References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of...

12
References V. K. AGRAWALA, J. G. F. BELlNfANTE, [I] Weight diagrams for Lie group representations: A computer implementation of Freudenthal's algorithm in ALGOL and FORTRAN, BIT 9,301-314 (1969). J.-P. ANTOINE, D. SPEISER, [I] Characters of irreducible representations of the simple groups, I., J. Mathematical Physics 5, 1226-1234, II., Ibid., 1560-1572 (1964). D. W. BARNES, [I] On Cartan subalgebras of Lie algebras, Math. Z. 101, 350-355 (1967). R. E. BECK, B. KO,LMAN, [I] A computer implementation of Freudenthal's multiplicity formula, Indag. Math., 34, 350-352 (1972). J. G. F. BELlNfANTE, B. KOLMAN, [I] A Survey of Lie Groups and Lie Algebras with Computational Methods and Applications, Philadelphia: SIAM; 1972. I. N. BERNSTEIN, I. M. GEL'fAND, S. I. GEL'fAND, [I] Structure of representations generated by vectors of highest weight, Funkcional. Anal. i Priloien. 5, no. I, 1-9 (1971)= Functional Anal. Appl. 5, 1-8 (1971). [2] Differential operators on the base affine space and a study of g-modules, pp. 21-64 in: Lie Groups and their Representations, ed. I. M. Gel'fand, New York: Halsted, 1975. [3] A category of g-modules, Funkcional. Anal. i Priloien. 10, no. 2, 1-8 (1976) = Functional Anal. Appl. 10,87-92 (1976). A. BOREL, [I] Linear Algebraic Groups, New York: W. A. Benjamin, 1969. [2] Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math. 131, Berlin-Heidelberg-New York: Springer-Verlag, 1970. N. BOURBAKI, [I] Groupes et algebres de Lie, Chap. I, Paris: Hermann, 1960. [2] Groupes et algebres de Lie, Chap. 4-6, Paris: Hermann, 1968. [3] Groupcs et algebres de Lie, Chap. 7-8, Paris: Hermann, 1975. R. BRAUER, [I] Eine Bedingung fur vollstandige Reduzibilitat von Darstellungen gewohn- licher und infinitesimaler Gruppen, Math. Z. 41, 330-339 (1936). [2] Sur la multiplication des caracteristiques des groupes continus et semi-simples, C. R. Acad. Sci. Paris 204, 1784-1786 (1937). N. BURGOYNE, [I] Modular representations of some finite groups, Representation Theory of Finite Groups and Related Topics, Proc. Symp. Pure Math. XXI, Providence: Amer. Math. Soc., 1971. N. BURGOYNE, C. WILLIAMSON, [I] Some computations involving simple Lie algebras, Proc. 2nd Symp. Symbolic & Aig. Manipulation, ed. S. R. Petrick, New York: Assn. Computing Machinery, 1971. R. W. CARTER, [I] Simple groups and simple Lie algebras, J. London Math. Soc. 40, 193-240 (1965). [2] Simple Groups of Lie Type, London-New York: Wiley, 1972. P. CARTIER, [I] On H. Weyl's character formula, Bull. Amer. Math. Soc. 67, 228-230 (1961). C. CHEVALLEY, [I] Theorie des Groupes de Lie, Tome II, Paris: Hermann, 1951. [2] Theorie des Groupes de Lie, Tome Ill, Paris: Hermann, 1955. [3] Sur certains groupes simples, Tohoku Math. J. (2) 7, 14-66 (1955). [4] Certain schemas de groupes semi-simples, Sem. Bourbaki 1960-61, Exp. 219, New York: W. A. Benjamin, 1966. [5] Invariants of finite groups generated by reflections, A mer. J. Math. 77, 778-782 (1955). C. W. CURTIS, [I] Chevalley groups and related topics, Finite Simple Groups, ed., M. B. Powell, G. Higman, London-New York: Academic Press, 1971. M. DEMAZURE, [I] Une nouvelle formule des caracteres, Bull. Sci. Math. 98, 163-172 (1974). J. DIXMIER, Il] Algebres Enveloppantes, Paris: Gauthier-Villars, 1974; English translation, Enveloping Algebras, Amsterdam: North-Holland, 1977. H. FREUDENTHAL, [I] Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen, I., Indag. Math. 16,369-376 (1954); II., Ibid., 487-491; III., Ibid 18,511-514 (1956). H. FREUDENTHAL, H. DE VRIES, [I] Linear Lie Groups, London-New York: Academic Press, 1969. H. GARLAND, J. LEPOWSKY, [I] Lie algebra homology and the Macdonald-Kac formulas, Invent. Math. 34, 37-76 (1976). HARISH-CHANDRA, [I] Some applications of the universal enveloping algebra of a semi-simple Lie algebra, Trans. Amer. Math. Soc. 70, 28-96 (1951). 165

Transcript of References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of...

