 348, 387, 405, 418, 501, 504,622

definition, 345

normalized, 622, 625, 627

salt, 622, 623, 631Mass transfer

between fluid and solid, 418between fluids, 415

coefficient, 417, 419

interphase, 305, 382, 415nonequilibrium, 415

Materialinterface, 166

surface, 167, 312, 603

Material derivative, see Total derivativeMathematical model, see Model, 526

Matricpotential, see Potential

pressure head, 292

suction, 259Matrix

banded, 579, 580blocked, 580

diagonal, 555

fully populated, 569inverse, 579

lower triangular, 582non-negative definite, 358

non-symmetric, 569

positive definite, 581, 718

solution, 530, 579sparsely populated, 579, 580

symmetric, 358, 553, 569, 581, 718

tridiagonal, 580upper triangular, 582

Maximum contaminant level, 379, 515Maximum likelihood estimate, 757

MCL, see Maximum contaminant level

Mean, 643ensemble, 651, 687

spatial, 648temporal, 648

Mean free path, 127Mechanical

energy, 111

equilibrium, 409Mechanical dispersion, see Dispersion

Megascopic scale, see ScaleMeshless method, 559, 565, 569

Metaheuristics, 700, 720

Method of characteristics, 574, 585modified, 576

Method of fundamental solutions, 560Method of steepest descent, 581, see

Steepest descent method

Michaelis-Menton kinetics, 428, 430Micropore, 402

Microscopic representative elementaryvolume, 43, 49, 53, 399

Microscopic scale, see ScaleMIN3P, see Computer code

Mixture theory, 125MLAEM, see Computer code

Mobile water, 458

balance equation, 458MOC3D, see Computer code

MOCDENSE3D, see Computer codeModel, 31, 698

calibration, 37, 269, 742coefficient, 35

methods for determining, 38

compartmental model, 35complete, 205

3-D flow, 203flow, 161

single component, 445

statement, 223three phase flow, 339

transport, 341, 432unsaturated flow, 320

complete flowunsaturated, 297

compositional, 501

Page 67: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

826 Index

conceptual, 1, 32, 33, 62, 205, 206, 338,458–461, 463, 464

content of, 33, 204

continuum, 35, 42advantage of, 45

definition of, 29lumped parameter, 35

mathematical, 1, 34, 205, 464

content of, 34multi-cell, 35

numerical, 36, 207physical, 1

reactive transport, 508

saturated-unsaturated flow, 309single cell, 376

use of, 40validation of, 36

Modeling process, 31

MODFLOW, see Computer codeMoisture capacity, 304

Moisture diffusivity, see DiffusivityMoisture diffusivity equation, 305, 323

Molal, 407

Molar concentration, see ConcentrationMolar fraction, 308, 345, 411, 418, 487,

488, 504

Mole fraction, see Molar fractionMolecular scale, see Scale

Molecular diffusion, 347, 355, 402, 463

coefficient, 348, 350Momentum

balance equation, 124, 148

balance law, 199Monitored natural attenuation, see

Remediation technique

Monod kinetics, 430dual, 432

Monte Carlo simulation, 639, 652, 666,671, 677

Motion equation, 124, 179, 205, 289coupling between phases, 289

non-Darcian, 147nonlinearity of, 293

three phase flow, 337

unsaturated, 289MT3DMS, see Computer code

Multi-cell model, see ModelMulticomponent system, 479

Multilayered aquifer, see Aquifer

Multiobjectivedecision making, 731

Multiobjective optimizationε-constraint approach, 734

indifference function approach, 732

lexicographic approach, 733

parametric approach, 733utility function approach, 731

Multiscale, 56Multivariate function, 644

NAPL, 11, 18, 19, 33, 42, 67, 330, 342, 415,425, 505, 513, 518, 520, 521, 523, 590

definition of, 18NAPL Simulator, see Computer code

Natural attenuation, 391, 424Natural bioattenuation, see Remediation

technique

Natural replenishment, 27, 84, 108, 314method of estimating, 85

Navier-Stokes equation, 44, 53, 56, 128,

129, 131–133, 199Nernst-Planck equations, 349Neumann boundary condition, see

Boundary condition

Neumann expansion, 678Newton method, 718

Newton-Raphson method, 559Newtonian fluid, 126

Nitrification, 18NLP, see Nonlinear programming

No-jump condition, 186in total stress, 242

No-slip condition, 127, 129, 132, 133, 138,199

Non-dominant effect, 148, 467, 474

Non-Fickian model, 370Non-inferior solution, 729

Nonaqueous phase liquid, see NAPLNonequilibrium reaction, see Reaction

Nonlinear least square, 751, 752Nonlinear programming, 700, 713

geometric programming, 713quadratic programming, 713separable convex programming, 713

