Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of...

214
Reference Lake Sediments, Geochemistry and in situ Distribution Coefficients, K d Values, Southwestern Finland POSIVA OY Olkiluoto FI-27160 EURAJOKI, FINLAND Phone (02) 8372 31 (nat.), (+358-2-) 8372 31 (int.) Fax (02) 8372 3809 (nat.), (+358-2-) 8372 3809 (int.) November 2017 Working Report 2017-16 Anne-Maj Lahdenperä

Transcript of Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of...

Page 1: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

Reference Lake Sediments, Geochemistry and in situ Distribution Coefficients, Kd Values,

Southwestern Finland

Wo

rk

ing

Re

po

rt 2

01

6-6

5 •

Stu

die

s o

n th

e A

qu

atic

En

viro

nm

en

t at O

lkilu

oto

an

d R

efe

ren

ce

Are

a: 4

. Olk

iluo

to O

pe

n S

ea

Are

a

in 2

01

3

POSIVA OY

Olki luoto

FI-27160 EURAJOKI, F INLAND

Phone (02) 8372 31 (nat. ) , (+358-2-) 8372 31 ( int. )

Fax (02) 8372 3809 (nat. ) , (+358-2-) 8372 3809 ( int. )

November 2017

Working Report 2017-16

Anne-Maj Lahdenperä

Page 2: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview
Page 3: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

November 2017

Working Reports contain information on work in progress

or pending completion.

Anne-Maj Lahdenperä

Saanio & Riekkola Oy

Working Report 2017-16

Reference Lake Sediments, Geochemistry and in situ Distribution Coefficients, Kd Values,

Southwestern Finland

Page 4: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview
Page 5: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

REFERENCE LAKE SEDIMENTS, GEOCHEMISTRY AND IN SITU DISTRIBUTION COEFFICIENTS, Kd VALUES

ABSTRACT

This work report presents geochemical and physical properties and the in situ distribution

coefficients, (Kd values) of the indigenous elements from the eight deep lake sediments

profiles in the Reference area. The data extends the understanding of the biosphere site

description, radionuclide transport analyses and utilisation in modelling. The post-glacial

crustal rebound shapes the landscape from Finnish coastal areas to an inland type within

a few millennia in the future. The shoreline displacement will change the local and

regional biosphere conditions and influence soil and sediment properties and groundwater

flow pattern. The properties of the future lake ecosystems surrounding the Olkiluoto

Island can be forecast and radionuclide transport models applied based on the properties

of present lakes. Currently, however, there are no lakes on the island. Due to the lack of

Olkiluoto specific data, eight lakes being in different successional stages were selected

from the within the larger geographical Reference area as analogues of those expected to

be formed at the Olkiluoto site.

Sediment samples have been taken from the different lithological units. The lakes were

isolated during the Littorina or Limnea Sea stages about 2200-6500 cal yr BP. From the

sediment samples, pore water, bioavailable concentrations of elements using NH4Ac

extraction, (pH 4.5) and pseudo-total concentrations of elements using HNO3-HF(trace)

extraction or LiBO2 fusion method are analysed. pH, dry and organic matter (LOI), total

carbon and nitrogen contents, main pore water anions, DIC, DOC, and grain size

distribution are measured. Cation exchange capacity (CEC) and base saturation (BS) are

calculated using the results of NH4Ac (pH 4.5) extraction. In situ Kd values indicate the

relevant mobility and retention of the main indigenous elements and radionuclides. Ag,

Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr are the main interest elements in the biosphere

assessment because they are analogues to the highest doses contributing radionuclides

from the repositories. In addition, geochemistry and Kd values of main cations (Al, Ca,

Fe, K, Mg, Na), P, S, main heavy metals (As, Cd, Cr, Co, Cu, Mn and Zn), Th and U are

evaluated. The in situ Kd values are calculated using the formula used by Sheppard et al.

(2007). The Kd data of the lake sediments inherently extremely variable, but it also varies

systematically withing the key environmental factors, thus their co-influence is important

for each individual element as well as their acting in different sediment types by site to

site and by sediment depths. Organic matter content, pH and sediment mineral

composition, especially clay and silt fraction, have a distinct influence on the Kd values.

However, only the bioavailable Kd values of Cl, I, Nb, Pb, Se and Sr show correlation

with LOI content, and Kd values of I, Mo and Se with the clay content. Only the pseudo-

total Kd values of Cl, I and Se correlated with the LOI content, and slightly or not at all

with the clay content.

Keywords: Deep lake sediments, Reference Area, geochemistry, distribution

coefficients

Page 6: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview
Page 7: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

REFERENSSIALUEEN JÄRVISEDIMENTTIEN GEOKEMIA JA IN SITU JAKAANTUMISKERTOIMET, Kd ARVOT

TIIVISTELMÄ

Raporttiin on koottu yhteenveto kahdeksan järvisedimenttiprofiilin geokemiallisista ja

fysikaalisista ominaisuuksista sekä in situ jakaantumiskertoimista (Kd arvot). Aineiston

avulla saadaan lisätietoa pintaympäristön kehittymisestä ja radionuklidien

kulkeutumisesta. Tuloksia käytetään myös pintaympäristön ja geosfääri-biosfääri

rajapinnan mallinnuksessa. Näytteet otettiin kahdeksasta järvisedimenttiprofiilista, eri

litologisista yksiköistä. Järvet ovat kuroutuneet itsenäisiksi järviksi joko Litorina tai

Limnea merivaiheiden aikana noin 2200-6500 vuotta sitten.

Maankohoamisen johdosta nykyisen rannikkoalueen merisedimentit tulevat olemaan

tulevaisuudessa maa-alueita, mikä tulee näkymään muodostuvan maa-alueen

pintaympäristössä. Nykyisin Olkiluodossa ja sen lähiympäristössä ei ole järviä, joten

Referenssialueelta valittiin kahdeksan eri kehitysvaiheessa olevaa järveä edustamaan

vastaavan tyyppisiä järviä, joiden kaltaisia todennäköisesti muodostuu Olkiluodon

ympäristön alueelle.

Pitkistä järvisedimenttiprofiilinäytteistä analysoitiin huokosvesi, heikkoliukoiset

alkuaineet NH4Ac (pH 4.5) ja pseudo-kokonaispitoisuudet HNO3-HF uutoilla tai LiBO2

fuusiomenetelmällä. Lisäksi määritettiin pH, kuiva- ja orgaaninen aines, kokonaishiili- ja

-nitraattipitoisuudet, huokosveden pääanionit sekä DIC- ja DOC-pitoisuudet.

Kationinvaihtokapasiteetti (CEC) ja emäskylläisyys (BS) laskettiin NH4Ac (pH 4.5)

uuton tuloksista. Sedimenttinäytteistä määritettiin raekoostumus.

In situ jakaantumiskertoimilla määritetään alkuaineiden ja radionuklidien pidättyvyyttä

ja liikkuvuutta erilaisissa ympäristöissä. Tärkeimmät alkuaineet (Ag, Cl, Cs, I, Mo, Nb,

Ni, Pb, Se, Sn ja Sr) ovat turvallisuusarvioinnissa merkittäviä niiden ollessa analogeja

eniten annosta aiheuttaville radionuklideille loppusijoitetusta ydinjätteestä. Näiden

alkuaineiden geokemiallisia ja fysikaalisia ominaisuuksia on kuvattu yksityiskohtaisesti.

Lisäksi arvioitiin pääkationeiden, P, S, tärkeimpien metallien, Th, ja U geokemiallisia

ominaisuuksia ja Kd arvoja. In situ Kd arvot laskettiin Sheppard ym. (2007) käyttämällä

kaavalla.

Kd arvot vaihtelevat luonnostaan eri alkuaineiden ja sedimenttityyppien mukaan, mutta

myös merkittävimpien ympäristötekijöiden vaikutuksesta. Orgaanisen aineksen ja

savipitoisuuden määrillä on huomattava vaikutus Kd arvoihin. Aineiston perusteella

helppoliukoisten alkuaineiden (Cl, I, Nb, Pb, Se ja Sr) Kd arvot korreloivat selvästi

orgaanisen aineksen ja (I, Mo ja Se) Kd arvot savipitoisuuksien kanssa. Pseudo-

totaaliuuton Kd arvoista ainoastaan Cl, I, ja Se korreloivat orgaanisen aineksen kanssa.

Avainsanat: Järvisedimentit, geokemialliset ominaisuudet, jakaantumiskertoimet,

Referenssialue

Page 8: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview
Page 9: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

1

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

PREFACE ..................................................................................................................... 3

1 INTRODUCTION ................................................................................................. 5

2 REFERENCE LAKES .......................................................................................... 9 2.1 Lake Lutanjärvi, Eurajoki........................................................................... 14 2.2 Lake Koskeljärvi, Eura .............................................................................. 16 2.3 Lake Suomenperänjärvi, Eura................................................................... 17 2.4 Lake Poosjärvi, Pori .................................................................................. 19 2.5 Lake Lampinjärvi, Pori .............................................................................. 20 2.6 Lake Kivijärvi, Pori .................................................................................... 21 2.7 Lake Valkjärvi, Pomarkku ......................................................................... 23 2.8 Lake Narvijärvi, Rauma............................................................................. 26 2.9 Comparison of sedimentation environments of the reference lakes .......... 26

3 MATERIALS AND METHODS ........................................................................... 29 3.1 Sediment sampling ................................................................................... 29 3.2 Sediment analysis..................................................................................... 31

4 RESULTS .......................................................................................................... 35 4.1 pH, dry matter, loss on ignition, total carbon and nitrogen and C/N ratio ... 35 4.2 Anion concentrations, dissolved organic carbon and dissolved inorganic

carbon of the pore water ........................................................................... 38 4.3 The pore water element concentrations .................................................... 40 4.4 The bioavailable concentrations................................................................ 50 4.5 Cation exchange capacity and base saturation ......................................... 65 4.6 Pseudo-total element concentrations ........................................................ 70 4.7 In situ distribution coefficient values of the reference lake sediments........ 83

4.7.1 In situ Kd values, solids analysed by NH4Ac (pH 4.5) extraction ....... 84 4.7.2 In situ Kd values, solids analysed by HNO3-HF extraction or LiBO2

fusion ............................................................................................... 97 4.8 Grain size distribution ............................................................................. 111 4.9 Kd values of the key elements versus LOI and clay content .................... 119

5 SUMMARY ...................................................................................................... 123

6 CONCLUSION ................................................................................................. 125

7 REFERENCES ................................................................................................ 127

APPENDICES ........................................................................................................... 135

Page 10: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

2

Page 11: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

3

PREFACE

The report has been revised by Lauri Parviainen, Posiva Oy. The useful review comments

of Heini Reijonen, Saanio & Riekkola and Lauri Parviainen and Juho Kuusisto, Posiva

Oy are highly acknowledged, as well as the help with the Kd calculations and figures

provided by Lauri Parviainen and Elina Hankiola, Saanio & Riekkola Oy.

Page 12: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

4

Page 13: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

5

1 INTRODUCTION

On assignment by its owners, Fortum Oyj and Teollisuuden Voima Oyj, Posiva Oy will

take care of the disposal of spent nuclear fuel from the Loviisa and Olkiluoto nuclear

power plants. In 2001, the Parliament of Finland endorsed a Decision-in-Principle

whereby the spent nuclear fuel produced during the operational lives of the operating

Loviisa and Olkiluoto reactors will be disposed in a geological repository at Olkiluoto.

The disposal of this spent nuclear fuel shall take place in a geological repository at the

Olkiluoto site. The spent nuclear fuel, encapsulated in water-tight and gas-tight sealed

copper canisters with a mechanical-load-bearing insert, is emplaced at about 450 m depth

underground in a geological repository. The release of radionuclides is prevented with

this multi-barrier disposal system consisting of a system of engineered barriers and host

rock so that the system effectively isolates the radionuclides from the living environment.

The Olkiluoto repository site is located on the coast of the Baltic Sea (Figure 1), in the

municipality of Eurajoki southwestern Finland. Due to the shallow sea areas around the

present-day Olkiluoto Island, the post-glacial crustal rebound ("land uplift"; at present

abound 6 mm/y, Eronen et al. 1995) will change the landscape considerably (Posiva 2014,

section 2.2.1) during the next thousands of years. The present bays will narrow and form

future lakes. The effects of this terrain development are important factors in the long-term

safety assessment for the repository, especially in the biosphere assessment (e.g. Posiva

2013) addressing the radiation exposure on people, plants and animals in the scenarios of

radionuclide release.

The properties of the future lake ecosystems surrounding the Olkiluoto Island can be

forecast and radionuclide transport models applied based on the properties of present

lakes. Currently, however, there are no lakes on the island. Due to lack of Olkiluoto

specific data, lakes of various successional stages are selected within a larger

geographical area (Reference Area, Figure 2) as analogues of those expected to form at

the Olkiluoto site (Haapanen et al. 2010). In the Figure 3 the land uplift development is

presented at the Reference Area in the past.

Ojala (2011) has investigated sediment composition and lithostratigraphy and described

the past and present sedimentary environments of the eight reference lakes based on their

variable appearance and catchment environmental conditions, i.e. properties such as lake

shape, size and morphometry, as well as altitude and geology of the drainage basin. The

primary research methods included use of ground penetrating radar, sediment coring and

physical sedimentological applications.

This report presents the results of geochemical and physical properties and the in situ

distribution coefficients, Kd values, of the deep sediment samples taken from the different

lithological units of the selected eight lakes (Figure 4) within the Reference Area.

Page 14: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

6

Figure 1. The Olkiluoto Island is situated on the coast of the Baltic Sea in south-western

Finland and it hosts nuclear power plants (NPP) and is a nuclear waste repository site

(photograph by Helifoto Oy for Posiva).

The bedrock of the Reference Area and its development history is described in detail in

Pajunen et al. (2008) and Pajunen & Wennerström. (2008) and the overburden properties

and stratigraphy are described e.g. in Eronen et al. (1982), Lindroos et al. (1983) and

Perttunen et al. (1984). The different stages of the Baltic Sea are presented e.g. in Björck

(1995) and Eronen et al. (1995). The isostatic uplift (land uplift) in the coastal areas of

the Baltic Sea is investigated e.g. by Eronen et al. (1995), Påsse (1990a, 1996, 1998,

2001), Påsse & Andersson (2005) and Vuorela et al. (2009). The development history of

the Kokemäki River delta which governs the Reference Area is presented in Huhta &

Räsänen (2010). The modelling of hydrological changes of the river basins of the

Kokemäki and Eurajoki Rivers is reported by Ojala et al. (2006). The morphology and

hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen

et al. (2010).

Page 15: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

7

Figure 2. Overview map of the Reference Area (in the right corner) and the reference

lakes. Map layout Juho Kuusisto/Posiva Oy.

Figure 3. Land uplift development at the Reference Area in the past. Figure layout by Ari

Ikonen/Posiva Oy.

Page 16: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

8

Page 17: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

9

2 REFERENCE LAKES

The selected reference lakes had to be as similar as possible compared to the sites which

will develop in the future at the Olkiluoto area based on the geological and biological

history and climate conditions (Haapanen et al. 2010, Chapter 6.). The more detailed

description of the selection of the reference lakes is presented in Haapanen et al. (2010,

chapter 6). The following parameters are considered as the most important:

lake size and shape

lake drainage/watershed area

degree of human impact

nutrient level

lake location in a lake chain: headwater/drainage or closed lake

distance from the coastline

The sedimentation environment and lake depths of the selected reference lakes differ from

each other, thus getting an overview on variety of sediment stratigraphy in different

environments. Some of the selected lakes are eutrophicated, shallow basins in the clay--

rich areas, some lakes are isolated in the bedrock fracture areas, and some lakes are

situated at rocky grounds. The following reference lakes are selected as the most

important analogues for the future lakes developing in the terrain and ecosystem

modelling (TESM) area (Posiva 2012) (Figure 4):

A lake chain: Lakes Poosjärvi, Kivijärvi and Lampinjärvi

A small lake: Lake Lutanjärvi

An overgrowing lake: Lakes Koskeljärvi and Suomenperänjärvi

A long water delay: Lake Narvijärvi and Valkjärvi

Page 18: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

10

Figure 4. Locations of the eight reference lakes (the red circles are the reference lakes).

In the background overburden map (Soil map 1:200 00, Geological Survey of Finland

2015). Map layout by Lauri Parviainen/Posiva Oy.

The basic properties of the studied lakes are presented in Table 1. The elevation of the

lakes varied from 13.9-51.1 m above sea level (m a.s.l). The lakes were isolated from the

Page 19: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

11

Baltic Sea during 2200–6500 cal yr BP (radiocarbon year before AD 1950) (Figure 5)

(Eronen et al. 2001). Lakes Valkjärvi, Koskeljärvi, Suomenperänjärvi, Poosjärvi and

Narvijärvi were isolated in the Littorina Sea stage, when the Baltic Sea basin was

connected to the ocean and thus salt content of water was higher than in the present

brackish Baltic Sea. Lakes Kivijärvi, Lampinjärvi and Lutanjärvi were isolated in the

Limnea Sea stage, when the circumstances were more similar to the present Baltic Sea

circumstances (Ojala 2011, chapter 2).

Figure 5. The diagram presents when the eight reference lakes are isolated from the

Baltic Sea (Eronen et al. 2001, modified, by Ojala 2011, Figure 1).

Description of the reference lakes

The Lake Koskeljärvi is very shallow, overgrowing and humic lake with a labyrinthine

shape. The lake area is 658 ha and catchment area is 74.8 km2 (lake area 0.8%). The lake

is relatively open and is easily exposed to the effects of wind. The lake can be divided

into three mutually differing parts. The water delay time is quite long (200 days). The

soils of the catchment area are mainly till and peat, with some rock exposures. The main

land covers of the catchment are forest (58%), mires (20%) and agricultural fields (12%).

