Reference Textbook - Sinica

109

Transcript of Reference Textbook - Sinica

Page 1: Reference Textbook - Sinica
Page 2: Reference Textbook - Sinica

Reference Textbook:Solid State Physics, Gerald BurnsSolid State Physics, Ashcroft and MerminPhysics at Surfaces, Andrew ZangwillModern techniques of surface science, D. P. Woodruff and T. A. DelcharIntroduction to Synchrotron Radiation, G. Margaritondo

Page 3: Reference Textbook - Sinica

What makes surface different?

3D vs 2DSurface is what we usually “see”.Technology:

SemiconductorsCatalysis

Page 4: Reference Textbook - Sinica

Surface Structures

Page 5: Reference Textbook - Sinica

Surface Reconstruction and Relaxation

2D crystalline structureAtoms on surfacetruncation

Page 6: Reference Textbook - Sinica

Surface CrystalographyNotationsLEEDRHEED

Page 7: Reference Textbook - Sinica
Page 8: Reference Textbook - Sinica

LEED

Page 9: Reference Textbook - Sinica

RHEED

Page 10: Reference Textbook - Sinica

Surface electronic structuresWork functionThermionic EmissionSurface StateTangential Surface Transport

Page 11: Reference Textbook - Sinica

Work FunctionDifference in potential energy of an electron between the vacuum level and the Fermi level.Work functions depends on the orientation of the exposed crystal face.Photoemission

Page 12: Reference Textbook - Sinica
Page 13: Reference Textbook - Sinica

Thermionic EmissionRate of thermionic emission depends exponentially on the work functionRchardson-Dushman Equation

Page 14: Reference Textbook - Sinica

Surface States

Page 15: Reference Textbook - Sinica

Surface States

Page 16: Reference Textbook - Sinica

Tangential Surface Transport

Page 17: Reference Textbook - Sinica
Page 18: Reference Textbook - Sinica
Page 19: Reference Textbook - Sinica
Page 20: Reference Textbook - Sinica
Page 21: Reference Textbook - Sinica
Page 22: Reference Textbook - Sinica
Page 23: Reference Textbook - Sinica
Page 24: Reference Textbook - Sinica
Page 25: Reference Textbook - Sinica

Surface preparationUltrahigh VacuumSurface cleaningCleaving crystals to expose fresh surfaceIn vacuum deposition

Page 26: Reference Textbook - Sinica

Surface CharacterizationPhotonElectronSPMIon

Page 27: Reference Textbook - Sinica

p-n JUNCTIONSRectificationSolar Cells and Photovoltaic DetectorSchottky Barrier

Page 28: Reference Textbook - Sinica

p-n JunctionsDonor and acceptor

Page 29: Reference Textbook - Sinica

Rectification

Page 30: Reference Textbook - Sinica

Schottky BarrierFermi Level alignmentBand Bending

Page 31: Reference Textbook - Sinica

Solar Cells and Photovoltaic Detectors

Photovoltaic effectThe basic requirements

the absorption of photons through the creation of electron-hole pairs; the separation of the electron and hole so that their recombination is inhibited and the electric field within the semiconductor is alteredthe collection of the electrons and holes, separately, by each of two current-collecting electrodes so that current can be induced to flow in a circuit external to the semiconductor itself.

Page 32: Reference Textbook - Sinica
Page 33: Reference Textbook - Sinica

HETEROSTRUCTURESn-N Heterojunction

Page 34: Reference Textbook - Sinica

SEMICONDUCTOR LASERS

Page 35: Reference Textbook - Sinica

LIGHT-EMITTING DIODES

Page 36: Reference Textbook - Sinica
Page 37: Reference Textbook - Sinica

Optical Absorption ProcessUV, Soft-x-rayX-ray

Page 38: Reference Textbook - Sinica

Fermi’s Golden Rule

∑ +•−=i

Ri

iI A

cmeH )]()([ 2

iiiR rprA

( )if EE +−=Γ ωδπ 2int2,

2 iHffih

Page 39: Reference Textbook - Sinica

Optical Absorption Process in Atoms--Transitions for the H atom

1. to an unbound state in the continuum above the ionization edge. Creates H+ produces photon absorption in a spectral continuum, at photon energies above the threshold.

2. brings the electron to a bound excited state. produces a discrete line in the Rydbergseries.

a(H)

1 2

a(H)

1 2

Page 40: Reference Textbook - Sinica

Other Atomic processesThe bound states of the Rydberg series which accompanies a given continuum can overlap the unbound states of another continuum. This is the case of the final state of process 4.