Nonrenewable resource, 8Nonstationary, 757

process, 645, 673Nonunique solution, 729, 743

Nonwetting fluid, 255, 258Normal distribution, 727

NUFT, see Computer codeNumerical dispersion, 466, 557, 570, 576

Numerical method, 36, 207Numerical model, see Model, 525

Numerical oscillation, 556Numerical solution, 526

transport, 508unsaturated flow, 330

Page 68: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 827

Objective function, 30, 695, 698, 699, 728

examples, 696linear, 700

nonlinear, 712Onsager reciprocal relationship, 122

Operational yield, 26Operator splitting, 508, 574Optimal solution, 540, 696, 698, 700, 701,

705, 706, 708, 712, 721, 722, 724, 732,733

multiobjective, 728Optimal yield, 26

Optimization, 37, 580, 698, 755chance constrained, 726, 728

constrained, 698, 713deterministic, 728

mathematical statement, 699, 723multiobjective, 728

mathemtical statement, 728nonlinear, 712

unconstrained, 698, 713, 727Ordinary kriging, see KrigingOsmotic potential, see Potential

Overlapping continua, 44, 422, 458, 459,463

Packing factor, 119Pairwise weight comparison, 735

Parameter determination, 591Parameter estimation, 37, 269, 587, 662

conditional, 744deterministic, 755geostatistical model, 756

local, 745problem, 742

regional scale, 755Parameterization, 755

Paretofront, 730

set, 730solution, 729

ParFlow, see Computer codePartial air pressure, 308Partial differential equation, 35, 162