Page 1: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

References

V. K. AGRAWALA, J. G. F. BELlNfANTE, [I] Weight diagrams for Lie group representations: A computer implementation of Freudenthal's algorithm in ALGOL and FORTRAN, BIT 9,301-314 (1969).

J.-P. ANTOINE, D. SPEISER, [I] Characters of irreducible representations of the simple groups, I., J. Mathematical Physics 5, 1226-1234, II., Ibid., 1560-1572 (1964).

D. W. BARNES, [I] On Cartan subalgebras of Lie algebras, Math. Z. 101, 350-355 (1967). R. E. BECK, B. KO,LMAN, [I] A computer implementation of Freudenthal's multiplicity

formula, Indag. Math., 34, 350-352 (1972). J. G. F. BELlNfANTE, B. KOLMAN, [I] A Survey of Lie Groups and Lie Algebras with

Computational Methods and Applications, Philadelphia: SIAM; 1972. I. N. BERNSTEIN, I. M. GEL'fAND, S. I. GEL'fAND, [I] Structure of representations generated

by vectors of highest weight, Funkcional. Anal. i Priloien. 5, no. I, 1-9 (1971)= Functional Anal. Appl. 5, 1-8 (1971). [2] Differential operators on the base affine space and a study of g-modules, pp. 21-64 in: Lie Groups and their Representations, ed. I. M. Gel'fand, New York: Halsted, 1975. [3] A category of g-modules, Funkcional. Anal. i Priloien. 10, no. 2, 1-8 (1976) = Functional Anal. Appl. 10,87-92 (1976).

A. BOREL, [I] Linear Algebraic Groups, New York: W. A. Benjamin, 1969. [2] Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math. 131, Berlin-Heidelberg-New York: Springer-Verlag, 1970.

N. BOURBAKI, [I] Groupes et algebres de Lie, Chap. I, Paris: Hermann, 1960. [2] Groupes et algebres de Lie, Chap. 4-6, Paris: Hermann, 1968. [3] Groupcs et algebres de Lie, Chap. 7-8, Paris: Hermann, 1975.

R. BRAUER, [I] Eine Bedingung fur vollstandige Reduzibilitat von Darstellungen gewohn­licher und infinitesimaler Gruppen, Math. Z. 41, 330-339 (1936). [2] Sur la multiplication des caracteristiques des groupes continus et semi-simples, C. R. Acad. Sci. Paris 204, 1784-1786 (1937).

N. BURGOYNE, [I] Modular representations of some finite groups, Representation Theory of Finite Groups and Related Topics, Proc. Symp. Pure Math. XXI, Providence: Amer. Math. Soc., 1971.

N. BURGOYNE, C. WILLIAMSON, [I] Some computations involving simple Lie algebras, Proc. 2nd Symp. Symbolic & Aig. Manipulation, ed. S. R. Petrick, New York: Assn. Computing Machinery, 1971.

R. W. CARTER, [I] Simple groups and simple Lie algebras, J. London Math. Soc. 40, 193-240 (1965). [2] Simple Groups of Lie Type, London-New York: Wiley, 1972.

P. CARTIER, [I] On H. Weyl's character formula, Bull. Amer. Math. Soc. 67, 228-230 (1961). C. CHEVALLEY, [I] Theorie des Groupes de Lie, Tome II, Paris: Hermann, 1951.

[2] Theorie des Groupes de Lie, Tome Ill, Paris: Hermann, 1955. [3] Sur certains groupes simples, Tohoku Math. J. (2) 7, 14-66 (1955). [4] Certain schemas de groupes semi-simples, Sem. Bourbaki 1960-61, Exp. 219, New York: W. A. Benjamin, 1966. [5] Invariants of finite groups generated by reflections, A mer. J. Math. 77, 778-782 (1955).

C. W. CURTIS, [I] Chevalley groups and related topics, Finite Simple Groups, ed., M. B. Powell, G. Higman, London-New York: Academic Press, 1971.