• 1, 5 and 3 are ionization processes, which produce two different kinds of ion states. 3 produce a different continuum than 1 and 5.

• 2 and 4 are excitations to two of the discrete bound states corresponding to these continua. They produce lines in the Rydberg series.

• Note that, after process 4 has taken place, the system can further evolve from the bound excited state to an ionization state without changing its energy. The combination of process and the transition to the ionized state is an example of an autoionization process.

1 2 5 4

b

*bA

+aA

+bA

1 2 5 4

b

*bA

+aA

+bA

Page 41: Reference Textbook - Sinica

Continuum

A B

Core

Valence

RydbergShape Resonance

Page 42: Reference Textbook - Sinica

Electronic States of Molecules

Bound Molecular OrbitalsCoreValenceRydberg

Unbound Molecular OrbitalsShape resonanceContinuum orbitals

Page 43: Reference Textbook - Sinica

Optical transition in Metal and Insulator

M I

CB

VB

CL

c ccc

a b

Page 44: Reference Textbook - Sinica

Optical Absorption SpectraAtoms and Molecules

Discrete states: Rydberg StatesNo EXAFS oscillation in XAS

SolidsBand StructureEXAFS oscillation

Page 45: Reference Textbook - Sinica

Core-Leve Absorption from Atom

10 200

AB

SO

RP

TIO

N C

OE

FFIC

IEN

T

Ar 1s

h (keV)ν

h (keV)ν2 4 6 8

Example of a Example of a corecore--level optical level optical absorption threshold, absorption threshold, corresponding to the corresponding to the excitation of the is excitation of the is level in level in ArAr. The inset . The inset shows the fine shows the fine structure near this structure near this threshold due to its threshold due to its RydbergRydberg series.series.

Page 46: Reference Textbook - Sinica

The Delay OnsetA

BS

OR

PTI

ON

CO

EFF

ICIE

NT

Xe4d

h (eV)ν70 100 130

The delayed onset for the excitation of Xeelectrons, due to the “centrifugal barrier”which tends to exclude the electrons from the core region.

Page 47: Reference Textbook - Sinica

αC

-1

6

3

0-8 -4 0 4 8ε

q=

-2.5-1

0ABSO

RPTI

ON C

OEFFIC

IEN

T

N25dσ

6sσ

h (eV)ν18.318.1 18.2

Page 48: Reference Textbook - Sinica

Abs

orpt

ion

Coe

ffic

ient Ta L edge3

h (eV)ν-20 0 20 40

Page 49: Reference Textbook - Sinica

Opt

ical

Abs

orpt

ion

RbClRb 4p

A

B

C

D E F

h (eV)ν15 17 19

Page 50: Reference Textbook - Sinica

Photoemission SpectroscopyGeneral description“Electronic” Structure and PropertiesGas phase—Atomic and Molecular processSolid state

3 step descriptionRetrieving “initial” state information from final “free”electron state

Page 51: Reference Textbook - Sinica

Available information in the final free electron state

Plan wave final state:

Kinetic Energy, Ek (Ek=p2/2m)Momentum, p=hk0

Spin

riVf eA ⋅= 0k

Page 52: Reference Textbook - Sinica

Electron Energy Analyzer

OUTICOC

MP'P

S

Cylindrical Mirror Analyzer

Page 53: Reference Textbook - Sinica

Hemispherical Analyzer

Page 54: Reference Textbook - Sinica
Page 55: Reference Textbook - Sinica

PhotoelectronEnergySpectrum

FERMI LEVEL

CORELEVEL

VACUUMLEVEL

PHOTOELECTRONENERGYSPECTRUM

E

ADSORBATELEVEL

Page 56: Reference Textbook - Sinica

metal vacuum

Ek

e

φW

VL

EF

Photoemission Process

Page 57: Reference Textbook - Sinica

a

b

hνe

Direction ofPhoton Polarization

x φθ

Atom

Solid

Angular dependence in PES

Page 58: Reference Textbook - Sinica

NeonPhotoionizationCross section

0.2 1 1.8h (keV)ν

2p

2s

1sMb

10-3

10

TOTAL

Total Photoionization Cross Section

Page 59: Reference Textbook - Sinica

Xenon 5sPhotoionizationCross section

30 40 60h (eV)ν

Mb

0

0.8

50

Cooper Minimum

Page 60: Reference Textbook - Sinica

1 2

2 EdEk

Ei

hνEN

ER

GY

0

Photoemission Resonance

Page 61: Reference Textbook - Sinica

Ground State

N O2N O A2 Σ++ 2

N O X2 Π++ 2

200 100 000

Page 62: Reference Textbook - Sinica

13 .6 1 3.9 14 .2h (ke V)ν

β2

13.6 13.9 14.2h (keV)ν

β

N O X (100) Resonance2 Π++ 2

Page 63: Reference Textbook - Sinica

33 39 45E (eV)k

61

ArgonEDC'sh =77.2eVν 3s

3p

Page 64: Reference Textbook - Sinica

-32 -28 -26ENERGY(eV)