elliptic, 141hyperbolic, 475

Particle tracking, 526, 584, 585, 589backward, 575

forward, 576Partition of unity method, 559

Partitioning coefficient, see IsothermParts per million, 345

Pathline, 571, 584Peclet number, see Dimensionless number

Penalty method, 700, 713, 724

Pendular ring, 261–263, 265, 267, 273, 275,287, 294, 458, 459

Perched aquifer, see AquiferPercolation, 109

Performance function, 662Periodic

cell, 57, 61

function, 58structure, 56

Periodic autoregressive method, 86Permeability, 118

anisotropic, 14, 54, 76, 77, 120, 124, 126

barrier, see Remediation techniquedarcy unit of, 118

dimensionless intrinsic, 136

effective, 267, 286, 292, 293, 295, 297,307, 320, 321, 337, 338

anisotropic, 293

isotropic, 296three fluids, 337

to air, 293

to water, 293typical relations, 296

empirical formulae, 119

equivalent anisotropic, 78heterogeneous, see inhomogeneous

homogeneous, 76hysteresis in, 297

inhomogeneous, 76

intrinsic, 118, 119isotropic, 76, 120, 126

relative, 294, 295, 337curve, 295

gas-NAPL, 338

NAPL-water, 338three phase, 339

two phase, 338

typical curves, 294representative values, 118

saturated, 291second rank tensor, 124

unit of, 118

unsaturated, 291variations in time, 120

Permeable reactive barrier, 392, seeRemediation technique

Perturbation method, 59, 620, 677, 678,687, 691

PEST, see Computer code

Petrov-Galerkin finite element method, seeFinite element method

Petrov-Galerkin formulation, 557

pF unit, 260

Page 69: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

828 Index

Phase, 344

definition of, 42Phase average, see Average

Phase change

isothermal, 305phenomena, 306

rate, 308PHAST, see Computer code

Phreatic aquifer, see Aquifer

Phreatic surface, 67, 69, 192, 283boundary condition on, 192

equation of, 611shape of, 192

PHREEQC, see Computer codePhysical containment, see Remediation

technique

Piezometer, 48, 112

Piezometric head, 69, 111, 260definition of, 112

equivalent, 334Piezometric surface, 69, 113

Pivot rule, 707

Planar incremental stress, 245Planar stress assumption, 246

Plum interception, see Remediationtechnique

Pollution source

abandoned wells, 17acid precipitation, 18

agriculture, 18

classification by QTA, 12classification of, 13

diffused, 13distributed, 13

drilling mud, 17

impoundment, 16inorganic contaminant, 12

non-point, 13organic contaminant, 12

pathogenic organism, 12point, 13, 14

sanitary landfills, 15

septic tanks, 14spills, 17

storage of solid chemicals, 17storage tanks, 15

tailings, 17

uncontrolled dumps, 16Ponding, 320

Pore size distribution index, 270Pore throat, 259

Pore volume, 378Porosity, 51, 73

areal, 115

effective, 74, 116

interconnected, 74non-interconnected, 74

typical value of, 73

volumetric, 115Porous medium, 1, 66

continuum approach to, 42

definition of, 45deformable, 167, 171, 300

deformation of, 172homogeneous, 52

inhomogeneous, 52

isotropic, 360periodic, 140

Porous plate, 266Positive definite matrix, see Matrix

Positive definite tensor, see Tensor

Potential, 113, 271as intensive quantity, 271

chemical, 278, 408, 409gravity, 272, 277

harmonic, 616

Hubbert’s, 113, 127, 137, 174, 180, 213,239, 276

macroscopic level, 270

matric, 265, 270, 272–274osmotic, 276

pressure, 275

soil water, 272, 277solute, 272, 276

surface, 275, 276thermal, 272, 277

total, 271, 278

Potential energy, 112, see EnergyPotential evapotranspiration, see

Evapotranspiration

Powell method, 715, 716

Power spectral density function, 673Precipitation, 2, 8, 13, 17, 21, 27, 81, 84,

85, 87, 88, 109, 193, 313, 314, 318,319, 614, 633

acid, 18chemical, 343, 385, 391, 444

mineral, 382, 421, 498

synthetic sequence, 86Preconditioning, 581

matrix, 582Jacobi, 582

Preferred solution, 731

Pressureenergy, 112, 276

head, 112Pressure potential, see Potential

Primary field, see Electromagnetic field

Page 70: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 829

Primary source, 513

Primary variable, 205, 299, 446, 505Principal

axes, 122, 145, 711

directions, 123, 362minor, 360radii of curvature, 257

values, 122Probability density function, 668

joint, 669Psychrometric law, 387PULSE, see Computer code

Pump and treat, see Remediationtechnique

Pump-treat-inject, see Remediationtechnique

Pumping, 387, 534

test, 745

Qanat, see KanatQuasi-Newton method, 715, 718

Radial basis function, 564, 566compactly supported, 569

Radioactive decay, see Decay

Radionuclide decay chain, 480Radius of influence, 609Rain harvesting technique, 84

Randomboundary condition, 678

field generation, 639, 652conditional, 670, 675unconditional, 670

function, 640, 643number generator, 668, 725parameter, 687

parameter field, 675phenomenon, 86

process, 639, see Stochastic processvariable, 640

continous, 640

Random walk method, 576Raoult’s law, 411, 416Rate constant, 394

degradation, 401first order, 397, 398second order, 398

Rate law, 394, 399first order, 397

integrated, 398second order, 394

Rate of reaction, see Reaction

RBF, see Radial basis functionReactants, 392

Reaction

bimolecular, 392binary heterogeneous, 408

canonical form, 486

equilibrium, 391, 392, 488fast, 471

first order, 397porous medium, 400

forward, 394half life, 398

heterogeneous, see Reaction, inhomoge-neous, 390

higher order, 398homogeneous, 385, 392

inhomogeneous, 385kinetic, 490

nonequilibrium, 412, 490order of, 394

rate constant

first order, 419rate of, 391, 392, 510

rate-limiting step, 397reverse, 394

reversible, 392slow, 472

under equilibrium condition, 385

under nonequilibrium condition, 386unimolecular, 392, 398

Reactive transport, 345, 589Realization, 641, 643, 666

Recession curve, 102Recharge, 611, 614, 678

artificial, 635

estimation methods, 88precipitation, 84

Reciprocity, 135Redox reaction, 345

Regional groundwater balance, 107Relative humidity, 275, 311

in soil, 309

Relative permeability, see PermeabilityRelative vapor pressure, 275

Reliability, 727Remediation, 512, 514

Remediation technique, 512air sparging, 515, 520

air stripping, 516

bioremediation, 424, 523biosparging, 427

bioventing, 426cap, 515

clay blanket, 515cutoff wall, 515, 516

electric heating, 523

Page 71: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

830 Index

electro-kinetic enhanced, 523

grout curtain, 515

hydraulic containment, 518

monitored natural attenuation, 514

natural attenuation, 523

permeability barrier, 515

permeable reactive barrier, 522

physical barrier, 515

plume interception, 518

pump and treat, 477, 516

pump-treat-inject, 517

slurry wall, 515

soil vapor extraction, 391, 519

soil venting, 515, 519

steam injection, 523

vapor sorption method, 275

Renewable resource, 8

Representative elementary volume, 35, 45,47, 48, 51, 52, 54, 73, 75, 126, 138,147, 148, 163, 271