The lake has 11 inlet streams, the main inlet being River Välijoki and outlet River

Hinnerjoki. The lake is regulated with a dam. The water level has been significantly

lowered during 19th and 20th centuries, and risen again in 1991. As a result of water level

rise, the annual variation of water level has been smaller, which has reduced erosion on

the shores. Due to the shallowness of the lake, the lake is overgrowing and has suffered

from a lack of oxygen during the winters. The shores of the lake are free from settlement.

The lake elevation is 41.3 m a.s.l. (Ojala 2011, Haapanen et al. 2010).

Page 20: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

12

The Lake Suomenperänjärvi is shallow, overgrowing very humic lake and its water

quality is tolerable. The lake area is 122 ha and the shoreline length is 11.7 km. The

maximum water depth is 1.1 m (according to ground penetrating radar; Ojala 2011, Table

1). Lake Suomenperänjärvi is located in the southern part of the Lake Koskeljärvi and

these two lakes are connected by a narrow strait. The lake elevation is 41.3 m a.s.l. (Ojala

2011, Haapanen et al. 2010).

The Lake Narvijärvi is quite shallow and humic lake with a long water delay time (2.8

years). The lake area is 411 ha and the shoreline length is 21.4 km. The sedimentation

bottom is flat. Of the catchment area (20 km2), about 35% is covered with forest and 25%

with mires (drained for silviculture). About 8% of the catchment area is in agricultural

use. The maximum water depth is 6.5 m. The lake has three important inlets and the outlet

is via Narvinoja stream to River Lapinjoki. Agricultural areas of the catchment are

situated mainly by inlet streams. The lake elevation is 28.9 m a.s.l. (Ojala 2011, Haapanen

et al. 2010).

The Lake Valkjärvi is a shallow and humic lake. The catchment area (9.5 km2) is small in

relation to the lake area. The water delay time is long (2.5-3.5 years). The maximum water

depth is 5.2 m and the shoreline length is 25.4 km. The number of islands is 42 and area

is 42 km2. The soils of the catchment are mainly till with some rock exposures and peat.

The main land cover is forest; number of agricultural fields is only 3%. The lake runs via

a ditch to River Pomarkunjoki. Wide forest cuttings and drainage have been carried out

in the catchment area in the 1960s and 1970s. The regular floods in spring and autumn

have caused silting to the water from the catchment area. In addition, water pH has

decreased due to forest draining and humic and acid runoff. The low sedimentation rate

reflects low productivity and re-suspension. The lake elevation is 51.1 m a.s.l. (Ojala

2011, Haapanen et al. 2010).

The Lake Lampinjärvi is shallow lake rich in humus. The lake area is 82 ha and the

shoreline length is 11.7 km, the shoreline is fragmented. The maximum water depth is 4.0

m (according to the ground penetrating radar; Ojala 2011, Table 1). The lake is mainly

surrounded by forests with some fields. The outlet is the River Lampinjoki running

eventually to the Bothnian Sea. The inlet comes from the nearby Lake Kivijärvi. The lake

elevation is 21.2 m a.s.l. (Ojala 2011, Haapanen et al. 2010).

The area of the Lake Kivijärvi is 53 ha and the shoreline length is 9.4 km. The surface

area of the catchment is 5.7 km2.The maximum water depth is 2.5 m (according to the

ground penetrating radar; Ojala 2011, Table 1). The lake is rocky, shallow and rich in

humus. The inlet, River Poosjoki, comes from the Lake Poosjärvi. The outlet runs via a

fall to the nearby Lake Lampinjärvi. The lake elevation is 25.3 m a.s.l. (Ojala 2011,

Haapanen et al. 2010).

The Lake Poosjärvi is of short water delay type. The lake shape is elongated and the

surface area is 350 ha and the catchment area is very large. The maximum water depth is

2.2 m (according to ground penetrating radar; Ojala 2011, Table 1). The shoreline length

is 36.8 km. Boulders are typical for the shores of the lake. The lake gets most of its water

from the Lake Isojärvi via a river. However, Lake Isojärvi has another outlet, as well,

running to the Bothnian Sea. The outlet of the Lake Poosjärvi runs via another river to

the Bothnian Sea. The catchment area of the Lake Poosjärvi is mainly till, with few fields.

Page 21: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

13

The topography is small-scaled. In the western part of the catchment there is a large mire

complex. The main problems of the Lake Poosjärvi are eutrophication, overgrowing and

lack of oxygen during winters. The lake elevation is 30.5 m a.s.l. (Ojala 2011, Haapanen

et al. 2010).

The Lake Lutanjärvi is small, lake surface area 40 ha. The shoreline length is 3.4 km. The

maximum water depth is 6.3 m (according to ground penetrating radar; Ojala 2011, Table

1). The lake is slightly eutrophic, humic lake, where the water delay is long (3.2 years).

Of the catchment area (6.6 km2), 43% is covered by forests and mires and 25% is in

agricultural use. The lake is surrounded by mires, which for the most part are ditched.

The main mineral soil type is till. Some rock exposures exist, too. The fields are

concentrated in the northern part of the catchment area. There are three inlets to the Lake

Lutanjärvi. The outlet runs to the River Lapinjoki. The lake floods easily. During the

winters, lack of oxygen is observed. Low redox-conditions throughout the sediment

indicate oxygen problems that have been present for a long time. The lake elevation is

13.9 m a.s.l. (Ojala 2011, Haapanen et al. 2010).

The Lakes Valkjärvi and Narvijärvi are headwater lakes (the first lake in the lake chain),

the others are drainage lake types. The Lakes Poosjärvi-Kivijärvi-Lampinjärvi comprises

a lake chain. More detailed description of the limnology, hydrography, flora and fauna of

the reference lakes is presented in Haapanen et al. (2010).

The Table 1 presents elevation, surface-area of the reference lakes, length of the shoreline

of the lake, mean and maximum depths and watershed of the lakes (see Ojala 2011,

Appendices 1A-H). Table 2 presents deep sediment sampling locations, sampling

equipment, length of sediment core and ending point of the bottom (hard or soft bottom)

(Ojala 2011, Table 2, p. 31).

Table 1. The basic data of the reference lakes (the data have been collected from the

OIVA database of the Finnish Environment Institute) (- no data). The locations (X, Y) are

in YKJ coordinates. (* = max lake depth is based on ground penetrating radar method)

(Ojala 2011).

Lake Lake core name

Location X, Y

Municipality/ town

Elevation (m a.s.l)

Surface area of the lake (ha)

Length of lake shore line (km)

Mean lake depth (m)

Max lake depth (m)

Watershed

Lutanjärvi LuJcore 6793577, 3217825 Eurajoki 13.9 40 3.3 - 6.3*

River Lapinjoki

Koskeljärvi KJcore 6769155, 3235970 Eura 41.3 658 31 1.1 3.2

River Lapinjoki

Suomenperänjärvi SPJcore 6765792, 3234901 Eura 41.3 122 11.7 - 1.1*

River Lapinjoki

Lampinjärvi LaJcore 6852485, 3222587 Pori 21.2 82 11.7 - 4.0

River Karvianjoki

Kivijärvi KiJcore 6851232, 3224016 Pori 25.3 53 9.4 - 2.5*

River Karvianjoki

Valkjärvi VaJcore 6859742, 3237227 Siikainen 51.1 335 25 2.9 5.2

River Karvianjoki

Poosjärvi PoJcore 6850006, 3228295 Pori 30.5 349 37 - 2.2*

River Karvianjoki

Narvijärvi NaJcore 6783735, 3222712 Pori 28.9 411 21 2.8 6.5

River Lapinjoki

Page 22: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

14

Table 2. The basic information of the reference lake sediment sampling points (Ojala

2011, Table 2, p. 31)

Reference lake Lake core name

Sampling point location (X, Y)

Sampling equipment

Length of sediment core (cm)

Ending point the bottom

Lutanjärvi LuJcore 6793895, 3217971 Heavy piston drill 659 No penetration

Koskeljärvi KJcore 6770120, 3236752 Light piston drill 567 Hard bottom (sand)

Suomenperänjärvi SPJcore 6766138, 3234796 Light piston drill 199 Hard bottom (sand)

Lampinjärvi LaJcore 6852530, 3222586 Light piston drill 745 Hard bottom

Kivijärvi KiJcore 6851497, 3223800 Light piston drill 704 No penetration

Valkjärvi VaJcore 6860700, 3236550 Heavy piston drill 486 Hard bottom

Poosjärvi PoJcore 6849034, 3228857 Light piston drill 547 Hard bottom

Narvijärvi NaJcore 6783107, 3223371 Heavy piston drill 668 No penetration

2.1 Lake Lutanjärvi, Eurajoki

In the deep sediment sample of the Lake Lutanjärvi three different sediment stages are

identified (Table 3). The uppermost sediment (0-362 cm) is gyttja, which has been

deposited after isolation from the Baltic Sea (during about 2300 years ago). The sediment

consists of primary production of the lake, organic and mineral matter from the catchment

area and eroded and redeposited sediment from the shore zone. According to Pajunen

(2004) the sedimentation rate has been about 1.6 mm/year, which is relatively high

compared to Finnish lakes, on average. The northern and southern basins are

accumulation bottoms.

The middle sediment facies (362-408 cm) is clayey gyttja and the sediment has been

probably deposited during the lake isolation stage. The dark stripes indicate anoxic

conditions (meromictic conditions) due to more saline and denser water than the upper

layers of water.

The lower sediment facies (408-659 cm) represents the stage when the Lake Lutanjärvi

was connected to the Baltic Sea. The sediments are laminated, coarse mineral sediments

and amount of organic matter varies. At some places microfossils are abundant forming

their own layers. These indicate possibly changes in water level or other hydrological

changes in the catchment area.

The age of the sediment bottom (659 cm) is difficult to estimate, and thus the

sedimentation rate is impossible to determine (Ojala 2011, p. 31-32). Figure 6 presents

the Lake Lutanjärvi with its catchment area.

Page 23: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

15

Figure 6. Lake Lutanjärvi with its catchment area (blue line). Background map and

delineation of watershed: Topographic database by the National Land Survey. Shades:

digital elevation model by the same institute. Map layout by Pekka Hurskainen/Pöyry

Finland Oy.

Page 24: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

16

Table 3. Typical sediment stratigraphy of the Lake Lutanjärvi, Eurajoki (13.9 m a.s.l)

according to Ojala (2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

0-362 Gyttja/ clayey gyttja

Brown massive gyttja/clayey gyttja

- no macrofossils - no distinct structures - water content higher in

the surface layer - in places dark brown

stripes

Deposited during the independent Lake Lutanjärvi stage

362-408 Clayey gyttja Dark brown clayey gyttja - no macrofossils - slightly laminated - in places black clayey

gyttja stripes

Deposited during the lake isolation stage

408-659 Gyttja clay/ clayey gyttja

Light brown - in places macrofossils - laminated - vivianite conglomerates - undisturbed layer

“Lagoon” sediment, deposited in the shallow bay of the Baltic Sea

659 No penetration

2.2 Lake Koskeljärvi, Eura

In the sediments of the Lake Koskeljärvi, four different sediment stages are identified

(Table 4). The upper sediment layer (50-343 cm) represents the independent lake stage.

The sedimentation rate has been 0.6 mm/year. The sediment layer is as thick as the upper

sediment layer of the Lake Lutanjärvi, but deposition has taken a two-fold time in the

Lake Koskeljärvi. The upper sediment type is fine detritus gyttja, in which organic matter

dominates. The sediment changes slowly from gyttja to clayey gyttja at the depth of 343-

360 cm and further to gyttja clay at the depth of 360-430 cm. The lower layer represents

the isolation stage, about 5 500 cal yr BP (Ojala 2011, p. 33-34).

The structure and especially texture of the lowest sediment layer (430-567 cm) differs

from the three upper layers. The sediment type is gyttja clay or clay which is deposited

during the Littorina Sea and possibly already during the Ancylus Lake stage (the lowest

parts of the sediment layer). The mussel shells (at 540 cm depth) indicates the presence

of more saline water. The drilling ended to the depth of 567 cm due to sediment toughness.

Figure 7 presents the Lake Koskeljärvi with its catchment area.

Page 25: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

17

Table 4. Typical sediment stratigraphy of the Lake Koskeljärvi, Eura (41.3 m a.s.l)

(according to Ojala 2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

50-343 Gyttja Brown massive gyttja - fine detritus gyttja - no macrofossils - no distinct

structures - no tonal changes in

colour

Deposited during the independent Lake Koskeljärvi stage

343-360 Clayey gyttja

Greenish clayey gyttja - massive structure - slowly changing

transitional zone

Deposited during the lake isolation stage

360-430 Gyttja clay Greenish gyttja clay - flamish structure - indeterminated

laminates

“Lagoon” sediment

430-567 Gyttja clay Greenish grey gyttja clay - distinctly laminated - mussel fragments

Baltic Sea stage sediment, represents either Ancylus Lake or Littorina Sea stage sediments

567-> Sand Hard bottom

2.3 Lake Suomenperänjärvi, Eura

The sediment core is the shortest of the studied cores, it is only 199 cm (Table 5).

However, several sedimentation stages were found. The upper sediment layer (0-65 cm)

consists of unstructured fine detritus gyttja, where are coincidentally macrofossils. The

sediment is deposited during the independent lake stage. Due to shallow basin, this

sediment layer has been redeposited several times due to wind and wave action. The

contact between the fine detritus gyttja and clayey gyttja (65-84 cm) is sharp indicating

erosion in this stage of the deposition. This erosion horizon might have been related to

the isolation.

The second lowest sediment layer (84-150 cm) probably represents ”lagoon”

sedimentation, i.e. the stage when the Lake Suomenperänjärvi was a part of the Baltic

Sea, but it was a shallow and sheltered bay. Unstructured sediment facies indicate calm

and stable deposition environment. The lowest sediment layer (150-199 cm depth) is

unstructured dark grey clay, that has been possibly deposited during the Littorina Sea

stage. In the bottom of the core is sand (Ojala 2011, p. 35). Figure 7 presents the Lake

Suomenperänjärvi with its catchment area.

Page 26: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

18

Figure 7. Lakes Koskeljärvi and Suomenperänjärvi with the catchment areas (blue line).

Background map and delineation of watershed: Topographic database by the National

Land Survey. Shades: digital elevation model by the same institute. Map layout by Pekka

Hurskainen/Pöyry Finland Oy.

Table 5. Typical sediment stratigraphy of the Lake Suomenperänjärvi, Eura (41.3 m a.s.l)

according to Ojala (2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

0-65 Gyttja Brown massive gyttja - macrofossils - slightly sulphide-rich

Deposited during the independent Lake Suomenperänjärvi stage

65-84 Clayey gyttja Brown massive clayey gyttja - no macrofossils - sharp upper contact - flame-like structure

Deposited during the lake isolation stage

84-150 Gyttja clay Greenish massive gyttja clay - in places

indeterminated laminates

“Lagoon” stage sediment

150-199 Clay Dark grey clay - no structures - dry and crackish

Deposited during the Baltic Sea stage (no information on stage)

199 -> Sand Hard bottom

Page 27: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

19

2.4 Lake Poosjärvi, Pori

The sediment lithostratigraphy of the Lake Poosjärvi is diverse (Table 6). The uppermost

layer (0-207 cm) is gyttja that has been deposited during the independent lake period. The

sediment is throughout weakly laminated that indicates relatively calm deposition

conditions. The upper sediment represents deposition during a 2 000-4 000 timespan

(Ojala 2011).

There is a distinct sand layer (207-218 cm) mixed with organic matter underneath. The

sand layer indicates changes in water level or flow conditions, potentially formed by a

massive and possibly very quick erosion and re-sedimentation event that probably

occurred during the isolation. The sediment layer in the depth of 218-260 cm represents

“lagoon” sediment. The sediment layer at the depth of 260-400 cm is a sulphide-rich clay

layer, which has deposited during the Littorina stage. Lower down, in the depth of 400-

480 cm, there is also a sulphide-rich clay layer with sulphide concretions (pyrite or

marcasite) that relate to the Ancylus Lake sedimentation. Under this sediment layer, the

sediment (480-547 cm) is a varved clay layer, which has deposited during the deglaciation

stage (Ojala 2011, p. 35-38). Figure 8 presents the Lake Poosjärvi with its catchment area.

Table 6. Typical sediment stratigraphy of the Lake Poosjärvi, Pori (30.5 m a.s.l)

according to Ojala (2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

0-207 Gyttja Brown gyttja - weakly laminated - 1-2 cm thick dark laminates - undisturbed structure - water content higher in the surface

Deposited during the independent Lake Poosjärvi stage

207-218 Sand Sandy layer - 10-20 cm thick - organic matter mixed with sand

Erosion horizon, relates to the lake isolation stage

218-260 Gyttja clay Greenish gyttja clay - no structure - sharp upper and underneath

contacts

“Lagoon” sediment

260-400 Clay Sulphide-rich clay - in upper part sulphide stripes - in lower part sulphide

conglomerates - upper contact eroded?

Sedimentation during the Littorina Sea stage

400-480 Clay Sulphide-rich clay - sulphide conglomerates - structure disturbed - quick re-deposition?

Sedimentation during the Ancylus Lake stage

480-547 Clay Varved clay - varved structure - sandy layers

Deglaciation stage, varved clay

547 -> Sand/till Hard bottom

Page 28: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

20

2.5 Lake Lampinjärvi, Pori

The stratigraphy of the sediment facies in the Lake Lampinjärvi is also diverse (Table 7).

The uppermost sediment (80-120 cm) is brown gyttja that has been deposited during an

independent lake stage. The top most part of the sediment has sulphide stripes (some ten

centimetres), and below this the sediment type is massive fine detritus gyttja.