hν=

BiIBi5d EDC's

3

40.5eV

49eV

Page 65: Reference Textbook - Sinica

PES in SolidExtreme Surface SensitivityEDC (Energy Distribution Curve) vs. DOS (Density of States)Bulk SolidsSurface & InterfacesPhotoelectron diffraction (PhD) and photoelectron holography

Page 66: Reference Textbook - Sinica

10 102

E (eV)k

103

10

20

30

λ m(A

)

Page 67: Reference Textbook - Sinica

-101 -99ENERGY(eV)

-97

Si(111) + 4 A Au

Si2p EDC's

X 0.75

110

120

130a

b

c

c-b

X3

Page 68: Reference Textbook - Sinica

hνEN

ER

GY

Page 69: Reference Textbook - Sinica

-8 -4 0=EF

ENERGY(eV)

24

hν=

GaSeEDC's

20eV

30

Page 70: Reference Textbook - Sinica

-12 -4 0=EF

ENERGY(eV)-8

bZnSeEDC

aPt EDC

-6 -2 0=EF-4

Page 71: Reference Textbook - Sinica

-15 -10 0=EF

ENERGY(eV)

DOS

SnSe2

EDC

-5

Page 72: Reference Textbook - Sinica

-4 0=EF

ENERGY(eV)-8

a Si(111)2x1 EDC

CleavedSi+ClEDC

-8 0=EF-4ENERGY(eV)

Page 73: Reference Textbook - Sinica

-6 -4 0ENERGY(eV)

ZnSe+Ge EDC's

-2

8A4A

∆EV

0A

Page 74: Reference Textbook - Sinica

-8 -4 0=EFENERGY(eV)

Pd Si EDC's2

hν=80

130eV

Page 75: Reference Textbook - Sinica

Band Structure MappingARPES (ARUPS) is the ONLY method to map the band structure in SolidThe tunability of SR UV reduced the ambiguity of ARUPS in determining the band structureHigh energy and angular (momentum space) resolution has enabled the determination of quasi-particle electronic structure of highly correlated electronic system

Page 76: Reference Textbook - Sinica
Page 77: Reference Textbook - Sinica

PO

TEN

TIA

LE

NE

RG

Y

Wi

K

KK

e K┴

K║ K

Kº┴

Kº║

Page 78: Reference Textbook - Sinica

DirectInterbandTransition

ELE

CTR

ON

EN

ER

GY

Ei

Ef

E

Ev

k

Page 79: Reference Textbook - Sinica

GaAs(110) NORMAL EMISSION SPECTRA

(eV)

25.0

27.530.032.535.037.540

42.545.0

47.550.055.0

60.065.070.075.080.0

859095100

A'

A

INITIAL STATE ENERGY Ei (eV)

EF-5-10-15

Band dispersionGaAs(110)Normal emission

Page 80: Reference Textbook - Sinica

Γ M Γ

GaSe

EN

ER

GY

(eV

)0

-2

-4

-6

Γ M

Page 81: Reference Textbook - Sinica

-4 -2 0=EF

ENERGY(eV)

GaAs(110)+Al

h =120eVν

θ20

1

0.05

x3

x50

Al 2p EDC's

Page 82: Reference Textbook - Sinica

21

3 4

a

b

θ

Page 83: Reference Textbook - Sinica

-41 -40 -19.5 -18.5ENERGY(eV)

AsGa

(110)

GaAs EDC'sGa3dAs 3d

s

Page 84: Reference Textbook - Sinica

Taking Advantage of The Tunability

Constant Initial State PESConstant Final State PESResonance PES

Page 85: Reference Textbook - Sinica

DOSE

NE

RG

Y

CFS CIS

VL

EF hν2hν1 hν 2' hν 1'

E1i

E2i

E1k

E2i

Page 86: Reference Textbook - Sinica

-6 60=EVENERGY(eV)

SnS2

12

EDC CIS Curve

Page 87: Reference Textbook - Sinica

Spin-Polarized PESEnergy bands in ferromagnetic metals are split by the exchange interaction into the

up-spin (majority spin) andDown-spin (minority spin) band

First experimentally observed by PES in NiSpin polarized detectorsTotal PES

Page 88: Reference Textbook - Sinica

Spin-Resolved Electron Detectors

e

A

LD

RD

BM

MottDetector

Page 89: Reference Textbook - Sinica

Magnetic bands

0 1 2 kΓ ∆ H

Page 90: Reference Textbook - Sinica

-4 -2 0=EF

ENERGY(eV)