averaging approach, 124

characteristic size of, 54

definition, 45

lower bound, 52

size of, 48, 49

Representative macroscopic volume, 54,212, 372, 463

Reproducing kernel particle method, 559

Residence time, 378

effective, 380

Residual, 543, 581, 655, 751

Residual saturation

air, 265, 280, 282, 295

effective, 282

NAPL, 333

nonwetting fluid, 295

Respiration, see Biodegradation

Restoration, 514

Retardation, 436

coefficient, 380, 381, 434

factor, 436, 462, 482

Retention curve, 261, 264, 333

analytical expressions for, 269

main drainage curve, 280

main imbibition curve, 280

primary drainage scanning curve, 281

primary imbibition scanning curve, 281

reversal point, 280

scanning curves, 280

RETRASO, see Computer code

REV, see Representative elementaryvolume

Rewetting, 262

Reynolds number, see Dimensionlessnumber

Richards’ equation, 305, 321, 324, 587Risk, 667

analysis, 667River-aquifer interaction, 97

RMV, see Representative macroscopicvolume

Robin boundary condition, see Boundarycondition

Rock types, 66RORA, see Computer code

RT3D, see Computer code

SA, see Simulated annealingSafe yield, 22, 25

Saltwater intrusion, 588, 593, 722, 725, 727boundary condition, 610, 612

confined aquifer, 613exploration, 596

in multilayered aquifer, 620interface, 593, 606, 613–615

interface condition, 604occurence, 593

oceanic island, 615phreatic aquifer, 614

sharp interface, 588, 595, 597, 601, 604,607, 610, 613, 615, 629, 630, 634, 635

sharp interface model, 601, 725

sources of, 599transition zone, 353, 593–597, 601, 607,

620–622, 624, 625, 629–635

wedge, 594Sample space, 640

Sanitary landfills, see Pollution sourceSaturated zone, 2, 67

Saturation, 252apparent, 281

at discontinuity between two porousmedia, 283

distribution, 283

three phases, 333effective, 269, 281

insular, 262insular residual, 282

reduced, 269Saturation-capillary pressure relation, 268

Scalefield, 140

laboratory, 140macroscopic, 44, 49, 109, 140

megascopic, 49, 52, 54–56, 63, 140, 143,372, 373

microscopic, 19, 35, 42–46, 48, 49, 55, 63

Page 72: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 831

molecular, 42, 44, 49

pore, 55Scale effect, 375

SDE, see Stochastic differential equation

Search space, 724convex, 704, 719

nonconvex, 700SEAWAT, see Computer code

Seawater intrusion, see Saltwater intrusionSecant method, 754

Secondary field, see Electromagnetic fieldSeepage

face, 158, 194, 443, 607

velocity, 115Self-adjoint differential operator, 135, 143

Semivariogram, 654, 672, 685, 757Sensitivity, 744, 756

analysis, 41, 206, 652, 661definition of, 38

coefficient, 664

normalized, 664matrix, 665, 689, 758

Septic tanks, see Pollution sourceSequential iteration approach, 508

Sequential non-iteration approach, 508Shape factor, 119

Shape function, 551SHARP, see Computer code

Sharp boundary, 183

approximation, 183, 442SHE, see Computer code

Simple kriging, see KrigingSimplex method, 701, 706

graphical solution, 701restricted normal form, 708

solution steps, 708

vertices of, 705, 706Simulated annealing, 700, 720

Single cell model, see ModelSink, see also source, 166, 205

line, 105point, 105, 195, 198

Size exclusion, 371Slack variable, 708

SLAEM, see Computer code

Slurry wall, see Remediation techniqueSocial preference function, 731

Social welfare function, 731Socio-economic factor, 27, 695

Soilbulk density, 433

classification of, 71

grain size distribution, 71laboratory measurement, 72

moisture, 3

size separates, 71Soil vapor extraction, see Remediation

technique

Soil venting, see Remediation technique

Soil water potential, see PotentialSoil water zone, 68

Solid matrix, 42, 66deformation of, 172

Solid phases, 498

Solubility, 405air in water, 308

Solubility product, 408Solute, 344, 411

Solute potential, see Potential

Solute transport, 1, 342, 586, 587, 5902-D point source, 450

advective, 585continuous injection in infinite column,

452

density dependent, 166, 526, 585, 587,588, 590, 621, 622, 625, 627

equation, 538infinite column, 447

infinite column with adsorption, 448intantaneous slug, 448

multicomponent, 590, 591