M. DEMAZURE, [I] Une nouvelle formule des caracteres, Bull. Sci. Math. 98, 163-172 (1974). J. DIXMIER, Il] Algebres Enveloppantes, Paris: Gauthier-Villars, 1974; English translation,

Enveloping Algebras, Amsterdam: North-Holland, 1977. H. FREUDENTHAL, [I] Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen,

I., Indag. Math. 16,369-376 (1954); II., Ibid., 487-491; III., Ibid 18,511-514 (1956). H. FREUDENTHAL, H. DE VRIES, [I] Linear Lie Groups, London-New York: Academic Press,

1969. H. GARLAND, J. LEPOWSKY, [I] Lie algebra homology and the Macdonald-Kac formulas,

Invent. Math. 34, 37-76 (1976). HARISH-CHANDRA, [I] Some applications of the universal enveloping algebra of a semi-simple

Lie algebra, Trans. Amer. Math. Soc. 70, 28-96 (1951).

165

Page 2: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

166 References

J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2) Ordinary and modular representations of Chevalley groups, Lect. Notes in Math. 528, Berlin-Heidelberg-New York: Springer-Verlag, 1976.

N. JACOBSON, [I) Lie Algebras, New York-London: Wiley Interscience, 1962. [2) Exceptional Lie Algebras, New York: Marcel Dekker, 1971.

J. C. JANTZEN, [I) Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren, Math. Z. 140, 127-149 (1974). [2) Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226, 53-65 (1977).

V. G. KAC, [I) Infinite-dimensional Lie algebras and Dedekind's lI-function, Funkcional. Anal. i Priloien. 8, no. I, 77-78 (1974) = Functional Anal. Appl. 8, 68-70 (1974).

I. KAPLANSKY, [I) Lie Algebras and Locally Compact Groups, Chicago-London: U. Chicago Press, 1971.

A. U. KLIMYK, [I) Decomposition of a tensor product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations, A mer. Math. Soc. Translations, Series 2, vol. 76, Providence: Amer. Math. Soc. 1968.

B. KOSTANT, [I) A formula for the multiplicity of a weight, Trans. A mer. Math. Soc. 93, 53-73 (1959). [2) Groups over Z, Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. IX, Providence: Amer. Math. Soc., 1966.

M. I. KRUSEMEYER, [I) Determining multiplicities of dominant weights in irreducible Lie algebra representations using a computer, BIT 11, 310-316 (1971).

F. W. LEMIRE, [I) Existence of weight space decompositions for irreducible representations of simple Lie algebras, Canad. Math. Bull. 14, 113-115 (1971).

R. D. POLLACK, [I) Introduction to Lie Algebras, notes by G. Edwards, Queen's Papers in Pure and Applied Math., No. 23, Kingston, Ont.: Queen's University, 1969.

H. SAMELSON, [I) Notes on Lie Algebras, Van Nostrand Reinhold Mathematical Studies No. 23, New York: Van Nostrand Reinhold, 1969.

R. D. SCHAFER, [I) An Introduction to Nonassociative Algebras, New York-London: Academic Press, 1966.

G. B. SELIGMAN, [I) Modular Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Berlin-Heidelberg-New York: Springer-Verlag, 1967. [2) Rational Methods in Lie Algebras, New York-Basel: Marcel Dekker, 1976.

Semi~aire "Sophus Lie", [I) Theorie des algebres de Lie. Topologie des groupes de Lie, Paris: Ecole Norm. Sup., 1954-55.

J.-P. SERRE, [I) Lie Algebras and Lie Groups, New York: W. A. Benjamin, 1965. [2) Algebres de Lie semi-simples complexes, New York: W. A. Benjamin, 1966.

N. N. SHAPOVALOV, [I) On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funkcional. Anal. i Priloien. 6, no. 4, 65-70 (1972) = Functional Anal. Appl. 6, 307-312 (1972).

T. A. SPRINGER, [I) Weyl's character formula for algebraic groups, Invent. Math. 5; 85-105 (1968).

R. STEINBERG, [I) A general Clebsch-Gordan theorem, Bull. Amer. Math. Soc. 67, 406-407 (1961). [2) Lectures on Chevalley groups, mimeographed lecture notes, New Haven, Conn.: Yale Univ. Math. Dept. 1968.

J. TITs, [I) Sur les constantes qe structure et Ie theon~me d'existence des algebres de Lie semi-simples, Inst. Hautes Etudes Sci. Publ. Math. No. 31, 21-58 (1966).

V. S. VARADARAJAN, [I) Lie Groups, Lie Algebras, and their Representations, Englewood Cliffs, NJ: Prentice-Hall, 1974.

D.-N. VERMA, [I) Structure of certain induced representations of complex semi-simple Lie algebras, Yale Univ., dissertation, 1966; cf. Bull Amer. Math. Soc. 74, 160-;166 (1968). [2) Mobius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. Ecole Norm. Sup. 4e serie, t.4, 393-398 (1971). [3) Role of affine Weyl groups in the representation theory of algebraic Chevalley groups and their Lie algebras, pp. 653-705 in: Lie Groups and their Representations, ed. I. M. Gel'fand, New York: Halsted, 1975.