Underneath, there is a sediment layer (120-160 cm) that probably represents an

independent lake stage. It consists of weakly laminated darker gyttja, indicating deeper

water depth and more anoxic conditions. The sedimentation rate during the independent

lake stage has been about 0.5 mm/year (Ojala 2011).

The third sediment layer (160-271 cm) represents “lagoon” sediment. The uppermost part

is massive and sediment has been at least partly re-deposited. The lower part of the

sediment layer is bedded indicating calmer and more constant deposition conditions.

Underneath is a massive sand layer (271-285 cm) that indicates a significant change in

the deposition conditions: the water level has been lowered and shore forces have been

eroded sand from the littoral area.

Underneath the sand layer, there is a sediment layer (285-320 cm) that consists mainly of

clay with sand layers and lenses. This kind of structure indicates massive and quick

changes in deposition conditions.

In the depth of 320-385 cm, there is a weakly laminated clay, and in the depth of 385-680

cm a sulphide banded clay that probably represented the Littorina Sea and/or Ancylus

Lake stage. The lowest sediment layer is a laminated clay, which has been deposited

during the deglaciation stage. The total thickness of the varved sediment layer is 65 cm

(Ojala 2011, 38-40). Figure 8 presents the Lake Lampinjärvi with its catchment area.

Page 29: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

21

Table 7. Typical sediment stratigraphy of the Lake Lampinjärvi, Pori (21.2 m a.s.l)

according to Ojala (2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

0-120 Gyttja Brown gyttja - 0-30 cm sulphide stripes - 30-120 massive structure

Deposited during the independent Lake Lampinjärvi stage

120-160 Gyttja Dark (black) gyttja - slightly laminated - no macrofossils

Deposited during the independent Lake Lampinjärvi stage

160-271 Clayey gyttja/gyttja clay

Greenish gyttja clay - no structures in the upper part - bottom part laminated

“Lagoon” stage sedimentation

271-285 Sand Sand - massive

Erosion horizon, change in hydrological conditions

285-320 Clay Grey clay - sand lenses and stripes - disturbed structure

Sedimentation during the Baltic Sea stage, deposited in shallow water

320-385 Clay Clay - no structured - some sulphide stripes

Sedimentation during the Baltic Sea stage, probably the Littorina Sea stage

385-680 Clay Sulphide rich clay - sulphide stripes and

conglomerates - some laminated sediments

Sedimentation during the Baltic Sea, probably the Ancylus Lake stage

680-743 Clay Varved clay - varved structure - some sand stripes

Deposited during the deglaciation, varved clay

743 -> Sand/till Hard bottom

2.6 Lake Kivijärvi, Pori

The Lake Kivijärvi was isolated about 4 000 cal yr BP ago (Ojala 2011, p. 40). The

uppermost sediment layer (0-45 cm) consists of sulphide-banded fine detritus gyttja,

which represents anthropogenic impacts on the lake limnology and sedimentation

environment. Underneath, there is a brown unstructured gyttja layer (45-190 cm), which

represents natural deposition conditions; the human impact has been minor or negligible

(Table 8).

The third sediment layer (190-240 cm) represents also the independent lake stage. The

sediment is dark grey, weakly laminated due to a meromictic lake stage. An average,

sedimentation rate during the independent lake stage has been about 0.5-0.6 mm/year

(Ojala 2011, p. 40).

The thickness of the “lagoon” and littoral stage sediment (240-447 cm) is over 2 m. The

upper sediment is weakly laminated and the lower part clearly laminated or varved. The

varved structure is due to spring floods that have washed mineral matter from the

Page 30: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

22

catchment area to the lake basin. Under the “lagoon” sediment exists a sand layer (447-

457 cm), which indicates significant erosion conditions (Ojala 2011, p. 40-42).

Under the sand layer, there is a thin grey homogenous clay layer (457-466 cm) that has

been deposited during the Baltic Sea stage. Underneath, there is a dark, sulphide-rich clay

at the depth of 466-666 cm. The lowest sediment layer (666-704 cm) is a varved clay,

which relates to the deglaciation stage. Figure 8 presents the Lake Kivijärvi with its

catchment area.

Table 8. Typical sediment stratigraphy of the Lake Kivijärvi, Pori (25.3 m a.s.l) according

to Ojala (2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

0-45 Gyttja Dark (black) gyttja - high water content - sulphide stripes

Deposited during the independent Lake Kivijärvi stage, “anthropogenic sediment”

45-190 Gyttja Brown gyttja - no structure - some macrofossils

Deposited during the independent Lake Kivijärvi stage, “natural sediment”

190-240 Gyttja/ clayey gyttja

Dark grey gyttja - slightly laminated

Deposited during the independent Lake Kivijärvi stage, possible anoxic conditions

240-447 Clayey gyttja/ gyttja clay

Dark green clayey gyttja - upper part laminated - lower part varved

“Lagoon” sediment, changes in water depth and erosion matter

447-457 Sand Sand layer Erosion horizon, change in hydrological conditions

457-466 Clay Grey, massive clay Erosion horizon, change in hydrological conditions

466-666 Clay Dark sulphide-rich clay - upper part rich in

sulphides - sulphide stripes and

conglomerates

Sedimentation during the Baltic Sea stage, probably Littorina Sea and Ancylus Lake stages

666-704 Clay Varved clay - laminated - some thin sulphide

stripes

Deposited during the deglaciation stage, varved clay

704 No penetration

Page 31: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

23

Figure 8. Lakes Poosjärvi, Kivijärvi and Lampinjärvi with their catchment areas (blue

line) Background map and delineation of watershed: Topographic database by the

National Land Survey. Shades: digital elevation model by the same institute. Map layout

by Pekka Hurskainen/Pöyry Finland Oy.

2.7 Lake Valkjärvi, Pomarkku

The sediment profile of the Lake Valkjärvi is the shortest of the studied lakes (Table 9).

The uppermost layer is a fine detritus gyttja at the depth of 0-170 cm with some

macrofossils that have been deposited during the independent lake stage. Underneath,

there is a flame-structured clayey gyttja (170-292 cm). The lower sediment layer (292-

486 cm) is laminated clayey gyttja. Vivianite (iron phosphate) in some places indicates

the anoxic conditions. These two lowest sediment layers were isolated during the

independent lake stage, “lagoon” stage or during the isolation stage. The isolation

occurred about 6 500 years ago (Ojala 2011, p. 42-43) (Table 10). Figure 9 presents the

Lake Valkjärvi with its catchment area.

Page 32: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

24

Table 9. Typical sediment stratigraphy of the Lake Valkjärvi, Pomarkku (51.5 m a.s.l)

according to Ojala (2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

0-170 Gyttja Brown gyttja - water content high in

the upper part - no structure - mineral matter content

increases downwards - in some places

macrofossils - bottom contact varies

Deposited during the independent Lake Valkjärvi stage

170-292 Clayey gyttja/ gyttja clay

Dark, greenish clayey gyttja - partly sulphide-rich - some flame structures

Independent lake stage or “lagoon” stage sedimentation. shallow water depth

292-486 Clayey gyttja/ gyttja clay

Dark brown clayey gyttja - clearly laminated - lower part varved - lower part blackish - in some places vivianite

Independent lake stage or “lagoon” stage sedimentation. deeper water depth, calm sedimentation environment

486 -> Sand/till Hard bottom

Page 33: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

25

Figure 9. Lake Valkjärvi with the catchment area (blue lines). Background map and the

delineation of the watershed: Topographic database by the National Land Survey.

Shades: digital elevation model by the same institute. Map layout by Pekka

Hurskainen/Pöyry Finland Oy.

Page 34: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

26

2.8 Lake Narvijärvi, Rauma

The uppermost sediment layer (0-250 cm) is unstructured fine detritus gyttja with some

macrofossils. The mineral matter content increases according to the sediment depth,

which causes a lighter colour in the lower parts of the sediment. The change to the middle

sediment layer, clayey gyttja at the depth of 250-500 cm, is not sharp but in some places

is equal to the dozens of centimetres in length. The middle sediment layer is a flame-

structured, in some places sulphide-rich clayey gyttja. The lowest gyttja clay layer at the

depth of 500-668 cm is varved, but the laminates are at some places disturbed (Table 10)

(Ojala 2011, p. 45).

Table 10. Typical sediment stratigraphy of the Lake Narvijärvi, Rauma (28.9 m a.s.l)

according to Ojala (2011, section 4.2).

SEDIMENT DEPTH cm

SEDIMENT TYPE

DESCRIPTION LITHOFACIES

INTERPRETATION SEDIMENT FACIES

0-250 Gyttja Brown gyttja - no structured - water content high

in the upper part - mineral matter

content grows downwards

- some macrofossils - lower contact

unclear

Deposited during the independent Lake Narvijärvi stage

250-500 Clayey gyttja/ gyttja clay

Dark greenish clayey gyttja - in some places

sulphide-rich - unclear flame

structure

“Lagoon” sedimentation stage, shallow water depth

500-668 Gyttja clay/ clayey gyttja

Dark brown gyttja clay - clearly laminated - in lower part some

varved layers - lower part blackish - in 660 cm depth

mussel

Independent lake stage or “lagoon” stage, deeper water depth, calm sedimentation environment

668 No penetration

2.9 Comparison of sedimentation environments of the reference lakes

Sedimentation in the lake basins gradually shallows isolated lakes in Finland, which is

also typical for the studied reference lakes. Sedimentation is not constant but occurs in

stages, e.g. sedimentological, hydrological and biological processes cause an increase of

reed bed growth and through filling overgrowing of the lake; a good example is the Lake

Suomenperänjärvi. According to Pajunen (2004), the filling states of the typical small

lakes in Finland exceed already 50%. This has been also observed in the studied reference

lakes. During the filling of lake basins, the hydrological and limnological properties

Page 35: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

27

change: water flow increases, retention time shortens when water space decreases,

stratification of the water decreases and water temperature and oxygen conditions

increase. All these have had affect on sedimentation matter content and quality and

biochemical processes at the bottom of lake basins, will also have effect in the future.

Sediment erosion and re-sedimentation depend on the depth and shape of the lake basin,

as well as on the local and regional hydrological changes. Erosion and re-sedimentation

can be very slow processes, they can take centuries or millennia. On the other hand, re-

sedimentation can be fast and massive, for example during the lake isolation or when new

outlets breach and water level lowers.

Gyttja sediment layers, which have been deposited during the independent lake stage,

occur within the surface layers of all studied lakes. The “lagoon” sediments occur in most

of the studied lake sediments with thicknesses varying from 0.5 m to 2.5 m. The

deposition of the “lagoon sediments” indicates gradual isolation from the Baltic Sea.

Frequent re-deposition is usual for the “lagoon” sediments.

In many studied lakes, it can be seen how the basins are filled with sediment matter and

shallower water areas are eroded, which has flattened the topography of the lake basins

during the past thousands of years. In general, sediment erosion, transport and

accumulation in the studied lakes, in sense of hydrology and sedimentology, are mainly

very slow and gradual processes. Because of the land uplift, the similar processes are

ongoing in the present littoral areas.

The sedimentation conditions are highly dependent on the topography (depth) of the lake

basin but also water flow and movements during and after the isolation. The erosion and

accumulation by wave activity is often a result of wind in the nearby coastal areas, while

hydrological changes such as flow-through of the drainage basins cause mass movements

in the lakes due to significant water flow.

It can be stated that sedimentation is not a continuous process considering the favourable

topographical conditions in the lake basin, the predominant processes are erosion and

transportation of the sediment matter. However, erosion and re-deposition of sediment

matter is difficult to predict for the new lakes that will be isolated from the Baltic Sea in

the future (Ojala 2011, section 4.3).

Page 36: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

28

Page 37: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

29

3 MATERIALS AND METHODS

3.1 Sediment sampling

The representative sampling point was selected according to lake topography, geology,

depth contour lines and results of the ground penetrating radar measurements. Figure 10

presents an example of ground penetrating radar lines (numbers) and the sampling point

(red dot) of the sediment core (KJcore) of the Lake Koskeljärvi (Ojala 2011, Figure 6, p.

16). From each lake a homogenous, long sediment core was drilled (Figure 11). Drilling

was done in spring 2011 (28.3-1.4.2011) (Ojala 2011, p. 9). The sampling tubes of each

lake were sawed open in a longitudinal direction for the detailed study of a sediment bed

structure and sub-sampling. Altogether 39 sub-samples were taken. The basic data of the

reference lake sediments: sediment type, sub-sampling intervals sampling date and

references are presented in the Table 11.

Figure 10. An example of ground penetrating radar lines (numbers) and the sampling

point (red dot) of the sediment core (KJcore) of the Lake Koskeljärvi (Ojala 2011, Figure

6, p.16).

Page 38: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

30

Table 11. The basic data: lake sediment type, sub-sampling intervals, sampling date and

references of the eight reference lakes.

ID number Lake name

Sediment type

Sub-sampling interval cm

Sampling date Reference

SPJ Suomenperänjärvi Gyttja 10-60 28.3-1.4.2011 Ojala 2011

SPJ Suomenperänjärvi Clayey gyttja 60-70 28.3-1.4.2011 Ojala 2011

SPJ Suomenperänjärvi Gyttja clay 84-140 28.3-1.4.2011 Ojala 2011

SPJ Suomenperänjärvi Clayey gyttja 150-199 28.3-1.4.2011 Ojala 2011

PoJ Poosjärvi Gyttja 10-190 28.3-1.4.2011 Ojala 2011

PoJ Poosjärvi Sand 207-213 28.3-1.4.2011 Ojala 2011

PoJ Poosjärvi Gyttja clay 230-240 28.3-1.4.2011 Ojala 2011

PoJ Poosjärvi Clay 270-390 28.3-1.4.2011 Ojala 2011

PoJ Poosjärvi Clay 480-520 28.3-1.4.2011 Ojala 2011

LuJ Lutanjärvi Gyttja 20-360 28.3-1.4.2011 Ojala 2011

LuJ Lutanjärvi Clayey gyttja 370-408 28.3-1.4.2011 Ojala 2011

LuJ Lutanjärvi Gyttja clay 420-640 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Gyttja 20-40 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Gyttja 60-70 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Gyttja 90-160 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Gyttja 200-240 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Gyttja clay 260-270 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Sand 447-457 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Clay 457-466 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Clay 466-474 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Clay 490-650 28.3-1.4.2011 Ojala 2011

KiJ Kivijärvi Clay 680-690 28.3-1.4.2011 Ojala 2011

KJ1 Koskeljärvi Gyttja 50-320 28.3-1.4.2011 Ojala 2011

KJ1 Koskeljärvi Clayey gyttja 343-360 28.3-1.4.2011 Ojala 2011

KJ1 Koskeljärvi Gyttja clay 380-400 28.3-1.4.2011 Ojala 2011

KJ1 Koskeljärvi Gyttja clay 440-540 28.3-1.4.2011 Ojala 2011

LaJ Lampinjärvi Gyttja 20-110 28.3-1.4.2011 Ojala 2011

LaJ Lampinjärvi Gyttja 130-140 28.3-1.4.2011 Ojala 2011

LaJ Lampinjärvi Gyttja clay 160-230 28.3-1.4.2011 Ojala 2011

LaJ Lampinjärvi Sand 271-283 28.3-1.4.2011 Ojala 2011

LaJ Lampinjärvi Clay 300-310 28.3-1.4.2011 Ojala 2011

LaJ Lampinjärvi Clay 385-610 28.3-1.4.2011 Ojala 2011

LaJ Lampinjärvi Clay 720-730 28.3-1.4.2011 Ojala 2011

VaJ Valkjärvi Gyttja 20-140 28.3-1.4.2011 Ojala 2011

VaJ Valkjärvi Gyttja clay 180-290 28.3-1.4.2011 Ojala 2011

VaJ Valkjärvi Gyttja clay 310-480 28.3-1.4.2011 Ojala 2011

NaJ Narvijärvi Gyttja 20-210 28.3-1.4.2011 Ojala 2011

NaJ Narvijärvi Gyttja clay 250-480 28.3-1.4.2011 Ojala 2011

NaJ Narvijärvi Gyttja clay 510-630 28.3-1.4.2011 Ojala 2011

Page 39: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

31

Figure 11. Heavy piston sampler, the Lake Valkjärvi. (Photo A.E.K. Ojala 2011 from

Ojala 2011, Figure 3).

3.2 Sediment analysis

All elements were analysed in the laboratory of ALS Scandinavia AB, Sweden.

Analyses of pH, loss on ignition, total carbon and nitrogen of the sediment samples

pH was measured by 0.01 M CaCl2 (SFS ISO 1090), loss on ignition (LOI) was measured

gravimetrically at 550oC (SFS-EN 12879), dry matter content (ISO 11465) was measured

gravimetrically at 105oC, total carbon was measured according to the method DIN ISO

10694 and total nitrogen according to the method DIN ISO 11261.

Retention and mobility of elements are regulated highly by Eh-pH conditions, however,

redox-potential is not measured from the lake sediments in this study. Redox-potential is

used to determine if the oxidizing or reducing conditions are prevalent in water, sediments

or soil, and to predict the states of different chemical species of elements. In places with

limitations in air supply, such as mires, marine and deep lake sediments, reducing

conditions (negative potentials) are common. Redox reactions change the speciation and

solubility of many elements, create new compounds and alter the biochemistry of soils

and sediments. In general, element sorption increases as the oxidation state of the element

decreases (i.e. under reducing conditions).

Page 40: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

32

Analyses of F-, SO42-, NO3

-, PO43-, DIC and DOC of pore water

Fluoride (F-) and sulphate (SO42-) were analysed according to the method DIN EN ISO

10304-1, nitrate (NO3-) according to DIN EN ISO 10304-1/2-D1 and phosphate (PO4

3-)

according to DIN EN ISO 15681-2 (D46). Dissolved inorganic carbon (DIC) and

dissolved organic carbon (DOC) were measured according to method DIN EN 1484-H3.