multiphase, 590multispecies, 585–587, 590

reactive, 586, 587, 590, 591semin-infinite column, 452

source in semi-infinite domain, 451

Solvent, 344Sorption, see Adsorption

Sorption curve, 264Sources and sinks, 388

areal, 451

chemical reaction, 413chemical species, 385

distributed, 388heterogeneous reaction, 414

in mass balance equation, 382, 383, 388

in mathematical model, 432point, 355, 450, 477

pumping and injection, 382, 387, 433radioactive, 433

radioactive decay, 400rate of production, 471

types of, 385

Space transformation, 674Spatial statistics, 648

Speciation, 487, 488Specific discharge, 116, 132, 166, 298

cross-sectional area averaging, 137

Page 73: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

832 Index

definition of, 111

in air water flow, 291relative to solid, 127, 291

volume averaging, 137

Specific retention, 287Specific storativity, see Storativity

Specific surface, 75measurement, 76

typical values of, 76Specific yield, 216, 285, 286

relation with grain size, 217

Spectral method, 670, 673, 678Spring, 100, 196

a simple model, 102artisian, 101

depression, 100discharge, see Discharge

hydrograph, 101

in confined aquifer, 197in phreatic aquifer, 197

perdched, 100types of, 100

Stability, 527conditionally stable, 532

of solution, 203

unconditionally stable, 533Stagnation

line, 608point, 608, 619

Standard deviation, 645, 727State variable

examples, 696

Stationary process, 644, 647strongly, 647

weakly, 647Statistical

measure, 643population, 640

Statistically

anisotropic, 646homogeneous, 643, 653, 656, 668, 674,

685

inhomogeneous, 645, 672isotropic, 646

strongly homogeneous, 647weakly homogeneous, 647

Steam injection, see Remediation technique

Stochasticanalysis, 39

boundary element method, 678differential equation, 676, 680

finite element method, 678integral equation, 678

model, 679, 687, 688

process, 639–641

Stoichiometric

coefficient, 393, 483equation, 392, 483

Stoichiometry, 392STOMP, see Computer code

Storage

change in, 107coefficient, 214, 534

Storage tank, see Pollution source

Storativity, 28, 107, 175, 214, 745, 754confined aquifer, 214

phreatic aquifer, 216random field, 669

sensitivity of, 663

specific, 180, 301, 602saturated flow, 175

specific mass, 174, 180

specific volume, 175, 180Strack’s potential, 616

Stream

effluent, 98influent, 98

Stream function, 234Lagrange, 234

Stream-tube, 233, 235

Streamline, 233, 236, 476refracrtion law, 191

Streamline diffusion finite element method,see Finite element method

Streamline-upwind Petrov-Galerkinmethod, 557

stabilization factor, 558

Strong formulation, see Finite elementmethod

Strouhal number, see Dimensionlessnumber

Subdomain, 183

method, 547Subsidence, 7, 26, 92, 167, 177, 179, 237,

238, 244, 245, 249, 696, 697, 699

2-D model, 239

as constraint, 239by pumping, 247

vertically integrated model, 247

Substantial derivative, see Total derivativeSubstrate, 425

inhibition constant, 431

Subsurface water, 2, 65, 66Suction, 259, 292, 305

curve, 264head, 292

SUPG, see Streamline-upwind Petrov-Galerkin method

Page 74: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

Index 833

Surface

runoff, 314diffusion, 351

films, 270tension, 252, 254, 257

water, 3Surface potential, see PotentialSurfactant, 254, 255, 523

Sustainable management, see ManagementSustainable yield, 22, 314

definition, 25example, 23

SUTRA, see Computer codeSVE, see Soil vapor extraction

SWAT, see Computer codeSWM, see Computer code

SWMM, see Computer codeSWRRB, see Computer code

System identification problem, 743

Tableau, 708, 711

Taylor series, 528, 529TDEM, see Time domain electromagnetic

method

TDS, see Total dissolved solidTemporal statistics, 648

Tensiometer, 48, 267Tension, 259Tensor

first rank (vector), 121identity, 133

notation, 121positive definite, 122, 135, 141, 143

second rank, 120, 121symmetric, 121, 122, 135, 141, 143, 293

transformation rule, 123zeroth rank (scalar), 121

Terminal electron acceptor, 426Terzaghi-Jacob theory, 179, 238, 246

Theis solution, 663, 746, 752Thermal equilibrium, 409Thermal potential, see Potential