D. J. WINTER, [I) Abstract Lie Algebras, Cambridge, Mass.: M.I.T. Press, 1972. W. J. WONG, [I) Irreducible modular representations of finite Chevalley groups, J. Algebra

20, 355-367 (1972).

Page 3: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

Afterword (1994)

Each reprinting of this text has given me an opportunity to correct mis­prints and errors pointed out by patient readers. The most substantial change was the addition of the appendix to §24 at the time of the second printing. If I were starting today from scratch, I would certainly do some things-large and small-differently. In the area of notation, for example, p is now more commonly used than (j to denote the half-sum of positive roots. But with many copies of the book already in circulation, I have been reluctant to disturb the existing format.

While the structure theory developed in Chapters I-V has evolved very little over the past 25 years, there has been an explosion of new work in representation theory. The foundations laid here in Chapter VI are still valid, being aimed primarily at the classical finite dimensional theory of Cartan and Weyl. However, some of the ad hoc terminology and notation I introduced have long since been replaced by other conventions in most of the literature: In place of "standard cyclic modules" one now speaks of "highest weight modules", the universal ones being called "Verma modules". Verma modules are usually denoted M(A) rather than Z(A), while the irreducible quotient is labelled L(A). Of course, Lie theory is a sprawling subject, with many conflict­ing notational schemes (especially for root systems). So the student has to be somewhat flexible in any case when approaching the literature.

The present text contains much of the standard core of semisimple Lie theory, in a purely algebraic setting. This theory-especially the classification of simple Lie algebras by Dynkin diagrams-is beautiful in its own right, whatever one's ulterior motive for studying it. But readers should be aware of the far-reaching developments of recent decades that rely in some way on this core. While it is impossible in a page or two to survey these developments adequately, a quick overview may be useful. References below are mainly to books rather than to the multitude of original articles; the latter are well documented in the annual subject index of Mathematical Reviews. With due apology for omissions, here are some of the subjects most closely related to semisimple Lie algebras:

• The BGG category @. This consists of finitely-generated weight modules on which a fixed Borel subalgebra acts locally finitely. It includes Verma modules and irreducible highest weight modules L(A) for arbitrary A, as well as projective and injective objects. Besides the BGG resolution of a finite dimensional L(A) by Verma modules, which makes more concrete the derivation of Weyl's character formula presented here, one encounters BGG reciprocity along with the Jantzen filtration and sum formula: see J. C. Jantzen, Moduln mit einem hOchsten Gewicht, Lect. Notes in Mathe­matics 750, Springer-Verlag, 1979.

167

Page 4: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

168 Afterword (1994)

• Kazhdan-Lusztig conjectures. A conjectured character formula for all L(A) appeared in the seminal paper by D. A. Kazhdan and G. Lusztig, Represen­tations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. This formula was quickly proved (independently) by Beilinson­Bernstein and by Brylinski-Kashiwara, using a dazzling array of tech­niques. The Hecke algebr~ approach has become extremely influential in several kinds of representation theory.

• Primitive ideals in enveloping algebras. Combining noncommutative ring theory and algebraic geometry with the representation theory of semisimple Lie algebras yields deep results on the structure of universal enveloping algebras. See J. Dixmier, Algebres enveloppantes, Gauthier-Villars, 1974, and J. C. Jantzen, Einhiillende Algebren halbeinfacher Lie-Algebren, Springer-Verlag, 1983.

• Lie group representations. Lie algebra techniques indicated above have led to decisive progress in many areas of the representation theory of semi­simple (or reductive) Lie groups. See for example D. A. Vogan, Jr., Represen­tations oj Real Reductive Lie Groups, Birkhiiuser, 1981.

• Representations oj algebraic groups. Much of the theory of semisimple Lie algebras can be adapted to semisimple algebraic groups in arbitrary charac­teristic. Representations in characteristic p are somewhat like infinite di­mensional representations in characteristic o. See J. C. Jantzen, Represen­tations oj Algebraic Groups, Academic Press, 1987.

• Finite groups oj Lie type. Lie theory is essential to understanding the structure of these groups, as well as their ordinary and modular representa­tions. See R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, 1985.

• Kac-Moody Lie algebras and vertex operators. The Serre relations of §18 lead to new classes of infinite dimensional Lie algebras, when the Cart an matrix is replaced by a "generalized Cartan matrix". These Kac-Moody Lie algebras and their representations interact deeply with mathematical physics, combinatorics, modular functions, etc. See V. G. Kac, Infinite Dimensional Lie Algebras, 3rd edition, Cambridge University Press, 1990, and I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, 1988.