Drying of sediment samples

The incubated solid samples were dried at 50ºC before the analysis. Separate

measurements of dry matter content at 105ºC was carried out. Elemental concentrations

were determined on material dried at 50ºC, and then re-calculated and expressed on dry

matter content at 105ºC basis.

Incubation of sediment samples

Incubation involves the filling of 50-ml syringe with weighed sample amounts and

saturation of material with high-purity, Milli-Q water. All samples were saturated when

received, meaning that no water was added before incubation. Each saturated sample was

weighed and immediately transferred to a 50 ml, screw-capped, polypropylene centrifuge

tube. The samples were then incubated for one week at a room temperature.

Records of the mass of incubated material, as well as the mass of Milli-Q water added to

reach the saturation as well as the amount of pore water extracted were to be compiled in

the results.

Pore water analyses of the sediment samples

After being incubated during one week at a room temperature, the incubated samples were

directly centrifuged at 5 000 rpm for 15 min. During the centrifugation, the extracted pore

water was collected in a syringe, and aspirated through a 0.45 µm filter. One aliquot was

acidified using in-house, de-ionized HNO3 to pH<2 before the determination of 71

elements by ICP-SFMS, and a second one was taken directly for the quantification of Cl,

Br and I by ICP-SFMS in separate alkaline analytical run. Methane addition to the plasma

was applied in order to attain the best possible limits of quantification (LOQs) for Ag and

Pd when using ICP-SFMS. The following elements were analysed quantitatively:

halogens (Br, Cl and I), Al, As, Ba, Be, Cd, Ca, Cs, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Mo,

Ni, P, K, Si, Na, Sr, S, Sn, Ti, U, V, Zn, Se, Cs, Nb and Pd. The rest of reported elements

were analysed semi-quantitatively. Concentrations that were below the stated limit of

quantification (LOQ) were reported, although this kind of analysis is not accredited.

During centrifugation, tube for the Lake Kivijärvi sediment sample at the depth of 680-

690 cm was broken, thus no pore water is available for this sample.

Analyses of bioavailable elements

The concentration of bioavailable elements was analysed by NH4Ac (pH 4.5) extraction.

3 g of the incubated, dried and homogenised mineral sediment sample was weighed. In

the analyses, the weight ratio of humus to NH4Ac solution is 1:5 and that of mineral soil

Page 41: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

33

samples to NH4Ac solution 1:10. The mineral sediment samples were leached in NH4Ac

(NH4Ac-CH4COO) solution buffered at pH 4.5 for 16 h in an over-head shaker. After

dilution, the leachates were analysed for elements by ICP-SFMS with methane addition

to achieve the best possible LOQs for Ag and Pd. Separate analyses were made for Br, Cl

and I with ICP-SFMS. The following elements are analysed quantitatively: halogens (Br,

Cl and I), Al, As, Ba, Be, Cd, Ca, Cs, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Mo, Ni, P, K, Si,

Na, Sr, S, Sn, Ti, U, V, Zn, Se, Cs, Nb and Pd. The rest of the reported elements are

analysed semi-quantitatively. Concentrations below stated limit of quantification (LOQ)

were reported, but this kind of analysis is not accredited.

Analyses of pseudo-total elements

It must be noted that HNO3-HF (trace) extraction and LiBO2 fusion method will not

totally dissolve all the minerals in soil and sediment material, for instance silicate

minerals. The extractions thus indicate the maximum pool of elements which can be

dissolved from soil under extremely acidic conditions. An analytical technique, e.g. XRF

(X-ray fluorescence), can be used to analyse the total concentrations of soil and sediment

samples.

Analysis of soil samples were carried out on incubated, dried (+50oC) and homogenised

soil samples, after using a combination of two different methods for digestion, LiBO2-

fusion and HNO3/HF(trace) in sealed Teflon containers in a micro wave oven. After

dilution, the leachates have been analysed for elements by ICP-SFMS with methane

addition to achieve the best possible LOQs for Ag and Pd. Separate analyses were made

for Br, Cl and I with ICP-SFMS. The following elements were analysed quantitatively:

halogens (Br, Cl and I), Al, As, Ba, Be, Cd, Ca, Cs, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Mo,

Ni, P, K, Si, Na, Sr, S, Sn, Ti, U, V, Zn, Se, Cs, Nb and Pd. The rest of reported element

were analysed semi-quantitative. Analyses after LiBO2-fusion was carried out for

following elements: Si, Al, Ca, Fe, K, Mg, Mn, Na, P, Ti, Ba, Be, Cr, Nb, Sc, Sn, Sr, V,

W, Y and Zn. Concentration below stated limit of quantification (LOQ) were reported,

this kind of analysis are not accredited.

Cation exchange capacity and base saturation

The potential cation exchange capacity (CEC) was calculated as a sum of concentrations

(mmol/kg) of positively charged cations (Ca2+, Mg2+, K+, Na+, Al3+ and Fe3+). The

concentrations were calculated from the results of the buffered NH4Ac (pH 4.5)

extraction. The corresponding buffer capacity was determined as a base saturation (BS%),

i.e. the percentage of base cations (Ca2+, Mg2+, K+, Na+) of CEC. The effective CEC can

be measured by unbuffered saline solution. The effective and potential CEC can differ a

lot (Westman 1991).

Grain size distribution

Grain-size analyses of particles >0.063 mm is carried out by dry sieving of the mineral

soils samples by a mechanical sieve shaker and the analyses of <0.063 mm particles are

carried out by the sedimentation method. Results of sieving and sedimentation

measurements were combined for the grain-size distribution graphs (Figures 72-79).

Page 42: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

34

Calculations of the in situ distribution coefficient values

The in situ solid/liquid distribution coefficients (Kd) or partition coefficients, are used to

estimate the mobility and retention of elements in the environment (Gil-García et al.

2009a, b; Vandenhove et al. 2009a). The Kd values are empirical and represent a very

simplistic model of sorption or attenuation on soil or sediment solids (Sheppard 2011).

The Kd is the ratio of the concentration of an element on a solid stage (soil or sediment)

divided by the equilibrium concentration in the connecting liquid stage (water). The Kd

values are highly dependent on environmental factors, including (but not limited) to pH,

redox condition, particle size distribution, organic matter content, biological activity and

temperature (Sheppard 2011, p. 8).

The results of the bioavailable and pseudo-total analyses of the elements were used for

the Kd calculations. The Kd values were calculated using the formula Sheppard et al.

(2007) and Sheppard et al. (2009a):

Kd = (Csolid/Cporewater) – MC (Eq. 1-1)

Where

- Kd is in units of (µg/kgdw)/µg/L), or less correctly L/kg

- Csolid is concentration of the elements in the dried solids (µg/kgdw)

- Csoil solution is concentration of the elements in the extracted soil solution (µg/L),

and

- MC is the soil moisture content of the solids after extraction but before drying

(L/kg)

Further, for MC (see Table 13) it is assumed that the soil moisture has the density of water

(1 kg/L), and thus MC = (100-dry matter/100). The correction for moisture content is

relevant only for low Kd values numerically in the same range as the moisture content,

and accounts for the amount of the element in the residual pore water in the soil when the

sample is dried for analysis. For elements with high Kdsolids values this correction has little

effect, but is still valid (Sheppard 2011, p. 21).

Redox-potential is not determined from the lake sediment samples. However, it is one of

the main factors affecting distribution coefficient values. Redox reactions are taking place

in sediments controlled by the quantity and diffusion rate of oxygen (Koch-Steindl &

Pröhl 2001).

Page 43: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

35

4 RESULTS

4.1 pH, dry matter, loss on ignition, total carbon and nitrogen and C/N ratio

The pH values of the sediment samples vary from 2.6 to 6.2, the lowest and the highest

pH is in the Lake Lampinjärvi (Figure 12). The highest pH value is in the bottom, varved

clay layer (deposited during the deglaciation stage) at the depth of 720-730 cm, and the

lowest in the black gyttja layer (deposited during the independent lake stage) at the depth

of 130-140 cm. The pH decreases along the sediment depths in the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi. In the Lakes

Poosjärvi, Kivijärvi and Lampinjärvi the lowest pH values are in the middle parts of the

sediment profiles (Table 12).

The dry matter content (untreated samples, see Table 12) varies from 12.1% to 72%, the

lowest values are in the topmost gyttja layers. The dry matter content (treated samples,

see Table 12) varies from 22% to 81%. The loss on ignition (LOI) values vary from 1.6%

to 32%, the highest values (19%-32%) are in the topmost gyttja layers. The total carbon

content varies from 0.5% to 16%, the contents decrease along the sediment depths. The

total nitrogen contents are minor; the contents vary from 0.07% to 1.2% (Table 12).

The C/N ratio is used to express origin and changes, e.g. natural vs. anthropogenic, of the

organic matter in the lake sedimentation history. If the C/N ratio is 4-10, the origin of the

lake sediment is from the lake´s own basic production, i.e. autochthonous, while ratio

>20, the origin of organic matter is allochthones, i.e. mainly from the catchment area (e.g.

Meyers & Ishiwatari 1993, pp. 971-872; Meyers 1994, pp. 289-290; Heikkilä 1999, pp.

p. 3, pp. 46-47). The C/N ratio is the highest in the topmost gyttja layers (C/N=11-13),

indicating both autochthonic and allochthonic origin of the organic matter, in the bottom

sediment layers the C/N ratio (6-8) is smaller. The highest C/N ratio (16) is in the topmost

gyttja layer in the Lake Valkjärvi, which catchment area (9.5 km2) is small in relation to

the lake area, in addition, the lake is shallow. In general, the highest C/N ratios are in the

topmost gyttja layers in all lake sediment profiles indicating anthropogenic impacts.

Page 44: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

36

Figure 12. The pH values of the lake sediment samples vary from 2.6 to 6.2, the lowest

and the highest pH is in the Lake Lampinjärvi (green line).

0

100

200

300

400

500

600

700

800

2,0 3,0 4,0 5,0 6,0 7,0

Sed

imen

t d

epth

(cm

)

pH

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 45: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

37

Table 12. Moisture content (MC), dry matter content (untreated and treated samples),

pH, loss on ignition (LOI), total carbon and nitrogen contents and C/N ratio of the sub-

samples of the reference lakes (- = no result). The highest values are marked in bold.

Lake name Sediment type

Sub-sampling interval cm

Moisture content (MC) (L/kg)

Dry matter % 105oC Untreated sample

Dry matter % 105oC Treated sample

pH 0.01 M CaCl2

LOI %dw 500oC Ctotdw %

Ntot

dw % C/N

Suomenperänjärvi Gyttja 10-60 0.78 12.1 22 4.8 32 16 1.2 13

Suomenperänjärvi Clayey gyttja 60-70 0.58 23 42 3.6 15.6 7.6 0.7 11

Suomenperänjärvi Gyttja clay 84-140 0.47 39 53 3.2 7.8 3.0 LOQ -

Suomenperänjärvi Clayey gyttja 150-199 0.44 45 57 3.3 5.8 2.1 0.3 7

Poosjärvi Gyttja 10-190 0.76 15.1 24 4.4 23 11 1.0 11

Poosjärvi Sand 207-213 0.51 37 49 4.7 11.3 3.7 0.2 19

Poosjärvi Gyttja clay 230-240 0.53 34 47 3.2 8.4 3.3 0.4 8

Poosjärvi Clay 270-390 0.36 58 64 4.0 2.5 0.5 0.1 5

Poosjärvi Clay 480-520 0.38 57 62 5.6 3.3 0.5 0.09 6

Lutanjärvi Gyttja 20-360 0.67 20 33 5.0 21 8.9 0.7 13

Lutanjärvi Clayey gyttja 370-408 0.58 32 42 3.3 12.9 5.4 0.6 9

Lutanjärvi Gyttja clay 420-640 0.52 37 48 3.5 10.3 4.5 0.6 8

Kivijärvi Gyttja 20-40 0.69 17.7 31 4.3 18.7 - - -

Kivijärvi Gyttja 60-70 0.69 18.3 31 4.6 22 - - -

Kivijärvi Gyttja 90-160 0.72 16.7 28 4.7 24 13 0.9 14

Kivijärvi Gyttja 200-240 0.64 25 36 3.0 16.2 6.5 0.7 9

Kivijärvi Gyttja clay 260-270 0.58 35 42 3.3 11.2 4.6 0.6 8

Kivijärvi Sand 447-457 0.21 72 79 3.3 1.3 0.4 0.08 5

Kivijärvi Clay 457-466 0.39 58 61 3.4 3.1 0.6 0.1 6

Kivijärvi Clay 466-474 0.45 53 55 4.7 3.1 0.6 0.2 3

Kivijärvi Clay 490-650 0.34 56 67 5.1 3.4 0.7 0.1 7

Kivijärvi Clay 680-690 0.31 53 59 5.5 3.8 0.6 0.1 6

Koskeljärvi Gyttja 50-320 0.71 15.6 29 5.4 25 11 0.9 12

Koskeljärvi Clayey gyttja 343-360 0.59 28 41 5.3 14.4 7.4 0.9 8

Koskeljärvi Gyttja clay 380-400 0.50 33 50 3.5 12.7 5.9 0.7 8

Koskeljärvi Gyttja clay 440-540 0.52 38 48 3.2 9.9 4.2 0.4 11

Lampinjärvi Gyttja 20-110 0.74 14.2 26 4.6 24 12 1.1 11

Lampinjärvi Gyttja 130-140 0.69 18.6 31 2.6 19.9 - - -

Lampinjärvi Gyttja clay 160-230 0.59 31 41 3.0 12.3 4.7 0.6 8

Lampinjärvi Sand 271-283 0.19 71 81 3.7 1.6 0.4 0.2 2

Lampinjärvi Clay 300-310 0.22 62 78 3.8 2.6 0.8 0.1 8

Lampinjärvi Clay 385-610 0.27 59 73 4.4 2.7 0.7 0.1 7

Lampinjärvi Clay 720-730 0.28 63 72 6.2 2.8 0.6 0.07 9

Valkjärvi Gyttja 20-140 0.76 13.7 24 5.1 30 16 0.1 16

Valkjärvi Gyttja clay 180-290 0.52 31 49 3.6 12.7 6.0 0.8 8

Valkjärvi Gyttja clay 310-480 0.48 37 52 3.2 11.2 4.8 0.7 7

Narvijärvi Gyttja 20-210 0.70 15.7 30 4.8 24 12 1.1 11

Narvijärvi Gyttja clay 250-480 0.54 32 46 5.0 12.6 6.1 0.8 8

Narvijärvi Gyttja clay 510-630 0.49 36 51 3.5 10.3 4.6 0.6 8

Page 46: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

38

4.2 Anion concentrations, dissolved organic carbon and dissolved inorganic carbon of the pore water

The anion concentrations (F-, SO42-, NO3

- and PO43-), dissolved organic carbon (DOC)

and dissolved inorganic carbon (DIC) of the pore water sub-samples are presented in

Table 13. Fluoride concentrations vary from 0.01 mg/L to 4.8 mg/L, the geometric mean

(GM) is 2 mg/L. Nitrate concentrations are low, the range is from 0.2 mg/L to 58 mg/l,

and GM is 0.9 mg/L. The highest NO3- concentration is in the Lake Lutanjärvi in the

massive gyttja layer at the depth of 20-360 cm. Phosphate concentrations vary from 0.1

mg/L to 68 mg/L, and GM is 0.2 mg/L. The highest PO43- concentration is in the Lake

Lampinjärvi in the black gyttja layer at the depth of 130-140 cm. The sulphate

concentrations vary from 22 mg/L to 13 000 mg/L, and GM is 574 mg/L. The highest

SO42- concentration is in the Lake Lampinjärvi also in the black gyttja layer at the depth

of130-140 cm (Figure 13).

The dissolved organic carbon (DOC) concentrations vary from 11 mg/L to 329 mg/L, and

GM is 69 mg/L. The highest concentration is in the bottom, dark brown, laminated clayey

gyttja layer (deposited during the independent lake stage or in the “lagoon” stage in the

deeper water depth and calm sedimentation environment) at the depth of 310-480 cm in

the Lake Valkjärvi. The dissolved inorganic carbon (DIC) concentration varies from 0.5

mg/L to 19.0 mg/L, and GM is 3.8 mg/L. The highest concentrations are in the Lake

Kivijärvi in the dark, sulphide-rich clay layer (deposited during the Littorina lake stage

or in the Ancylus Lake stage) at the depth of 490-650 cm and Lampinjärvi in the bottom,

varved clay layer (deposited during the deglaciation stage) at the depth of 720-730 cm.

The DIC concentrations are the highest in the bottom sediment layers.

Figure 13. The sulphate concentrations vary from 22 mg/L to 13 000 mg/L, and GM is

574 mg/L. The significantly high SO42- concentration is in the black gyttja layer in the

Lake Lampinjärvi at the depth of 130-140 cm.

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000 14000

Sed

imen

t d

epth

(cm

)

SO42– (mg/L)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 47: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

39

Table 13. The anion (F-, SO42-, NO3

- and PO43-) concentrations, dissolved organic carbon

(DOC) and dissolved inorganic carbon (DIC) of the pore water samples (- =no result,

the values NO3- =<0.11 mg/L and PO4

3- =<0.033 mg/L are given by the ALS laboratory,

and they are <LOQ). The highest values are marked in bold.