T/T =0.3c

Fe(001)Spin-polarizedEDC'sSpin-polarized

photoelectron EDC'scorresponding to the spin-up and spin-down polarizations

T is the Curie of Iron

Page 91: Reference Textbook - Sinica
Page 92: Reference Textbook - Sinica

Recent developmentsComplete photoemission experiment: Very high energy (< 5meV) and angular (<0.5°) resolutionStrongly correlated electronic systems

High Tc SupercondutorsHeavy Fermion systemQuantum Well State

PhD and Photoelectron Holography

Page 93: Reference Textbook - Sinica

Fermi edges

NiobiumFermi edge

2080

150235

DOS (T=0)Fermi-Dirac

∆E=6meV

-100 -50 0 50 100Energy (meV)

20 -50 0 50Energy (meV)

Page 94: Reference Textbook - Sinica

HTC Gap Spectroscopy

Page 95: Reference Textbook - Sinica

Pseudo-GapSpecial to HTSC. It persists at temperatures up to three times as high as the limit of superconductivity, in some cases even at room temperature. The properties of the pseudo-gap were determined using the highly energy-resolved SR-ARUPS. It was found that the pseudo-gap and the superconducting gap have the same angular symmetry, suggesting they are related. The temperature dependence of the pseudo-gap was determined as well.

Page 96: Reference Textbook - Sinica

Temperature regions where the gap and the pseudo-gap exist. The maximum temperature where a pseudo-gap is still observed (T*) can be much higher than the maximum temperature for superconductivity (Tc) and as high as room temperature (about 290 K).

The results are reported by H. Ding The results are reported by H. Ding and coworkers in Nature and coworkers in Nature 382382, 51 , 51 (1996) and in Physical Review (1996) and in Physical Review Letters Letters 7878, 2628 (1997). Highlights , 2628 (1997). Highlights can be found in Physics Today, June can be found in Physics Today, June 1996, p. 17. 1996, p. 17.

Page 97: Reference Textbook - Sinica

Symmetry of the pseudo-gap when the sample is rotated. The characteristic minimum at 45 degrees is observed for the superconducting gap and the pseudo-gap, suggesting they are related.

Page 98: Reference Textbook - Sinica

Quantum Well State

Page 99: Reference Textbook - Sinica

Quantum WellStates

Page 100: Reference Textbook - Sinica
Page 101: Reference Textbook - Sinica
Page 102: Reference Textbook - Sinica

Further readings:Review of magnetic nanostructures: Himpsel et al., Advances in Physics 47, 511 (1998). Basic principles of magnetic recording: Grochowski and Thompson, IEEE Trans. Magn. 30, 3797 (1994) Measurement of magnetic quantum well states: Ortega et al., Phys. Rev. Lett. 69, 844 (1992) and Phys. Rev. B 47, 1540 (1993). Himpsel, J. Phys. Cond. Matter 11, 9483 (1999) and Science 283, 1655 (1999).

Page 103: Reference Textbook - Sinica

Diffraction and Holography

Ni

C

O

Ni Ni Ni

C

O

NiNi

Page 104: Reference Textbook - Sinica
Page 105: Reference Textbook - Sinica

40 100 130ENERGY(eV)

Ni(001)+S PhD Curve

70

THEORY

EXPERIMENT

Page 106: Reference Textbook - Sinica

Photoelectron HolographyProduces 3-D pictures by superimposing two beams, one coming directly from a laser,the other reflected off the three-dimensional object. Using electrons instead of light one can produce three-dimensional pictures of very tiny objects, because the wavelength of electrons is much shorter that that of light.

Page 107: Reference Textbook - Sinica
Page 108: Reference Textbook - Sinica

A 3-D picture of atoms at a silicon surface that was obtained using electrons emitted from the surface under irradiation with SR.The analog to the direct laser beam are electrons emitted directly from the red atom, the analog of the reflected light are electrons scattered by neighbor atoms (green).

H. Wu and G.J. Lapeyre, Phys. Rev. B 51, 14549 (1995)

Page 109: Reference Textbook - Sinica

References:Books on photoelectron spectroscopy

Cardona M. and Ley L., editors, Photoemission in Solids I & II, Springer Verlag, Berlin 1978Kevan S.D, editor, Angle-resolved Photoemission -Theory and current application, Elsevier, Amsterdam 1992