• Quantum groups. Since the pioneering work of Drinfeld and Jimbo in the mid-eighties, quantized enveloping algebras have become ubiquitous in mathematics and mathematical physics. See G. Lusztig, Introduction to Quantum Groups, Birkhiiuser, 1993, and J. Fuchs, Affine Lie Algebras and Quantum Groups, Cambridge University Press, 1992.

• Combinatorics, geometry, etc. Apart from their connection with Lie algebras, root systems and root lattices along with related Coxeter groups such as Weyl groups play an essential role in many areas: Macdonald formulas, quivers and representations of finite dimensional algebras, singu­larities, crystals and quasi-crystals, etc. See for example 1. H. Conway, N. J. Sloane, Sphere Packings, Lattices, and Groups, Springer-Verlag, 1993.

Page 5: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

Index of Terminology

a-string through fJ 39,45 Coxeter graph 56 ex-string through p. 1I4 abelian Lie algebra 4

degree 139 abstract Jordan decomposition 24

derivation 4 adjoint Chevalley group 150

derived algebra 6 adjoint representation 4

derived series 10 admissible lattice 159

descending central series II ad-nilpotent 12 ad-semisimple 24 diagonal automorphism 87

affine n-space 132 diagonal matrices 3

algebra 4 diagram automorphism 66

associative bilinear form 21 direct sum of Lie algebras 22

automorphism 8 dominant weight 67 dominant integral linear function 112 dual module 26

base of root system 47 dual root system 43 Borel subalgebra 83 Dynkin diagram 57 bracket 1,2

Engel subalgebra 79 canonical map 7 Engel's Theorem 12 Cartan decomposition 35 epimorphism 7 Cartan integer 39,55 equivalent representations 25 Cartan matrix 55 exceptional Lie algebras 102 Cartan subalgebra (CSA) 80 Cartan's Criterion 20

faithful representation 27 Casimir element 27, 1I8 Cayley algebra 104 flag 13

formal character 124 center (of Lie algebra) 6

free Lie algebra 94 center (of universal enveloping

Freudenthal's formula 122 algebra) 128

fundamental domain 52 centralizer 7

fundamental dominant weight 67 character 129 character (formal) 124

fundamental group 68

Chevalley algebra 149 fundamental Weyl chamber 49

Chevalley basis 147 Chevalley group 150, 163 general linear algebra 2 Chevalley's Theorem 127 general linear group 2 classical Lie algebra 2 generators and relations 95 Clebsch-Gordan formula 126 graph automorphism 66,87 closed set of roots 87, 154 group ring 124 commutator 1 completely reducible module 25 Harish-Chandra's Theorem 130 contragredient module 26 height 47 convolution 135 highest weight 32,70, 108

169

Page 6: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

170 Index of Terminology

homogeneous symmetric tensor 90 nilpotent Lie algebra 11 homomorphism (of Lie algebras) 7 nilpotent part 17,24 homomorphism (of L-modules) 25 nondegenerate bilinear form 22 hyperplane 42 non-reduced root system 66

normalizer 7

ideal 6 octonion algebra 104 induced module 109 orthogonal algebra 3 inner automorphism 9 orthogonal matrix 10 inner derivation 4 outer derivation 4 integral linear function 112 invariant polynomial function 126 parabolic subalgebra 88 inverse root system 43 partition function 136 irreducible module 25 PBW basis 92 irreducible root system 52

Poincare-Birkhoff-Witt Theorem 92 irreducible set 133 polynomial function 126, 133 isomorphism (of Lie algebras) 1 positive root 47 isomorphism (of L-modules) 25 isomorphism (of root systems) 43

quotient Lie algebra 7

Jacobi identity 1 Jordan-Chevalley decomposition 17 radical (of bilinear form) 22

radical (of Lie algebra) 11 rank (of Lie algebra) 86

Killing form 21 rank (of root system) 43 Kostant function 136 reduced 51 Kostant's formula 138 reductive Lie algebra 30, 102 Kostant's Theorem 156 reflecting hyperplane 42

reflection 42

lattice 64, 157 regular 48

length (in Weyl group) 51 regular semisimple element 80

Lie algebra 1 representation 8

Lie's Theorem 16 root 35

linear Lie algebra 2 root lattice 67

linked weights 129 root space decomposition 35

locally nilpotent 99 root system 42

long root 53 lower central series 11 saturated set of weights 70

scalar matrices 5

maximal toral subalgebra 35 Schur's Lemma 26 self-normalizing subalgebra 7 maximal vector 32, 108 semisimple endomorphism 17 minimal weight 72 semisimple Lie algebra 11 module (for Lie algebra) 25 semisimple part 17,24 monomorphism 7 Serre's Theorem 99 multiplicity of weight 117 sbort root 53 simple Lie algebra 6