Lake name Sediment type

Sub-sampling interval cm

F- mg/L

SO42-

mg/L NO3

- mg/L

PO43- mg/L

DOC mg/L

DIC mg/L

Suomenperänjärvi Gyttja 10-60 0.8 200 0.6 <0.033 15 5.3

Suomenperänjärvi Clayey gyttja 60-70 4.2 1630 0.2 <0.033 49 2.6

Suomenperänjärvi Gyttja clay 84-140 4.8 2030 0.2 <0.333 209 0.5

Suomenperänjärvi Clayey gyttja 150-199 3.1 1380 0.2 <0.033 229 2.2

Poosjärvi Gyttja 10-190 0.8 325 0.1 <0.033 15 1.4

Poosjärvi Sand 207-213 0.6 36 8.1 0.8 11 2.7

Poosjärvi Gyttja clay 230-240 3.9 2430 0.2 0.06 69 6.4

Poosjärvi Clay 270-390 0.6 222 <0.11 <0.033 34 3.7

Poosjärvi Clay 480-520 0.5 22 0.2 0.4 51 15

Lutanjärvi Gyttja 20-360 1.5 630 58 <0.033 26 4.3

Lutanjärvi Clayey gyttja 370-408 4.6 3710 0.5 0.1 122 0.7

Lutanjärvi Gyttja clay 420-640 3.2 1610 0.8 <0.033 161 3.8

Kivijärvi Gyttja 20-40 0.6 381 8.1 <0.033 18 3.2

Kivijärvi Gyttja 60-70 LOQ 85 10 <0.033 16 4.5

Kivijärvi Gyttja 90-160 LOQ 90 0.6 <0.033 22 3.9

Kivijärvi Gyttja 200-240 2.5 5060 <0.11 0.6 191 4.0

Kivijärvi Gyttja clay 260-270 2.6 2230 <0.11 <0.033 232 3.5

Kivijärvi Sand 447-457 1.4 435 <0.11 <0.033 70 7.4

Kivijärvi Clay 457-466 1.6 1200 <0.11 <0.033 134 1.7

Kivijärvi Clay 466-474 0.8 376 <0.11 0.033 44 3.7

Kivijärvi Clay 490-650 0.5 86 <0.11 0.2 62 13

Kivijärvi Clay 680-690 0.9 32 <0.11 0.7 - -

Koskeljärvi Gyttja 50-320 0.6 106 1.5 0.07 36 7.0

Koskeljärvi Clayey gyttja 343-360 0.8 366 <0.11 0.1 40 7.4

Koskeljärvi Gyttja clay 380-400 1.6 1830 <0.11 0.05 314 7.6

Koskeljärvi Gyttja clay 440-540 4.5 2660 <0.11 0.05 256 5.7

Lampinjärvi Gyttja 20-110 0.6 512 9.0 <0.033 15 4.7

Lampinjärvi Gyttja 130-140 1.1 13000 0.2 68 251 2.7

Lampinjärvi Gyttja clay 160-230 4.0 4570 0.2 0.3 170 3.4

Lampinjärvi Sand 271-283 1.1 821 <0.11 0.04 123 2.5

Lampinjärvi Clay 300-310 1.2 766 <0.11 <0.033 227 1.8

Lampinjärvi Clay 385-610 0.6 390 <0.11 0.08 77 5.3

Lampinjärvi Clay 720-730 0.7 62 <0.11 0.7 40 19.0

Valkjärvi Gyttja 20-140 0.6 543 2.1 0.05 31 3.1

Valkjärvi Gyttja clay 180-290 1.2 1380 <0.11 0.05 97 1.8

Valkjärvi Gyttja clay 310-480 3.1 2910 0.2 0.07 329 6.7

Narvijärvi Gyttja 20-210 0.6 559 8.8 0.05 28 3.8

Narvijärvi Gyttja clay 250-480 0.06 394 <0.11 0.2 75 7.9

Narvijärvi Gyttja clay 510-630 1.2 1140 <0.11 0.04 200 3.1

Page 48: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

40

4.3 The pore water element concentrations

The pore water concentrations of the main elements are presented in Appendix A. The

limit of quantification (LOQ) of the pore water analysis are presented in Appendix F

Ag, Cl, Cs, I, Mo, Nb, Ni, Pd, Se, Sn and Sr concentrations

The high element concentrations are expressed in mg/kg, otherwise µg/L. The min, max

and arithmetic mean is presented in Appendix G (Table G-1).

All silver (Ag) concentrations are under the limit of quantification (LOQ <0.01

µg/L), except two results are same as LOQ and they are in the Lakes Lampinjärvi

and Valkjärvi.

Chlorine (Cl) concentrations are high, the minimum value is 8.6 mg/L and the

maximum 1 300 mg/L, AM is 180 mg/L (Figure 14). The concentrations increase

along to the lake sediment depths. The highest concentrations are in the Lake

Lampinjärvi (1 300 mg/L and 872 mg/L) in the bottom, varved clay layer at the

depth of 720-730 cm and in the sulphide rich clay layer (deposited probably during

the Ancylus Lake stage) at the depth of 385-610 cm, and in the Lake Narvijärvi

(996 mg/L) in the bottom gyttja clay layer (deposited during the independent lake

stage or “lagoon” stage, in the deeper water depth and calm sedimentation

environment) at the depth of 510-630 cm. The lowest concentration is in the Lake

Suomenperänjärvi in the clayey gyttja layer at the depth of 60-70 cm (deposited

during the lake isolation stage). Most commonly, Cl- and complex Cl anions are

easily soluble, leached from sediment, and transported to water basins. According

to Bodek et al. (1988) there is no soil retention of Cl, and therefore Cl in solution

moves through soil at virtually the same speed as the displacing solution (Kabata-

Pendias & Pendias 1991, pp. 251-252).

Caesium (Cs) concentrations vary from 0.07 µg/L to 1.8 µg/L, and AM is 0.6

µg/L. The highest values (>1 µg/L) are in the Lake Poosjärvi in the greenish gyttja

clay layer at the depth of 230-240 cm (deposited during the “lagoon” stage) and

in the Lake Lampinjärvi in the black gyttja layer at the depth of 130-140 cm. The

concentrations vary unevenly along the sediment profile depths.

Iodine (I) concentrations vary from 1.0 µg/L to 4 630 µg/L, and AM is 333 µg/L

(Figure 15). The highest concentrations (>1 700 µg/L) are in the Lake Narvijärvi

(1 720 µg/L) in the clayey gyttja layer at the depth of 250-480 cm (deposited

during the “lagoon” stage, in shallow water depth) and significantly high

concentration (4 630 µg/L) in the laminated gyttja clay layer at the depth of 510-

630 cm (deposited during the “lagoon” stage, deeper water depth and calm

sedimentation environment). The concentrations are the lowest in the topmost

gyttja layers.

Molybdenum (Mo) concentrations vary from 0.05 µg/L to 46 µg/L, and AM is 3.7

µg/L (Figure 16). The significantly higher concentrations (>20 µg/L) are in the

bottom, varved clay layer at the depth of 480-520 cm (deposited during the

deglaciation stage) in the Lake Poosjärvi (46 µg/L) and Lake Lampinjärvi (22

Page 49: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

41

µg/L and 24 µg/L) in the black gyttja layer at the depth of 130-140 cm (deposited

during the independent lake stage) and in the bottom, varved clay layer at the

depth of 720-730 cm (deposited during the deglaciation stage) than in the other

sediment samples. The concentrations show slightly increasing trend with the

sediment depths.

Figure 14. Pore water chlorine concentrations of the sub-samples by sediment profile

depths in the reference lakes. The concentrations vary from 8600 µg/L to 1 300 000 µg/L.

The highest concentrations are in the Lakes Lampinjärvi and Narvijärvi. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi. The scale of X-axis is

logarithmic.

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 10000000

Sed

imen

t d

epth

(cm

)

Cl (µg/L)

SPJ1

PoJ1

LuJ1

KiJ1

KJ1

LaJ1

VaJ1

NaJ1

Page 50: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

42

Figure 15. Pore water iodine concentrations of the sub-samples by sediment profile

depths in the reference lakes. The concentrations vary from1.0 µg/L to 4 630 µg/L. The

significantly high concentrations are in the Lake Narvijärvi. The sampling depths vary in

different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 16. Pore water molybdenum concentrations of the sub-samples by sediment

profile depths in the reference lakes. The concentrations vary from 0.05 µg/L to 46 µg/L.

The highest concentrations are in the Lakes Poosjärvi and Lampinjärvi. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000

Sed

imen

t d

epth

(cm

)

I (µg/L)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50

Sed

imen

t d

epth

(cm

)

Mo (µg/L)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 51: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

43

Niobium (Nb) minimum (0.001 µg/L) is the same as the LOQ. The maximum

value is 5.4 µg/l, and AM is 0.2 µg/L (Figure 17). The highest concentration (5.4

µg/L) is in the Lake Lampinjärvi in the black gyttja layer at the depth of 130-140

cm. All other results were <1 µg/L.

Nickel (Ni) concentrations vary from 1.9 µg/L to 10 300 µg/L, and AM is 2 530

µg/L (Figure 18). The considerably higher concentration is in the Lake Kivijärvi

in the massive clay layer (probably erosion horizon) in the depth 457-466 cm. The

lowest concentration is in the Lake Koskeljärvi in the topmost fine detritus gyttja

layer in the depth 50-320 cm (deposited during the independent lake stage). The

Ni concentrations increase along the sediment depths in the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi. In the Lakes

Kivijärvi and Lampinjärvi the highest Ni concentrations are in the middle parts of

the sediment profiles.

All Palladium (Pd) concentrations are <LOQ. The reported LOQ for Pd is 0.02

µg/L.

Figure 17. Pore water niobium concentrations of the sub-samples by sediment profile

depths in the reference lakes. The concentrations vary from 0.001 µg/L to 5.4 µg/L. The

significantly high concentration is in the Lake Lampinjärvi in the black gyttja layer at the

depth of 130-140 cm. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

0

100

200

300

400

500

600

700

800

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Sed

imen

t d

epth

(cm

)

Nb (µg/L)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 52: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

44

Figure 18. Pore water nickel concentrations of the sub-samples by sediment profile

depths in the reference lakes. The concentrations vary from 1.9 µg/L to 10 300 µg/L. The

the highest concentration is in the Lake Kivijärvi in the massive clay layer at the depth of

466-474 cm. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

Selenium (Se) concentrations vary from 0.2 µg/L to 42 µg/L, and AM is 4.7 mg/L

(Figure 19). The considerably higher Se concentrations are in the bottom, varved

clay layers in the Lake Poosjärvi (25 µg/L) at the depth of 480-520 µg/L, in the

Lake Kivijärvi (11.8 µg/L) in the bottom, varved clay layer at the depth of 680-

690 cm and in the Lake Lampinjärvi (42 µg/L) in the bottom, varved clay layer at

the depth of 720-730 cm. The Se concentrations increase along the sediment

profile depths.

Strontium (Sr) concentrations are high, the variation is from 203 µg/L to 9 190

µg/L, and AM is 3 900 µg/L (Figure 20). The highest Sr concentrations (>5 000

µg/L) are in the Lakes Lutanjärvi (9 190 µg/L) in the clayey gyttja layer at the

depth of 370-408 cm (deposited during the lake isolation stage), Koskeljärvi

(5 300 µg/L and 7 500 µg(L) in the gyttja clay layers at the depth of 380-400 cm

(deposited during the “lagoon” stage) and at the depth of 440-540 cm (deposited

during the Ancylus Lake stage or Littorina Sea stage), Valkjärvi (6 670 µg/L) in

the bottom, clayey gyttja layer at the depth of 310-480 cm (deposited during the

independent lake stage or the “lagoon” stage) and Narvijärvi (8 880 µg/L) in the

bottom, gyttja clay layer at the depth of 510-630 cm (deposited during the

independent lake stage or the ”lagoon” stage) . The concentrations increase along

the sediment depths in the Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi,

Valkjärvi and Narvijärvi, in the other lakes the concentrations are the highest in

the middle parts of the sediment profiles.

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000

Sed

imen

t d

epth

(cm

)

Ni (µg/L)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 53: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

45

Figure 19. Pore water selenium concentrations of the sub-samples by sediment profile

depths in the reference lakes. The concentrations vary from 0.2 µg/L to 42 µg/L. The

highest concentrations are in the bottom, varved clay layers in the Lakes Lampinjärvi and

Poosjärvi. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

Figure 20. Pore water strontium concentrations of the sub-samples by sediment profile

depths in the reference lakes. The concentrations vary from 203 µg/L to 9 190 µg/L. The

highest concentrations are in the Lakes Narvijärvi and Lutanjärvi. The sampling depths

vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50

Sed

imen

t d

epth

(cm

)

Se (µg/L)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000

Sed

imen

t d

epth

(cm

)

Sr (µg/L)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 54: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

46

Tin (Sn) concentrations are under LOQ, the variation is from from 0.01 µg/L to

0.4 µg/L. Reported LOQ for Sn is 0.05 µg/L. The very low concentrations (0.01

µg/L) are common; they have been found in twelve sub-samples of the studied

lake sediment samples. The highest concentrations (>0.07 µg/L) are in the Lakes

Kivijärvi (0.07 µg/L) in the slightly laminated gyttja layer at the depth of 200-240

cm and Lampinjärvi (0.4 µg/L) in the black gyttja layer at the depth of 130-140

cm.

Calcium, magnesium, potassium, sodium and phosphorus concentrations

Pore water concentrations of Ca, Mg, K, Na and P are presented in Appendix A.

Calcium concentrations vary from 34 mg/L to 586 mg/L. The highest

concentrations (>550 mg/L) are in the Lakes Suomenperänjärvi (586 mg/L) in the

massive clayey gyttja layer (deposited during the isolation stage) at the depth of

60-70 cm, Lampinjärvi (554 mg/L) in the black gyttja layer at the depth of 130-

140 cm, and Valkjärvi (557 mg/L) in the bottom, laminated clayey gyttja layer at

the depth of 310-480 cm (Appendix A).

Magnesium concentrations vary from 16.9 mg/L to 986 mg/L. The highest Mg

concentrations (>700 mg/L) are in the Lakes Lutanjärvi (986 mg/L) in the dark

brown clayey gyttja layer at the depth of 370-408 cm (deposited during the

isolation stage), Koskeljärvi (727 mg/L) in the greenish gyttja clay layer at the

depth of 440-540 cm, and Narvijärvi (850 mg/L) in the dark brown gyttja clay

layer at the depth of 510-630 cm.

Sodium concentrations vary from 24 mg/L to 1 210 mg/L. The highest

concentrations are in the Lakes Lampinjärvi (1 210 mg/L and 1 110 mg/L) in the

sulphide-rich clay layer at the depth of 385-610 cm (deposited probably during

the Ancylus Lake stage) and in the bottom, varved clay layer at the depth of 720-

730 cm (deposited during the deglaciation stage), and Narvijärvi (1 120 mg/L) in

the dark brown gyttja clay layer at the depth of 510-630 cm (deposited during the

independent lake stage or “lagoon” stage in the deeper water depth and calm

sedimentation environment). Na concentrations increase with the sediment profile

depths.

Potassium concentrations vary from 0.6 mg/L to 124 mg/L. The highest K

concentrations (>100 mg/L) are in the Lakes Lutanjärvi (123 mg/L) in the light

brown gyttja clay layer (deposited in the “lagoon” stage) at the depth of 420-640

cm, Kivijärvi (114 mg/L) in the dark sulphide-rich clay layer at the depth of 466-

474 cm (deposited during the Ancylus lake stage or Littorina Sea stage) and

Lampinjärvi (123 mg/L) in the sulphide-rich clay layer at the depth of 385-610

cm (deposited during the Ancylus Lake stage). The K concentrations vary

unevenly along the sediment profiles.

Phosphorus (P) concentrations vary from 19.3 µg/L to 132 000 µg/L. The highest

P concentrations are in the Lakes Kivijärvi (2 030 µg/L and 1 390 µg/L) in the

slightly laminated gyttja layer at the depth of 200-240 cm (deposited during the

independent lake stage, possible anoxic conditions) and in the sand layer at the

Page 55: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

47

depth of 447-457 cm (erosion horizon), and Lampinjärvi (132 000 µg/L and 1 920

µg/L) in the black gyttja layer at the depth of 130-140 cm and in the sand layer at

the depth of 271-283 cm (erosion horizon). The phosphorus concentrations vary

unevenly along the sediment profiles.

Aluminium, iron and sulphur concentrations

Pore water concentrations of Al, Fe and S are presented in Appendix A.

Aluminium (Al), iron and sulphur concentrations are high. Aluminium (Al)

concentrations vary from 39 µg/L to 1 510 mg/L. The highest concentrations are

in the Lakes Lutanjärvi (1 090 mg/L) in the dark brown clayey gyttja layer

(deposited during the isolation stage) at the depth of 370-408 cm, and Lampinjärvi

(1 510 mg/L and 1 190 mg/L) in the black gyttja layer at the depth of 130-140 cm

(deposited during the independent lake stage) and in the greenish gyttja clay layer

(deposited during the “lagoon” stage) at the depth of 160-230 cm. The aluminium

concentrations vary unevenly along the sediment profiles.

Iron (Fe) concentrations vary from 17.4 µg/L to 6 230 mg/L. The highest Fe

concentrations (>1 500 mg/L) are in the Lakes Kivijärvi (2 550 mg/L, 1 650 mg/L

and 1 970 mg/L) in the slightly laminated dark gyttja layer (deposited during the

independent lake stage, possible anoxic conditions) at the depth of 200-240 cm,

in the sand layer (erosion horizon) at the depth of 447-457 cm and in the massive

clay layer (erosion horizon) at the depth of 457-466 cm, and Lampinjärvi (6 230

mg/L and 4 320 mg/L) in the black gyttja layer at the depth of 130-140 cm and in

the sand layer at the depth of 271-283 cm. (Appendix A). The lowest

concentrations (<50 µg/L) are in the Lakes Suomenperänjärvi (42 µg/L) in the

topmost massive gyttja layer at the depth of 10-60 cm, Poosjärvi (35 µg/L) in the

bottom, varved clay layer at the depth of 480-520 cm, and Kivijärv+-i (17.0 µg/L)

in the dark sulphide-rich clay layer at the depth of 490-650 cm. The iron

concentrations vary unevenly along the sediment profiles.