Thermodynamic equilibrium, 409Thomas-Fiering model, 86

Threshold pressure, 264, 284Throat, 263

Time domain electromagnetic method, seeGeophysical method

Time domain reflectometry, 267

Tortuosity, 118, 136, 147, 350, 351, 423isotropic, 350

tensor, 350Total derivative, 168, 184, 466, 475, 476,

572, 578

Total dissolved solid, 18, 595, 622

Total flux, 164, 346, 371Total head, 111

TOUGH, see Computer codeTracer test, 744Tradeoff

function, 731rate function, 731

Transfer coefficient, 442Transient electromagnetic method, see

Time domain electromagnetic method

Transition zone, see Saltwater intrusionTransmissivity, 149, 150, 207, 214, 745, 754

anisotropic, 235harmonic mean, 535

inhomogeneoustype 1, 77type 2, 77

phreatic aquifer, 217random field, 669

sensitivity of, 663simple average, 535

Transpiration, 103Transport equation, 625

Transverse dispersion, see DispersionTravel time, 478Trefftz method, 560

Trend, 757Turning band method, 670, 674

Type curve, 747Cooper-Jacob, 749

graphical solution, 747Hantush-Jacob, 747

Hantush-Neuman, 747

Unbiased estimate, 655Uncertainty, 637, 698, 726

aleatoric, 638analysis, 652

boundary, 638epistemic, 638

information, 638initial condition, 638

intrinsic, 638model, 637

parameter, 637Unconditionally stable, see StabilityUnconfined aquifer, see Aquifer

Undrained test, 175Uniqueness of solution, 203

Unit impulse, 180Univariate function, 644

Universal hysteresis, 282Universal kriging, see Kriging

Page 75: References - link.springer.com3A978-1-4020-6682-5%2F… · References Aarts, E.H.L. and Korst, J. Simulated annealing and Boltzmann machines. A stochastic approach to combinatorial

834 Index

Unsaturated flow, 586–589analytical solution, 322in terms of

moisture content, 305piezometric head, 304suction, 305

methods of solution, 321Unsaturated zone, 3, 67, 69, 251, 626Unstable solution, 743Upconing, 594, 607, 608, 619, 631, 632Upscaling, 56

Upstream approximation, 556Upwind approximation, 556UTCHEM, see Computer codeUtility function, 731

Vadosewater, 69

zone, 67, 69, 109, 313Valence, 345Validation of model, see ModelValue function, 732Van der Waals force, 255, 401Vapor extraction, 380Vapor pressure, 410

partial, 410saturated, 410

Vapor sorption method, see Remediationtechnique

Variable density, 350, 585, 595, 596, 624,625

mathematical model, 622Variable density solute transport, see

Density dependent solute transportVariance, 644, 649Vertical equilibrium hypothesis, 334Vertical integration, 208Very low frequency electromagnetic

method, see Geophysical methodVOC, see Volatile organic compoundVoid ratio, 74Void space, 42, 66

interconnected, 67, 74Volatile organic compound, 411, 519Volatilization, 382, 407, 412Volume average, see AverageVolumetric fraction, 48, 252Volumetric strain, 169

Water blob, 288Water capacity, 301

hysteresis in, 302

Water conservation construction, 84

Water content, 252

Water divide, 4, 608

Water policy, 695

Water quality, 87, 695

Water storage, 90

in aquifer, 91

in surface reservoir, 91

Water table, 67, 152, 154, 158, 159, 283

Watershed models, 85

Weak formulation, see Finite elementmethod

Weakly stationary process, 647, 674

Weighted residual method, see Finiteelement method

Weighting function, 543, 547

Well

artesian, 181, 195, 196

casing, 112

collector, 608, 635

construction, 106

flowing, 196

gallery, 609, 619, 635

monitoring, 112

observation, 112

pumping, 722

radial collector, 105

skimming, 609, 635

Well function, 746

Hantush-Jacob, 451

series approximation, 746

Well-posed boundary value problem, 199

Brinkman equation, 201

Navier-Stokes equation, 199

Well-posed problem, 203, 320, 743

Wellhead protection area, 589

Wettability

fractional, 255

intermediate, 331

Wetting

angle, 254

fluid, 255, 257

scanning curve, 280

WHPA, see Computer code

Wiener-Khinchine transformation, 673

Young’s equation, 255

Young-Laplace formula, see Laplaceformula