negative root 47 simple reflection 51 nilpotelJt endomorphism 8 simple root 47

Page 7: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

Index of Terminology 171 singular 48 toral subalgebra 35 skew-symmetric tensor 117 trace 2 solvable Lie algebra 10 trace polynomial 128 special linear algebra 2 special linear group 2 standard Borel subalgebra 84 universal Casimir element 118

standard cyclic module 108 universal Chevalley group 161

standard parabolic subalgebra 88 universal enveloping algebra 90

standard set of generators 74 upper triangular matrices 3

Steinberg'S formula 141 strictly upper triangular matrices 3 weight 31,67, 107 strongly ad-nilpotent 82 weight lattice 67 strongly dominant weight 67 weight space 31, 107 structure constants 4 Weyl chamber 49 subalgebra (of Lie algebra) 1 Weyl function 136 support 135 Weyl group 43 symmetric algebra 89 Weyl's formulas 139 symmetric tensor 90 Weyl's Theorem (complete symplectic algebra 3 reducibility) 28

tensor algebra 89 Zariski topology 133 tensor product of modules 26

Page 8: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

Index of Symbols

[xy] 1 :> 47 At 2 11>+ 47 Ct 2 11>- 47 gI (n, F) 2 ~(,,) 48 gI(V) 2 [(,,) 49 End V 2 [(~) 49 GL(V) 2 I) 50, 70 sl( V) 2 tea) 51 sl(n, F) 2 n(a) 51 Tr 2 sn(a) 54, 136 SL(V) 2 F4 58 St 3 E6 , E7, Es 58 Dt 3 r 65 sp(V) 3 A 67, 112 sp(n, F) 3 Ar 67 o(V) 3 A+ 67, 112 o(n, F) 3 .\. 67 ten, F) 3 r(L) 77,87 n(n, F) 3 LQ(ad x) 78 ben, F) 3 CSA 80 Der 111 4 .,v(L) 82 Z(L) 6 G(L) 82 NL(K) 7 G(L; K) 82 CL(X) 7 B(~) 84 Int L 9 N(~) 84 L(I) 10 X(V) 89 LI 11 6(V) 89 RadL 11 .9m 90 K(X, y) 21 6(V) 90 ctp 27 U(L) 91 II> 35,42 PSW 92 ttl 37 (£ 104 h,. 37 [0 105 S,. 38 VA 107 E 40,42 Z('\) 110 <cx,{3) 42 J(.\) 110 a,. 42 Y('\) 110 P,. 42 V('\) 110 "Ir 43 II(V) 113 II>Y 43 11(,\) 113 Y 43 mAef') 117 IX

Gz 44 m(f') 118 ~ 47 cL 118 ht ex 47 Z[A] 124

172

Page 9: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

Index of Symbols 173

e('\) 124 ID1 .. 137

ch .. 124 (}(,\) 137

chI' 124 deg (,\) 139 Ip{V) 126 cf%{J 145 Ip{H)"Ir 127 L(Z) 149 Ip(L)G 127 L(K) 149

3 128 G(K) 150

x .. 129 U(L)z 156 ,\,....,,.,. 129 H(Z) 159 fJt 133 Ly 159

1: 13S Mmln 161

f.g 13S Mmax 162

E .. 13S Gy(K) 162

p('\) 13S L,,(K) 162

q('\) 136

Page 10: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

Graduate Texts in Mathematics (continued from page ii)

66 WATERHOUSE. Introduction to Affine 99 GRovF1BENSON. Finite Reflection Groups. Group Schemes. 2nd ed.

67 SERRE. Local Fields. 100 BERG/CHRlSTENSEN/REsSEL. Harmonic 68 WEIDMANN. Linear Operators in Hilbert Analysis on Semigroups: Theory of

Spaces. Positive Definite and Related Functions. 69 LANG. Cyclotomic Fields II. 101 EDWARDS. Galois Theory. 70 MASSEY. Singular Homology Theory. 102 VARADARAJAN. Lie Groups, Lie Algebras 71 FARKASIKRA. Riemann Surfaces. 2nd ed. and Their Representations. 72 STILLWELL. Classical Topology and 103 LANG. Complex Analysis. 3rd ed.