Sulphur (S) concentrations vary from 37 mg/L to 7 670 mg/L. The highest S

concentration is in the Lake and Lake Lampinjärvi in the black gyttja layer

(deposited during the independent lake stage) at the depth of 130-140 cm. In

addition, high sulphur concentrations are in the Lakes Lutanjärvi (4 740 mg/L) in

the clayey gyttja layer (deposited during the lake isolation stage) at the depth of

370-408 cm, in the Lake Kivijärvi (4 490 mg/kg) in the slightly laminated dark

gyttja layer (deposited during the independent lake stage, possible anoxic

conditions) at the depth of 200-240 cm and (4 720 mg/L) in the massive clay layer

(erosion horizon) at the depth of 457-466 cm and (4 910 mg/L) in the greenish

gyttja clay layer (deposited during the “lagoon” stage) at the depth of 160-230 cm

and (5 270 mg/L) in the sand layer (erosion horizon) at the depth of 271-283 cm.

The the lowest S concentrations (<80 mg/L) are in the Lakes Poosjärvi (37 mg/L)

in the sand layer (erosion horizon, relates to the lake isolation stage) at the depth

of 207-213 cm, Kivijärvi (71 mg/L) in the brown gyttja layer at the depth of 60-

70 cm and Koskeljärvi (65 mg/L) in the topmost fine detritus gyttja layer at the

depth of 50-320 cm. The sulphur concentrations vary unevenly along the sediment

profiles.

Page 56: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

48

Main metal concentrations

Pore water concentrations of As, Cd, Cr, Co, Cu, Mn, Pb and Zn are presented in

Appendix A.

Arsenic (As) concentrations in the pore water vary from 0.3 µg/L to 969 µg/L.

The highest As concentrations (>15 µg/L) are in the Lake Lampinjärvi (960 µg/L,

the result is extremely high compared to other results) in the black gyttja layer

(deposited during the independent lake stage) at the depth of 130-140 cm, (24

µg/L) in the greenish gyttja layer (“lagoon” stage) at the depth of 160-230 cm and

(37 µg/L) in the sand layer (erosion horizon) at the depth of 271-283 cm. In the

Lake Kivijärvi, there is also a high concentration of arsenic (14.7 µg/L) in the

slightly laminated dark grey gyttja layer (deposited during the independent lake

stage, possible anoxic conditions) at the depth of 200-240 cm and (18.0 µg/L) in

the sand layer (erosion horizon) at the depth of 447-457 cm. Concentrations are

the highest in the middle parts of the sediment profiles.

Cadmium (Cd) concentrations vary from 0.2 µg/L to 155 µg/L. The highest Cd

concentrations (>100 µg/L) are in the Lakes Kivijärvi (101 µg/L) in the dark green

clayey gyttja layer (“lagoon” stage) at the depth of 260-270 cm, (155 µg/L) in the

sand layer (erosion horizon) at the depth of 447-457 cm and (112 µg/L) in the

massive clay layer (erosion horizon) at the depth of 457-466 cm, and Lampinjärvi

(119 µg/L) in the sand layer (erosion horizon) at the depth of 271-283 cm. The Cd

concentrations are the highest in the middle parts of the sediment profiles.

Chromium (Cr) concentrations vary from 0.1 µg/L to 1 350 µg/L. The highest Cr

concentrations (>300 µg/L) are in the Lakes Suomenperänjärvi (308 µg/L) in the

bottom, clay layer (deposited during the Baltic Sea stage) at the depth of 150-199

cm, Kivijärvi (315 µg/L) in the sand layer (erosion horizon) at the depth of 447-

457 µg/L, and Lampinjärvi (1 350 µg/L) in the black gyttja layer at the depth of

130-140 cm, (549 µg/L) in the greenish gyttja clay (“lagoon” stage) at the depth

of 160-230 µg/L and (755 µg/L) in the sand layer at the depth of 271-283 cm. The

lowest value is in the Lake Poosjärvi in the bottom varved clay layer (deposited

in the deglaciation stage) at the depth of 480-520 cm. In general, the lowest

concentrations are in the topmost gyttja layers.

Cobalt (Co) concentrations vary from 0.8 µg/L to 5 220 µg/L. The highest Co

concentrations (>4 000 µg/L) are in the Lakes Kivijärvi (5 220 µg/L and 5 020

mg/L) in the sand layer at the depth of 447-457 cm and in the massive clay layer

at the depth of 457-466 cm, and Lampinjärvi (4 180 µg/L) in the sand layer at the

depth of 271-283 cm. The lowest Co value is in the Lake Poosjärvi in the bottom

varved clay layer at the depth of 480-520 cm.

Copper (Cu) concentrations vary from 0.6 µg/L to 21 000 µg/L. The highest Cu

concentrations (>500 µg/L) are in the Lakes Suomenperänjärvi (1 700 µg/L) in

the bottom, dark grey clay layer at the depth of 150-199 cm, Koskeljärvi (792

µg/L) in the bottom, greenish grey gyttja clay layer at the depth of 440-540 cm,

and Lampinjärvi (2 096 µg/L and 816 mg/L) in the black gyttja layer at the depth

Page 57: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

49

of 130-140 cm and in the greenish gyttja clay layer at the depth of 160-230 cm.

The lowest Cu concentrations are in the topmost gyttja layers.

Manganese (Mn) concentrations vary from 272 µg/L to 781 mg/L. The highest

Mn concentrations (>200 mg/L) are in the Lakes Poosjärvi (233 mg/L) in the

greenish gyttja clay layer (“lagoon” stage) at the depth of 230-240 cm, Kivijärvi

(781 mg/L) in the sand layer (erosion horizon) at the depth of 457-466 cm, and

Lampinjärvi (264 mg/L) in the sulphide-rich clay layer (deposition probably

during the Ancylus Lake stage) at the depth of 385-610 cm. The lowest Mn value

is in the topmost gyttja layer of the Lake Koskeljärvi.

Lead (Pb) concentrations are low, the variation is from 0.02 µg/L to 12.4 µg/L

and AM is 1.6 µg/L. The lowest value is the same as LOQ. The highest Pb

concentrations (>5 µg/L) are in the Lakes Poosjärvi (5.0 µg/L) in the sulphide-

rich clay layer (deposited during the Littorina Sea stage) at the depth of 270-390

cm, Lutanjärvi (12.0 µg/L) in the bottom, light brown gyttja clay layer (“lagoon”

stage) at the depth of 420-520 cm, and Valkjärvi (12.4 µg/L and 5.4 mg/L) in the

clayey gyttja layers at the depth of 180-290 cm and 310-480 cm.

Zinc (Zn) concentrations vary from 4.4 µg/L to 21 mg/L. The highest Zn

concentrations (>15 mg/L) are in the Lakes Lutanjärvi (21 mg/L) in the dark

brown clayey gyttja layer (deposited during the lake isolation stage) at the depth

of 370-408 cm, Kivijärvi (16.4 mg/L and 15.2 mg/L) in the dark grey gyttja layer

(deposited during the independent lake stage, possible anoxic conditions) at the

depth of 200-240 cm and in the sand layer (erosion horizon) at the depth of 457-

466 cm, and Lampinjärvi (18.5 mg/L, 18.0 mg/L and 15.0 mg/L) in the back gyttja

layer (deposited during the independent lake stage) at the depth of 130-140 cm, in

the greenish gyttja clay (deposited during the “lagoon” stage) at the depth of 160-

230 cm and in the sand layer (erosion horizon) at the depth of 271-283 cm. The

lowest values (<10 µg/L) are in the Lakes Poosjärvi (6.3 µg/L), Kivijärvi (4.4

µg/L) and Lampinjärvi (8.1 µg/L) in the bottom varved clay layers (deposited

during the deglaciation stage). However, the zinc concentrations vary unevenly

along the sediment profiles.

Thorium and uranium concentrations

Thorium (Th) concentrations vary from 0.01 µg/L to 676 µg/L. The lowest

concentrations (0.01 µg/L) occur in nine sediment sub-samples of the studied

lakes. The highest concentrations (>60 µg/L) are in the Lakes Suomenperänjärvi

(93 µg/L) in the bottom dark grey clay layer at the depth of 150-199 cm, Kivijärvi

(61 µg/L) in the dark sulphide-rich clay layer at the depth of 466-474 cm, and

Lampinjärvi (676 µg/L, 112 µg/L and 201 µg/L) in the black gyttja layer at the

depth of 130-140 cm, in the greenish gyttja clay layer at the depth of 160-230 cm

and in the sand layer at the depth of 271-283 cm. The thorium concentrations are

unevenly distributed along the sediment profile depths (Appendices A and G-1).

Uranium (U) concentrations vary from 0.01 µg/L to 812 µg/L. The lowest U

concentrations are in the Lakes Poosjärvi in the sand layer at the depth of 207-213

cm, and Kivijärvi in the brown gyttja layer at the depth of 60-70 cm and in the

Page 58: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

50

bottom, varved clay layer at the depth of 680-690 cm. The highest U

concentrations are (>150 µg/L) in the Lakes Suomenperänjärvi (170 µg/L) in the

bottom, dark grey clay layer at the depth of 150-199 cm, Kivijärvi (163 µg/L, 155

µg/L and 198 µg/L) in the slightly laminated dark grey gyttja layer at the depth of

200-240 cm, in the sand layer at the depth of 447-457 cm and in the massive clay

layer at the depth of 457-466 cm, and Lampinjärvi (812 µg/L, 231 µg/L and 263

µg/L) in the black gyttja layer at the depth of 130-140 cm, greenish gyttja clay at

the depth of 160-230 cm and in the sand layer at the depth of 271-283 cm. In

general, the highest uranium concentrations are in the middle parts of the sediment

profiles (Appendices A and G-1).

4.4 The bioavailable concentrations

The bioavailable concentrations, samples extracted by NH4Ac, (pH 4.5), of the elements

are presented in Appendix B. The limits of quantification of the bioavailable element

analysis are presented in Appendix F.

Ag, Cl, Cs, I, Mo, Nb, Ni, Pd, Se, Sn and Sr concentrations

The elements of main concern Ag, Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr, in the

lake sediment profiles vs lake sediment depths are presented in Figures 21-29. The high

element concentrations are expressed in mg/kg, otherwise in µg/kg. The min, max and

arithmetic mean is presented in Appendix G (Table G-2).

Silver is easily released by weathering and precipitated in alkaline reduction-

potential conditions. Ag can form several ionic species and complexed anions. In

spite of several mobile complexes, silver apparently is immobile in soils and

sediments, if the pH is above 4. Humic substances are known to absorb and

complex Ag (Kabata-Pendias & Pendias 1991, p. 108). All bioavailable silver

concentrations were under LOQ (LOQ< 5 µg/kg).

Chlorine occurs in solution as chlorine ion (Cl-) which is a common anion in

sediment and soil solution regardless of solution pH or redox conditions.

Interaction of Cl- with mineral surfaces is weak and in general, chlorine is

considered as a non-retaining ion. Chlorine is incorporated into organic

substances, i.e. chlorinated organic compounds are formed (Söderlund et al. 2013,

p. 66).

Chlorine concentrations are high, the variation is from 14.1 mg/kg to 1 050 mg/kg,

and AM is 140 mg/kg. The highest Cl concentration is in the Lake Narvijärvi in

the bottom, gyttja clay layer (deposited during the independent lake stage or

“lagoon” stage, in the deep water and calm sedimentation conditions) at the depth

of 510-630 cm and the lowest in the Lake Poosjärvi in sulphide-rich clay layer

(deposited during the Littorina Sea stage) at the depth of 270-390 cm. Cl

concentrations vary unevenly along the sediment profiles. In the Lake Narvijärvi

chlorine concentrations in the whole sediment profile are significantly higher than

in the other lakes (Figure 21).

Page 59: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

51

Caesium sorption on mineral surface hydroxyl and functional groups of organic

matter takes place via an ion exchange mechanism (Bondar & Zabrodskii 2001,

Rigol et al. 2002). Clay and mica minerals sorb caesium ions very efficiently on

their interlamellar ion exchange sites. The geochemical characteristics of caesium

radionuclides are fairly similar to those of nonradioactive Cs, therefore 137Cs

released into the atmosphere becomes strongly adsorbed by clay minerals and also

by organic matter, and appears to migrate in sediments and soils quite slowly

(Meriwether et al. 1988).

Caesium concentrations vary from 9.7 µg/kg to 151 µg/kg, and AM is 44 µg/kg.

The highest concentrations (>100 µg/kg) are in the Lakes Poosjärvi (107 µg/kg)

in the topmost gyttja layer at the depth of 10-190 cm, Kivijärvi (151 µg/kg) in the

topmost dark gyttja and brown gyttja layers at the depth of 20-40 cm and 60-70

cm, and Lampinjärvi (125 µg/kg and 124 µg/kg) in the topmost gyttja layers at

the depth of 20-110 cm and 130-140 cm. The Cs concentrations are the highest in

the topmost gyttja layers. The lowest value is in the Lake Kivijärvi in the massive

clay layer (erosion horizon) at the depth of 447-457 cm. Cs concentrations

decrease with the sediment depths, except in the Lake Lampinjärvi (Figure 22).

Iodine is a redox-sensitive element. Iodine is retained much better into organic

matter than minerals. Although iodine is known to be easily transported by water,

its sorption by carbon compounds, organic matter and clays greatly influences

iodine cycling. Organic matter is the most important for iodine sorption and

therefore iodine is accumulated mainly in topmost sediment layers. Micro-

organisms play a significant role in iodine cycling for their great capacity to

accumulate it (Kabata-Pendias & Pendias 1991, pp. 254-258).

Iodine concentrations vary from 85 µg/kg to 9.5 mg/kg, and AM is 1.1 mg/kg. The

highest concentrations (>2.0 mg/kg) are in the Lakes Lutanjärvi (2.0 mg/kg) in

the bottom gyttja clay layer (“lagoon” stage) at the depth of 420-640 cm, Valkjärvi

(2.0 mg/kg) in the bottom laminated clayey gyttja layer (deposited during the

independent lake stage or “lagoon “stage) at the depth of 310-480 cm, and in

Narvijärvi (2.2-9.5 mg/kg) in the depths 20-630 cm, i.e. along the whole sediment

profile the iodine concentrations are significantly higher than in other samples.

The lowest value is in the Lake Poosjärvi in the sand layer at the depth of 207-213

cm (Figure 23).

Page 60: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

52

Figure 21. Chlorine concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The concentrations vary from 14 100 µg/kg to

1 050 000 µg/kg. The significantly high concentrations are in the Lake Narvijärvi along

the sediment profile. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

Figure 22. Caesium concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The concentrations vary from 9.7 µg/kg to 151

µg/kg. The the highest concentrations are in the topmost gyttja layers in the Lakes

Kivijärvi and Lampinjärvi. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

-100000 100000 300000 500000 700000 900000 1100000

Sed

imen

t d

epth

(cm

)

Cl µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

Sed

imen

t d

epth

(cm

)

Cs µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 61: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

53

Figure 23. Iodine concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The concentrations are high; they vary from 85

µg/kg to 9 500 µg/kg. The significantly high concentrations are in the Lake Narvijärvi

along the sediment profile. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

High iron and aluminium oxide content, clay fraction and organic matter content,

and low pH increase the retention of molybdenum in soils and sediments (Barrow

1970, McGrath et al. 2010). Organic matter is the main sorbent for molybdenum

(Lang & Kaupenjohann 2000).

Molybdenum concentrations vary from 8.5 µg/kg to 82 µg/kg, and AM is 26

µg/kg. The highest concentrations (>50 µg/kg) are in the Lakes Lampinjärvi (72

µg/kg and 82 µg/kg) in the black gyttja and sand layers at the depth of 130-140

cm and 271-283 cm, and Narvijärvi (53 µg/kg) in the bottom laminated gyttja clay

layer at the depth of 510-630 cm. The lowest value is in the Lake Poosjärvi in the

gyttja clay layer at the depth of 207-213 cm. Mo concentrations vary unevenly

along the sediment profiles (Figure 24).

Sorption and speciation of niobium in soil and sediments are rather poorly

studied, but it has been noted that niobium is relatively immobile in soils and

sediments due to its strong sorption on mineral particles. High organic matter and

clay content increase the retention of niobium in soils and sediments (Echeverria

et al. 2005, Sheppard & Thibault 1990). Sorption of niobium shows a dependence

on pH in alkaline solutions (pH>8), decreasing with increasing pH (Andersson et

al. 1979, Baston et al. 1992). Most of the niobium compounds are slightly soluble

in both acid and alkaline environment. However, the presence of organic

complexes mobilises niobium (Kabata-Pendias & Pendias 1992, pp. 215-216).

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000

Sed

imen

t d

epth

(cm

)

I µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 62: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

54

Niobium concentrations vary from 1.7 µg/kg to 19.8 µg/kg, and AM is 8.5 µg/kg.

The highest Nb concentrations (>14 µg/kg) are in the Lakes Lutanjärvi (14.9

µg/kg and 14.5 µg/kg) in the topmost gyttja and clayey gyttja layers at the depth

of 20-360 cm and 370-408 cm, Kivijärvi (14.3 µg/kg) in the topmost gyttja layer

at the depth of 20-40 cm, Lampinjärvi (19.8 µg/kg) in the black gyttja layer at the

depth of 130-140 cm, and Valkjärvi (14.3 µg/kg) in the bottom laminated clayey

gyttja layer at the depth of 310-480 cm. The lowest value is in the Lake Kivijärvi

in the sand layer at the depth of 447-457 cm. Nb concentrations vary unevenly

along the sediment profile depths (Figure 25).