Combinatorial Group Theory. 2nd ed. 104 DUBROVlNlFoMENKOINOVIKOV. Modern 73 HUNGERFORD. Algebra. Geometry-Methods and Applications. 74 DAVENPORT. Multiplicative Number Part II.

Theory. 3rd ed. 105 LANG. SLiR). 75 HOCHSCIflLD. Basic Theory of Algebraic 106 SILVERMAN. The Arithmetic of Elliptic

Groups and Lie Algebras. Curves. 76 IITAKA. Algebraic Geometry. 107 OLVER. Applications of Lie Groups to 77 HECKE. Lectures on the Theory of Differential Equations. 2nd ed.

Algebraic Numbers. 108 RANGE. Holomorphic Functions and 78 BURRIsiSANKAPPANAVAR. A Course in Integral Representations in Several

Universal Algebra. Complex Variables. 79 WALTERS. An Introduction to Ergodic 109 LEHTO. Univalent Functions and

Theory. Teichmilller Spaces. 80 ROBINSON. A Course in the Theory of l10 LANG. Algebraic Number Theory.

Groups. 2nd ed. l11 HUSEMOLLER. Elliptic Curves. 81 FORSTER. Lectures on Riemann Surfaces. l12 LANG. Elliptic Functions. 82 BOTT/Tu. Differential Forms in Algebraic 113 KARATZAS/SHREVE. Brownian Motion and

Topology. Stochastic Calculus. 2nd ed. 83 W ASIflNGTON. Introduction to Cyclotomic 114 KOBLITZ. A Course in Number Theory and

Fields. 2nd ed. Cryptography. 2nd ed. 84 IRELAND/RoSEN. A Classical Introduction l15 BERGERIGOSTIAUX. Differential Geometry:

to Modern Number Theory. 2nd ed. Manifolds, Curves, and Surfaces. 85 EDWARDS. Fourier Series. Vol. II. 2nd ed. 116 KELLEy/SRINIVASAN. Measure and 86 VAN LINT. Introduction to Coding Theory. Integral. Vol. I.

2nd ed. 117 SERRE. Algebraic Groups and Class 87 BROWN. Cohomology of Groups. Fields. 88 PIERCE. Associative Algebras. l18 PEDERSEN. Analysis Now. 89 LANG. Introduction to Algebraic and l19 ROTMAN. An Introduction to Algebraic

Abelian Functions. 2nd ed. Topology. 90 BR0NDSTED. An Introduction to Convex 120 ZIEMER. Weakly Differentiable Functions:

Polytopes. Sobolev Spaces and Functions of 91 BEARDON. On the Geometry of Discrete Bounded Variation.

Groups. 121 LANG. Cyclotomic Fields I and II. 92 DIESTEL. Sequences and Series in Banach Combined 2nd ed.

Spaces. 122 REMMERT. Theory of Complex Functions. 93 DUBROVlNlFoMENKOINOVIKOV. Modem Readings in Mathematics

Geometry-Methods and Applications. 123 EBBINGHAus/HERMES et al. Numbers. Part I. 2nd ed. Readings in Mathematics

94 WARNER. Foundations of Differentiable 124 DUBROVlNlFoMENKOINOVIKOV. Modern Manifolds and Lie Groups. Geometry-Methods and Applications.

95 SIflRYAEV. Probability. 2nd ed. Part III. 96 CONWAY. A Course in Functional 125 BERENSTEIN/GAY. Complex Variables: An

Analysis. 2nd ed. Introduction. 97 KOBLITZ. Introduction to Elliptic Curves 126 BOREL. Linear Algebraic Groups. 2nd ed.

and Modular Forms. 2nd ed. 127 MASSEY. A Basic Course in Algebraic 98 BROcKERIToM DIECK. Representations of Topology.

Compact Lie Groups. 128 RAUCH. Partial Differential Equations.

Page 11: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

129 FULTON/HARRIS. Representation Theory: 161 BORWEIN/ERDEL YI. Polynomials A First Course. and Polynomial Inequalities. Readings in Mathematics 162 ALPERIN/BELL. Groups and

130 DODSON/POSTON. Tensor Geometry. Representations. 131 LAM. A First Course in Noncommutative 163 DIXONIMORTIMER. Permutation

Rings. Groups. 132 BEARDON. Iteration of Rational Functions. 164 NATHANSON. Additive Number Theory: 133 HARRIs. Algebraic Geometry: A First The Classical Bases.

Course. 165 NATHANSON. Additive Number Theory: 134 ROMAN. Coding and Information Theory. Inverse Problems and the Geometry of 135 ROMAN. Advanced Linear Algebra. Sumsets. 136 ADiCINS/WEINTRAUB. Algebra: An 166 SHARPE. Differential Geometry: Cartan's

Approach via Module Theory. Generalization of Klein's Erlangen 137 AXLERIBOURDON/RAMEY. Harmonic Program.

Function Theory. 2nd ed. 167 MORANDI. Field and Galois Theory. 138 COHEN. A Course in Computational 168 EWALD. Combinatorial Convexity and

Algebraic Number Theory. Algebraic Geometry. 139 BREDON. Topology and Geometry. 169 BHATIA. Matrix Analysis. 140 AUBIN. Optima and Equilibria. An 170 BREDON. Sheaf Theory. 2nd ed.

Introduction to Nonlinear Analysis. 171 PETERSEN. Riemannian Geometry. 141 BECKERIWEISPFENNINGIKREDEL. Grabner 172 REMMERT. Classical Topics in Complex

Bases. A Computational Approach to Function Theory. Commutative Algebra. 173 DIESTEL. Graph Theory. 2nd ed.

142 LANG. Real and Functional Analysis. 174 BRIDGES. Foundations of Real and 3rd ed. Abstract Analysis.

143 DOOB. Measure Theory. 175 LICKORISH. An Introduction to Knot 144 DENNIS/F ARB. Noncommutative Theory.

Algebra. 176 LEE. Riemannian Manifolds. 145 VICK. Homology Theory. An 177 NEWMAN. Analytic Number Theory.

Introduction to Algebraic Topology. 178 CLARKE/LEDY AEV/STERN/WOLENSKI. 2nd ed. Nonsmooth Analysis and Control

146 BRIDGES. Computability: A Theory. Mathematical Sketchbook. 179 DOUGLAS. Banach Algebra Techniques in

147 ROSENBERG. Algebraic K-Theory Operator Theory. 2nd ed. and Its Applications. 180 SRIVASTAVA. A Course on Borel Sets.

148 ROTMAN. An Introduction to the 181 KRESS. Numerical Analysis. Theory of Groups. 4th ed. 182 WALTER. Ordinary Differential

149 RATCLIFFE. Foundations of Equations. Hyperbolic Manifolds. 183 MEGGINSON. An Introduction to Banach

150 EISENBUD. Commutative Algebra Space Theory. with a View Toward Algebraic 184 BOLLOBAS. Modern Graph Theory. Geometry. 185 COX/LITTLElO'SHEA. Using Algebraic

151 SILVERMAN. Advanced Topics in Geometry. the Arithmetic of Elliptic Curves. 186 RAMAKRISHNANN ALENZA. Fourier

152 ZIEGLER. Lectures on Polytopes. Analysis on Number Fields. 153 FULTON. Algebraic Topology: A 187 HARRISIMORRISON. Moduli of Curves.

First Course. 188 GOLDBLATT. Lectures on the Hyperreals: 154 BROWN/PEARCY. An Introduction to An Introduction to Nonstandard Analysis.

Analysis. 189 LAM. Lectures on Modules and Rings. 155 KASSEL. Quantum Groups. 190 ESMONDEIMuRTY. Problems in Algebraic 156 KECHRIS. Classical Descriptive Set Number Theory.

Theory. 191 LANG. Fundamentals of Differential 157 MALLIAVIN. Integration and Geometry.

Probability. 192 HIRSCH/LACOMBE. Elements of 158 ROMAN. Field Theory. Functional Analysis. 159 CONWAY. Functions of One 193 COHEN. Advanced Topics in

Complex Variable II. Computational Number Theory. 160 LANG. Differential and Riemannian 194 ENGELINAGEL. One-Parameter Semi groups

Manifolds. for Linear Evolution Equations.

Page 12: References978-1-4612-6398-2/1.pdf · 166 References J. E. HUMPHREYS, [I) Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19, 51-79 (1971). [2)

195 NATHANSON. Elementary Methods in Number Theory.

196 OSBORNE. Basic Homological Algebra. 197 EISENBUD/HARRIs. The Geometry of

Schemes. 198 ROBERT. A Course inp-adic Analysis. 199 HEDENMALMIKORENBLUMIZHU. Theory

of Bergman Spaces. 200 BAO/CHERNISHEN. An Introduction to

Riemann-Finsler Geometry. 201 HINDRy/SILVERMAN. Diophantine

Geometry: An Introduction. 202 LEE. Introduction to Topological

Manifolds.

203 SAGAN. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Function. 2nd ed.

204 ESCOFIER. Galois Theory. 205 FEUxiHALPERIN/THOMAS. Rational

Homotopy Theory. 206 Murty. Problems in Analytic Number

Theory. Readings in Mathematics