The most important factor controlling mobility and retention of nickel is acidity,

Ni mobility increases when pH decreases (Mc Grath 1995, Kabata-Pendias &

Pendias 1992). Nickel is the most mobile in oxic conditions and when the

sediment pH is <4. In acidic, but reducing conditions, Ni can with sulphides

precipitate into nickel(II) sulphides. When the sediment pH> 6.5 Ni could

precipitate with iron compounds. In the alkaline conditions, Ni mobility is

restricted by hydrolysis (Rose 1979). In addition, with acidity, nickel retention is

regulated by organic matter, clay minerals, manganese oxides and precipitates and

inorganic and organic complexes, e.g. chlorine, sulphate and organic acids.

Nickel concentrations are high. The Ni concentrations vary from 1.1 mg/kg to 8.4

mg/kg, and AM is 3.5 mg/kg. The highest concentrations (>7.0 mg/kg) are in the

Lakes Poosjärvi (8.4 mg/kg) in the topmost brown gyttja layer at the depth of 10-

190 cm and Kivijärvi (7.8 mg/kg) in the topmost dark gyttja layer at the depth of

20-40 cm. The lowest value is in the Lake Lampinjärvi in the bottom varved clay

layer at the depth of 720-730 cm. In the Lakes Suomenperänjärvi, Lutanjärvi,

Koskeljärvi, Valkjärvi and Narvijärvi Ni concentration increases with the

sediment profile depths; in the other lakes the highest concentrations are in the

topmost gyttja layers (Figure 26).

Page 63: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

55

Figure 24. Molybdenum concentrations in NH4Ac extraction of the sub-samples by

sediment profile depths in the reference lakes. The concentrations vary from 8.5 µg/kg to

82 µg/kg. The highest concentrations are in the Lake Lampinjärvi in the black gyttja layer

and sand layer. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

Figure 25. Niobium concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The concentrations vary from 1.7 µg/kg to 19.8

µg/kg. The highest concentration is in the black gyttja layer in the Lake Lampinjärvi at

the depth of 130-140 cm. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

Sed

imen

t d

epth

(cm

)

Mo µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0,0 5,0 10,0 15,0 20,0

Sed

imen

t d

epth

(cm

)

Nb µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 64: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

56

Selenium has a complex chemistry, due to the existence of different oxidation

states. The chemistry of selenium resembles to that of sulphur and Se can replace

sulphur in its inorganic and organic compounds (Pezzarossa & Petruzzelli 2001).

The retention of selenium increases with increasing organic matter (Choppin et

al. 2009, Gustafsson & Johnsson 1992, Pezzarossa & Petruzelli 2001), increasing

clay fraction (Ashworth et al. 2008, Keskinen et al. 2009, Vuori et al. 1994),

decreasing pH (Nakamaru & Sekine 2008, Pezzarossa & Petruzelli 2001), and

increasing concentration of Ca2+ in the solution (Neal et al. 1987). The retention

of selenium decreases as the presence of competing anions, such as phosphate,

arsenate, carbonate and sulphate concentrations increases (Nakamaru & Sekine

2008, Pezzarossa et al. 1999, Vuori et al. 1994).

Selenium results are poor; the results were available only for 17 sub-samples out

of 39 sub-samples. The Se concentration vary from 56 µg/kg to 127 µg/kg, and

AM is 77 µg/kg. The highest Se concentrations (>100 µg/kg) are in the Lakes

Kivijärvi (127 µg/kg and 105 µg/kg) in the dark green clayey gyttja and massive

clay layers at the depth of 260-270 cm and 457-466 cm and Lampinjärvi (100

µg/kg) in the black gyttja layer at the depth of 130-140 cm. The lowest values are

in the sub-samples of the Lakes Kivijärvi, Koskeljärvi, Poosjärvi and Lampinjärvi

(Figure 27).

Figure 26. Nickel concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The concentrations are high; they vary from 1 100

µg/kg to 8 400 µg/kg. The highest concentrations are in the topmost gyttja layers in the

Lakes Poosjärvi and Kivijärvi. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

All bioavailable palladium concentrations were under LOQ (LOQ<2 µg/kg).

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000

Sed

imen

t d

epth

(cm

)

Ni µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 65: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

57

Figure 27. Selenium concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The results of the bioavailable Se concentrations are

poor, most of the result are <LOQ. The concentrations vary from 30 µg/kg to 127 µg/kg.

The sampling depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi,

PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi,

LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Geochemical and biochemical characteristics of strontium are similar to those of

calcium. The Sr and Ca ratio seems to be relatively stable in the biosphere

(Kabata-Pendias & Pendias 1992, p. 115). Strontium is easily mobilised,

especially in oxidising acid conditions, and incorporated in clay minerals and

strongly retained by organic matter, but mostly Sr is precipitated as biogenic

carbonates, largely in the form of invertebrate shell materials (Kabata-Pendias &

Pendias 1992, p. 115). In acid sediments and soils Sr is easily leached down the

sediment and soil profiles, in alkaline sediments and soils Sr may be precipitated

by various cations and, in particular hydrogen ions.

Strontium concentrations are high. The variation is between 1.8 mg/kg and 24

mg/kg, and AM is 12.5 mg/kg. The highest Sr values (>20 mg/kg) are in the Lakes

Lutanjärvi (21 mg/kg and 24 mg/kg) in the brown massive gyttja and dark brown

clayey gyttja layers at the depth of 20-360 cm and 370-408 cm, Kivijärvi (23

mg/kg) in the brown gyttja layer at the depth of 90-160 cm, Koskeljärvi (23

mg/kg) in the topmost brown massive gyttja at the depth of 50-320 cm, and

Narvijärvi (21 mg/kg) in the bottom dark brown gyttja layer at the depth of 510-

630 cm. The lowest value is in the Lake Kivijärvi in the sand layer (erosion

horizon) at the depth of 447-457 cm. In the Lakes Suomenperänjärvi, Koskeljärvi,

Lampinjärvi and Valkjärvi strontium concentrations decrease with the sediment

profile depths. In other lakes Sr concentrations vary unevenly along the sediment

profiles (Figure 28).

Tin occurs as Sn2+ and Sn4+ and forms several complex anions of oxides and

hydroxides. The mobility of Sn is highly pH dependent. Especially Sn2+, strongly

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

Sed

imen

t d

epth

(cm

)

Se µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 66: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

58

reducing, can be present only in acid and reducing conditions. Soluble Sn follows

the behaviour of Fe and Al and remains in the weathered residue along with the

hydroxides of these metals. The ability of Sn to form complexes with organic

substances, both soluble and insoluble, has been reported (Kabata-Pendias &

Pendias 1992, p. 186).

Tin concentrations vary from 5.1 µg/kg to 15.6 µg/kg, AM is 7.8 µg/kg. The

highest concentrations (>10 µg/kg) are in the Lakes Kivijärvi (11.1 µg/kg) in the

topmost gyttja layer at the depth of 20-40 cm, Lampinjärvi (15.6 µg/kg) in the

bottom, varved clay layer at the depth of 720-730 cm, and Narvijärvi (13.5 µg/kg)

in the dark greenish clayey gyttja layer at the depth of 250-480 cm. The lowest

value is in the Lake Valkjärvi in the bottom, dark brown clayey gyttja layer at the

depth of 310-480 cm. Sn concentrations are unevenly distributed along the

sediment profile depths (Figure 29).

Figure 28. Strontium concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The concentrations vary from 1 800 µg/kg to 24 000

µg/kg. The concentrations of Sr are highly variable. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000

Sed

imen

t d

epth

(cm

)

Sr µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 67: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

59

Figure 29. Tin concentrations in NH4Ac extraction of the sub-samples by sediment profile

depths in the reference lakes. The concentrations vary from 0.9 µg/kg to 15.6 µg/kg. The

highest concentrations are in the bottom, varved clay layer in the Lake Lampinjärvi and

in the gyttja clay layer in the Lake Narvijärvi. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Calcium, magnesium, potassium, sodium and phosphorus concentrations

Appendix B presents Ca, Mg, K, Na and P concentrations.

Calcium concentrations are high, the range is from 372 mg/kg to 3 700 mg/kg.

The highest Ca concentrations (>3 000 mg/kg) are in the Lakes Suomenperänjärvi

(3 700 mg/kg) in the topmost massive gyttja layer at the depth of 10-60 cm,

Kivijärvi (3 020 mg/kg) in the slightly laminated dark grey gyttja layer at the

depth of 200-240 cm, Koskeljärvi (3 361 mg/kg) in the brown massive fine

detritus gyttja layer at the depth of 50-320 cm and (3 300 mg/kg) in the bottom

greenish grey gyttja clay layer at the depth of 440-540 cm, and Lampinjärvi (3 100

mg/kg) in the greenish gyttja clay layer at the depth of 160-230 cm. The Ca

concentrations decrease along the sediment profiles in the Lakes

Suomenperänjärvi, Poosjärvi, Koskeljärvi, Lampinjärvi and Narvijärvi. The

lowest Ca value is in the Lake Kivijärvi in the sand layer at the depth of 447-457

cm. Calcium minerals weather easily. Dissolved calcium is crystallised into

sediments or precipitated from solutions by organisms as calcite and dolomite,

and as phosphate, mainly apatite.

Magnesium concentrations vary from 139 mg/kg to 1 630 mg/kg. The highest

concentrations (>1 000 mg/kg) are in the Lakes Lutanjärvi (1 350 mg/kg) in the

dark brown clayey gyttja layer at the depth of 370-408 cm, Kivijärvi (1 160

mg/kg) in the slightly laminated dark grey gyttja layer at the depth of 200-240 cm,

Lampinjärvi (1 330 mg/kg) in the black gyttja layer at the depth of 130-140 cm,

0

100

200

300

400

500

600

700

800

0,0 5,0 10,0 15,0 20,0

Sed

imen

t d

epth

(cm

)

Sn (µg/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 68: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

60

and Narvijärvi (1 060 mg/kg) in the dark greenish clayey gyttja layer at the depth

of 250-480 cm, and (1 370 mg/kg) in the bottom, dark brown gyttja clay layer at

the depth of 510-630 cm. The lowest Mg value is in the Lake Kivijärvi in the sand

layer at the depth of 447-457 cm. Magnesium concentrations are mainly the

highest in the middle parts of the sediment profiles, but in some profiles Mg

concentrations vary unevenly along the sediment profiles. Magnesium minerals

weather quite easily, with dissolved magnesium being removed from solution,

mostly into clay minerals and carbonates.

Sodium concentrations vary from 61 mg/kg to 1 760 mg/kg. The highest

concentrations (>700 mg/kg) are in the Lakes Lutanjärvi (913 mg/kg and 709

mg/kg) in the dark brown clayey gyttja layer at the depth of 370-408 cm and in

the bottom, light brown gyttja clay layer at the depth of 420-640 cm, and

Narvijärvi (733-1 760 mg/kg) along the whole sediment profile depth. Na

concentrations mainly increase with the sediment profile. The lowest value is in

the sand layer in the Lake Kivijärvi at the depth of 447-457 cm. Dissolved sodium

remains in solution in cation form, and when removed to the sea, it adds to sea

water salinity.

Potassium concentrations are lower than Ca, Mg and Na concentrations. The

potassium concentrations vary from 7.3 mg/kg to 688 mg/kg. The highest K

concentrations (>600 mg/kg) are in the Lakes Poosjärvi (641 mg/kg) in the

bottom, varved clay layer at the depth of 480-520 cm and Kivijärvi (603 mg/kg)

in the sulphide-rich clay layer at the depth of 490-650 mg/kg, and (688 mg/kg) in

the bottom, varved clay layer at the depth of 680-690 cm. The lowest K value is

in the Lake Kivijärvi in sand layer at the depth of 447-457 cm. In general,

potassium concentrations vary unevenly along the sediment profiles. Potassium is

easily adsorbed from solutions onto colloids and is enriched in clays.

Phosphorus concentrations are high. The range is from 16.9 mg/kg to 373 mg/kg.

The lowest P concentration is in the Lake Kivijärvi in the sand layer at the depth

of 455-474 cm. The highest phosphorus concentrations (>100 mg/kg) are in the

Lakes Lutanjärvi (113 mg/kg) in the topmost gyttja layer at the depth of 20-360

cm, Kivijärvi (361 m/kg) in the slightly laminated dark grey gyttja layer at the

depth of 200-240 cm, Lampinjärvi (373 mg/kg) in the topmost gyttja layer at the

depth of 20-110 cm, and Narvijärvi (130 mg/kg) in the dark greenish clayey gyttja

layer at the depth of 250-480 cm. In general, phosphorus concentrations are quite

unevenly distributed, however, the lowest P concentrations are mainly in the

bottom sub-sediment samples. Dissolved phosphorus is easily removed from

solution into organic-rich sediments or is precipitated by calcium or iron.

Aluminium, iron and sulphur concentrations

Appendix B presents Al, Fe and S concentrations.

Aluminium concentrations vary from 119 mg/kg to 1 450 mg/kg. The highest

concentrations (>1 000 mg/kg) are in the Lakes Suomenperänjärvi (1 320 mg/kg)

in the brown massive gyttja layer at the depth of 10-60 cm, Poosjärvi (1 060

mg/kg) in the weakly laminated brown gyttja layer at the depth of 10-190 cm,

Page 69: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

61

Lutanjärvi (1 290 mg/kg) in the dark brown clayey gyttja layer at the depth of

370-408 cm, Kivijärvi (1 450 mg/kg) in the topmost gyttja layer at the depth of

20-40 cm, Koskeljärvi (1 100 mg/kg) in the topmost brown massive gyttja layer

at the depth of 50-320 cm and Lampinjärvi (1 390 mg/kg and 1 370 mg/kg) in the

black gyttja layer at the depth of 130-140 cm and in the greenish gyttja clay layer

at the depth of 160-230 cm. Al concentrations are highest in the topmost gyttja

layers or just below it. The lowest Al value is in the Lake Kivijärvi in the sand

layer at the depth of 447-457 cm. In acid environment with pH<5.5-5.0, the

mobility of aluminium increases sharply and it competes very actively with other

cations for exchangeable sites. The Al toxicity is also frequently associated with

increased levels of iron and manganese, and possibly other heavy metals, which

are readily available in acid media.

Iron concentrations vary from 869 mg/kg to 22 300 mg/kg. The significantly high

Fe concentrations (>10 000 mg/kg) are in the Lakes Kivijärvi (13 000 mg/kg) in

the slightly laminated dark grey gyttja layer at the depth of 200-240 cm (possible

anoxic conditions) and Lampinjärvi (22 300 mg/kg) in the black gyttja layer at the

depth of 130-140 cm. The lowest value is in the Lake Kivijärvi in the sand layer

at the depth of 447-457 cm. Iron concentrations vary unevenly along the sediment

profiles. The geochemistry of iron is very complex. The behavior of Fe is closely

linked to the cycling of S and C. Both, mineral and organic compounds of Fe, are

easily transformed in soils and sediments, and organic matter appears to have a

significant influence on the formation on Fe oxides. Transformations of iron are

also affected by micro-organisms; some bacteria species (Metallogenium sp.) are

involved in Fe cycling and are known to accumulate iron on the surfaces of living

cells (Kabata-Pendias & Pendias 1992, pp. 271-276).

Sulphur concentrations vary from 91 mg/kg to 23 900 mg/kg. The highest S

concentrations (>10 000 mg/kg) are in the Lakes Kivijärvi (14 000 mg/kg) in the

slightly laminated dark gyttja layer (possible anoxic conditions) at the depth of

200-240 cm and Lampinjärvi (23 900 mg/kg and 121 000 mg/kg) in the black

gyttja layer (deposited during the independent lake stage) at the depth of 130-140

cm and in the brown gyttja layer (deposited during the “lagoon” stage) at the depth

of 160-230 cm. The the lowest value (908 mg/kg) is in the Lake Kivijärvi in the

varved clay layer (deposited during the deglaciation stage) at the depth of 680-

690 cm. The highest sulphur concentrations are in the middle parts of the sediment

profiles, except in the Lakes Koskeljärvi, Valkjärvi and Narvijärvi where the

highest concentrations are in the bottom sediment layers. The soils and sediments

containing organic matter contains commonly high amounts of sulphur (Kabata-

Pendias & Pendias 1992). Sulphur occurs mainly as sulphides (FeS2, FeS, CuFeS2,

PbS, FeAsS). Sulphur concentrations are the highest at the Finnish coast, where

sulphide and sulphur bearing clays are common (Erviö 1975, Ojala et al. 2007,

Palko 1994).

Main metal concentrations

Appendix B presents main metal concentrations.

Page 70: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

62

Arsenic concentrations vary from 98 µg/kg to 2.8 mg/kg. The highest

concentrations (>800 µg/kg) are in the Lakes Kivijärvi (813 µg/kg and 975 µg/kg)

in the brown gyttja layer at the depth of 90-160 cm and in the bottom, varved clay

layer at the depth of 680-690 cm, and Lampinjärvi (2.8 mg/kg and 969 µg/kg) in

the black gyttja layer at the depth of 130-140 cm and in the sand layer at the depth

of 271-283 cm. The lowest As concentrations are in the Lake Kivijärvi in the dark

sulphide-rich clay layer at the depth of 466-474 cm. Arsenic forms a wide variety

of compounds, e.g. arsenides, sulphides, oxides, arsenates and arsenites, and

sometimes As is found in native state (Koljonen et al. 1992, p. 146). Although As

minerals and compounds are readily soluble, As migration is greatly limited due

to the strong sorption by clays, hydroxides and organic matter. The reactions of

arsenic are highly controlled by its oxidation state. Microbiota is also highly

governed by the processes of As migration, precipitation and volatisation (Kabata-

Pendias & Pendias 1992, pp. 203-207).

Cadmium concentrations vary from 31 µg/kg to 736 µg/kg. The highest Cd

concentrations (>500 µg/kg) are in the Lakes Poosjärvi (571 µg/kg) at the

topmost, weakly laminated brown gyttja layer at the depth of 10-190 cm, Kivijärvi

(736 µg/kg) in the topmost black gyttja layer at the depth of 20-40 cm, and

Lampinjärvi (650 µg/kg) in the topmost brown gyttja layer at the depth of 20-110

cm. The lowest Cd value is in the Lake Lampinjärvi in the grey clay layer

(deposited during the Baltic Sea stage in the shallow water) at the depth of 300-

310 cm. The cadmium concentrations decrease with the sediment profile depths.

The most important factors which control Cd mobility are pH and oxidation

potential. Sediment microbiological activity plays a significant role in the Cd

behaviour. Cd is most mobile in acidic soils within the range of pH 4.5-5.5,

whereas in alkaline sediments Cd is rather immobile (Kabata-Pendias & Pendias

1992, pp.131-142).

Chromium concentrations vary from 373 µg/kg to 4.9 mg/kg. The highest Cr

concentrations (>3 mg/kg) are in the Lakes Kivijärvi (3.0 mg/kg) in the slightly

laminated dark grey gyttja layer (possible anoxic conditions) at the depth of 200-

240 cm and Lampinjärvi (4.9 mg/kg) in the black gyttja layer at the depth of 130-

140 cm, and (3.8 mg/kg) in the greenish gyttja clay layer (“lagoon” stage”) at the

depth of 160-230 cm. The lowest Cr value is in the Lake Kivijärvi in the sand

layer at the depth of 447-457 cm. Chromium concentrations are quite unevenly

distributed along the sediment profiles. Chromium behavior is controlled by both

sediment pH and redox-potential (Kabata-Pendias & Pendias 1992, pp. 227-232).

Cobalt concentrations vary from 353 µg/kg to 10.4 mg/kg. The highest Co

concentrations (>10 mg/kg) are in the Lakes Suomenperänjärvi (13.0 mg/kg) in

the topmost brown massive gyttja layer at the depth of 10-60 cm and Kivijärvi

(10.4 mg/kg) in the topmost black gyttja layer at the depth of 20-40 cm. The lowest

Co value is in the Lake Kivijärvi at the bottom, varved clay layer at the depth of

680-690 cm. In general, Co concentrations decrease along the sediment profile

depths, except in the Lakes Koskeljärvi, Valkjärvi and Narvijärvi. In geochemical

cycles, Co closely resembles Fe and Mn. However, its fate in weathering

processes and its distribution in soils profile seems to be strongly determined by

Page 71: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

63

Mn oxide phase formation. During weathering, Co is relatively mobile in

oxidising acid environments, but due to a high sorption by Fe and Mn oxides, as

well as by clay minerals, cobalt does not migrate in a soluble phase. Soil organic

matter and clay content are important factors that govern the cobalt distribution

and behavior. Especially the role of clays rich in montmorillonite and illite have

been found to be significant due to their great sorption capacity and their relatively

easy release of cobalt (Kabata-Pendias & Pendias 1992, pp. 276-284).

Copper concentrations vary from 137 µg/kg to 10.1 mg/kg. The highest Cu

concentrations (>7 mg/kg) are in the Lakes Poosjärvi (9.4 mg/kg) at the bottom,

varved clay layer at the depth of 480-520 cm, Kivijärvi (7.0 mg/kg and 10.1

mg/kg) in the dark sulphide-rich clay layer at the depth of 490-650 cm and at the

bottom, varved clay layer at the depth of 680-690 cm, and Lampinjärvi (9.9

mg/kg) at the bottom, varved clay layer at the depth of 720-730 cm. The lowest

Cu value is in the Lake Poosjärvi in the sand layer at the depth of 207-213 cm.

Copper concentrations increase along the sediment profile depths. During

weathering, copper is almost immobile; in oxidising conditions its precipitates as

water-bearing carbonate and hydroxide and under reducing conditions as

sulphide. The common characteristic of Cu distribution in soil and sediment

profiles is its accumulation in the top horizons (Kabata-Pendias & Pendias 1992,

pp. 95-107).

Manganese concentrations vary from 25 mg/kg to 500 mg/kg. The highest Mn

concentrations (>400 mg/kg) are in the Lakes Poosjärvi (500 mg/kg) in the

topmost, brown gyttja layer at the depth of 10-190 cm, Kivijärvi (426 mg/kg) in

the topmost black gyttja layer at the depth of 20-40 cm and Lampinjärvi (482

mg/kg and 402 µg/kg) in the topmost brown gyttja layer at the depth of 20-110

cm and in the black gyttja layer at the depth of 130-140 cm. The lowest Mn value

is in the Lake Kivijärvi in the sand layer at the depth of 447-457 cm. Manganese

concentrations decrease along the sediment profile depths in the Lakes Poosjärvi,

Lutanjärvi, Kivijärvi, Lampinjärvi, Valkjärvi and Narvijärvi. In the Lakes

Suomenperänjärvi and Koskeljärvi, Mn concentrations are unevenly distributed

along the sediment profiles. The behaviour of manganese in sediments is complex

and is controlled by different environmental factors of which pH-Eh are the most

important (Kabata-Pendias & Pendas 1992, pp. 258-267).

Lead is reported to be the least mobile among the other heavy metals. The

relatively low Pb concentrations in soil and sediment solutions support this

statement (Kabata-Pendias & Pendias 1992, p. 187). Although the Pb species can

vary considerably from one soil and sediment type to another, it may be concluded

that lead is associated mainly with clay minerals, Mn oxides, Fe and Al

hydroxides, and organic matter (Norrish 1975, Tidball 1976). Generally, there is

more soluble lead in sediments when the pH is acidic. lllite clay minerals show

much greater affinity to retain lead than other clay minerals (Hildebrand &

Blume1974).

Lead concentrations vary from 12.8 µg/kg to 6.7 mg/kg, and the AM is 1.8 mg/kg.

The highest Pb concentrations (>5.0 mg/kg) are in the Lakes Suomenperänjärvi

(6.4 mg/kg) in the topmost brown massive gyttja layer at the depth of 10-60 cm,

Page 72: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

64

Poosjärvi (5.3 mg/kg) in the topmost weakly laminated brown gyttja layer at the

depth of 10-190 cm, and Kivijärvi (6.7 mg/kg) in the topmost black gyttja layer at

the depth of 20-40 cm, thus the highest Pb concentrations are in the topmost gyttja

layers. The lowest Pb value is in the Lake Lampinjärvi in the black gyttja layer at

the depth of 130-140 cm (Figure 30). During weathering, Pb sulphides slowly

oxidise and has an ability to form carbonates and also to be incorporated in clay

minerals, in Fe and Mn oxides, and in organic matter. The Pb is the least mobile

among the other heavy metals (Kabata-Pendias & Pendias 1992, pp. 187-197).

Figure 30. Lead concentrations in NH4Ac extraction of the sub-samples by sediment

profile depths in the reference lakes. The concentrations vary from 13 µg/kg to

6 700 µg/kg. The highest concentrations are in the topmost gyttja layers in the Lakes

Kivijärvi and Suomenperänjärvi. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

Zinc concentrations vary from 1070 µg/kg to 61 mg/kg. The highest Zn

concentrations (>50 mg/kg) are in the Lakes Kivijärvi (61 mg/kg) at the topmost

black gyttja layer at the depth of 20-40 cm and Lampinjärvi (51 µg/kg) at topmost

brown gyttja layer at the depth of 20-110 cm. The lowest Zn value is in the Lake

Poosjärvi at bottom, varved clay layer at the depth of 480-520 cm. The zinc

concentrations are clearly higher in the topmost gyttja layers than in other

sediment layers. Zinc-bearing iron-manganese silicates and sulphides are easily

dissolved. Zinc is removed from soil solutions through adsorption into clayey

sediments, where it may form sulphides, silicates and carbonates. The solubility

of Zn minerals during weathering produces mobile Zn2+, especially in acid,

oxidising environment. Zinc is, however, also easily adsorbed by minerals and

organic components, and thus its accumulation in the surface horizons is observed

in most sediment and soil types. Soil organic matter is known to be capable of

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000

Sed

imen

t d

epth

(cm

)

Pb µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 73: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

65

bonding Zn in stable forms, therefore, the Zn accumulation in organic soil

horizons is observed (Kabata-Pendias & Pendias 1992, pp. 120-130).

Thorium and uranium concentrations

Thorium concentrations vary from 143 µg/kg to 26 mg/kg. The lowest Th value

is in the Lake Poosjärvi in the sand layer at the depth of 207-213 cm. The highest

Th concentrations (>1.5 mg/kg) are in the Lakes Suomenperänjärvi (26.3 mg/kg)

at the topmost gyttja layer at the depth of 10-60 cm, (1.9 mg/kg) in the brown

massive clayey gyttja layer at the depth of 60-70 cm and (2.1 mg/kg) in the

bottom, dark grey clay layer at the depth of 140-200 cm, and Kivijärvi (1.7 mg/kg

and 1.6 mg/kg) in the massive clay layer at the depth of 457-466 cm and in the

sulphide-rich clay layer at the depth of 466-474 cm. Th concentrations are the

highest in the middle parts or in the bottom of the sediment profiles.

Uranium concentrations vary from 186 µg/kg to 3.0 mg/kg. The lowest U value

is in the Lake Kivijärvi in the sand layer at the depth of 447-457 cm. The highest

U concentrations (>2.0 mg/kg) are in the Lakes Suomenperänjärvi (2.2 mg/kg) in

the massive clayey gyttja layer at the depth of 60-70 cm, Lutanjärvi (2.2 mg/kg)

in the clayey gyttja layer at the depth of 370-408 cm, Kivijärvi (3.0 mg/kg) in the

massive clay layer at the depth of 457-466 cm, and (2.1 mg/kg) in the bottom,

varved clay layer at the depth of 680-690 cm. The uranium concentrations are the

highest in the middle parts or in the bottom of the sediment profiles.

4.5 Cation exchange capacity and base saturation

The cation exchange capacity (CEC) is the sum of the positively charged cations (Ca2++

Mg2++ K++ Na++ Al3+ + Fe3+) which are held by negatively charged clay and organic

matter particles in the sediment through electrostatic forces. Clay particles generate a

negatively charged surface around themselves to which positively charged cations may

adhere.

Cation exchange is controlled by soil pH, grain size, moisture content and organic matter

content. The mobility of exchangeable cations is also affected by the abundance and type

of clay minerals, weathering degree of silicate minerals, and the concentration and

adsorption properties of organic complexes and chelated compounds present in sediments

(Melkerud 1983).

In mineral sediments, cation exchange takes place primarily in the fine fraction because

of its large, negatively charged surface area. Clays are essential cation reservoirs of

sediments. However, CEC varies considerably with the type of clays (Kabata-Pendias &

Pendias 1992).

Cation exchange capacity (CEC) and base saturation (BS) are calculated using

NH4Ac pH 4.5 extraction results.

The cation exchange capacity varies significantly in different sediment sub-

samples. The main cations are Ca, Fe and Mg. Calcium content (mmol/kg) varied

from 9.3 mmol/kg to 84 mmol /kg, Fe content from 15.5 mmol/kg to 1130

Page 74: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

66

mmol/kg and Mg content from 0.2 mmol/kg to 68 mmol/kg (Table 14). The iron

is the main cation in 20 sub-sample, calcium in fourteen sub-samples and

magnesium in four sub-samples.

The cation exchange capacity varies from 38 mmol/kg to 584 mmol/kg (Table

15). The highest CEC values (>250 mmol/kg) are in the Lakes Lutanjärvi (329

mmol/kg) in the dark brown clayey gyttja layer (deposited during the lake

isolation stage) at the depth of 370-408, Lampinjärvi (266 mmol/kg, 584 mmol/kg

and 350 mmol/kg) in the topmost, brown gyttja layer at the depth of 20-110 cm,

in the black gyttja layer at the depth of 130-140 cm (deposited during the

independent lake stage) and in the greenish gyttja clay layer (deposited during the

“lagoon” stage) at the depth of 160-230 cm, and Narvijärvi (263 mmol/kg) in the

bottom, brown dark clay layer (deposited during the independent lake stage or in

the “lagoon” stage in deeper water depth and calm sedimentation environment) at

the depth of 510-630 cm. The the lowest CEC value is in the Lake Kivijärvi in the

sand layer (erosion horizon) at the depth of 447-457 cm (Figure 31).

The base saturation (BS) varies from 18.5% to 81% (Table 15). The highest BS

values are in the Lakes Lutanjärvi (76%) in the bottom, light brown gyttja clay

layer (“lagoon” stage) at the depth of 420-640 cm, Kivijärvi (74 %) in the slightly

laminated dark grey gyttja layer (deposited during the independent stage, possible

anoxic conditions) at the depth of 200-240 cm, Koskeljärvi (72%) in the greenish

clayey gyttja layer (deposited during the lake isolation stage) at the depth of 343-

360 cm, Lampinjärvi (81%) in the bottom, varved clay layer (deposited during the

deglaciation stage) at the depth of 720-730 cm, and Narvijärvi (72%) in the

bottom, dark brown gyttja clay (deposited during the independent lake stage or

“lagoon” stage in deeper water depth and calm sedimentation environment) at the

depth of 510-630 cm.

Page 75: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

67

Figure 31. Cation exchange capacity of the sub-samples by sediment profile depths in the

reference lakes. The concentrations vary from 38 mmol/kg to 584 mmol/kg. The

significantly high CEC value is in the black gyttja layer in the Lake Lampinjärvi. The

sampling depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi,

PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi,

LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700

Sed

imen

t d

epth

(cm

)

CEC (mmol/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 76: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

68

Table 14. The main cations: aluminium, calcium, iron, potassium, magnesium and

sodium concentrations (mmol/kg) by different sub-samples in the reference lakes. The

highest values are marked in bold.

Reference Lake

Sample interval cm

Al mmol/kg

Ca mmol/kg

Fe mmol/kg

K mmol/kg

Mg mmol/kg

Na mmol/kg

Suomenperänjärvi 10-60 49 76 41 3.1 18.8 7.2

Suomenperänjärvi 60-70 29.5 73 85 1.6 18.4 4.6

Suomenperänjärvi 84-140 18.4 78 69 1.6 21 4.7

Suomenperänjärvi 150-199 19.1 9.8 56 1.9 21 5.3

Poosjärvi 10-190 39 17.1 120 4.1 9.1 5.7

Poosjärvi 207-213 25 21 72 1.6 7.8 4.0

Poosjärvi 230-240 35 22 95 0.8 26 4.3

Poosjärvi 270-390 7.7 17.0 36 0.6 17.3 12.2

Poosjärvi 480-520 7.9 32 29 1.6 36 14.7

Lutanjärvi 20-360 33 66 86 11.0 35 30

Lutanjärvi 370-408 48 68 113 4.1 56 40

Lutanjärvi 420-640 13.6 74 36 12.4 39 31

Kivijärvi 20-40 54 43 123 5.2 8.9 6.0

Kivijärvi 60-70 25 51 63 4.3 15.2 6.3

Kivijärvi 90-160 18.2 71 69 6.0 33 14.2

Kivijärvi 200-240 28 76 23 0.8 48 17.9

Kivijärvi 260-270 20 62 70 2.2 39 21

Kivijärvi 447-457 4.4 9.3 15.5 0.2 5.8 2.7

Kivijärvi 457-466 15.7 26 51 1.2 23 5.3

Kivijärvi 466-474 5.6 24 41 1.0 23 11.6

Kivijärvi 490-650 6.7 26 24 15.5 4.4 18.8

Kivijärvi 680-690 8.2 25 21 17.6 3.2 22

Koskeljärvi 50-320 41 84 32 3.9 4.9 18.9

Koskeljärvi 343-360 11.6 61 21 5.5 2.7 15.0

Koskeljärvi 380-400 14.0 53 67 1.1 3.4 13.3

Koskeljärvi 440-540 18.7 82 77 1.1 8.8 19.2

Lampinjärvi 20-110 30 76 107 6.7 29 17.4

Lampinjärvi 130-140 51 73 398 0.6 55 6.4

Lampinjärvi 160-230 51 76 1130 0.7 68 30

Lampinjärvi 271-283 8.1 9.8 31 0.2 10.3 5.2

Lampinjärvi 300-310 8.9 17.1 19.8 2.0 16.7 12.2

Lampinjärvi 385-610 7.0 21 25 7.6 22 24

Lampinjärvi 720-730 6.1 22 15.5 10.4 19.3 39

Valkjärvi 20-140 25 52 38 3.0 21 10.6

Valkjärvi 180-290 13.3 44 49 3.4 26 11.2

Valkjärvi 310-480 15.7 67 64 1.3 31 16.0

Narvijärvi 20-210 30 51 48 5.9 41 32

Narvijärvi 250-480 5.3 35 32 9.9 44 42

Narvijärvi 510-630 16.1 49 58 5.6 57 77

Page 77: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

69

Table 15. Cation exchange capacity (CEC mmol/kg) and base saturation (BS%) by

different sub-samples in the reference lakes. The highest values are marked in bold.

Reference Lake

Sediment type

Sample interval cm

(Ca+Mg+K+Na) mmol/kg

CEC (mmol/kg) (Ca+Mg+K+Na+Al+Fe)

BS (%) (Ca+Mg+K+Na)/ CEC x 100

Suomenperänjärvi Gyttja 10-60 105 195 54

Suomenperänjärvi Clayey gyttja 60-70 98 212 46

Suomenperänjärvi Gyttja clay 84-140 105 193 54

Suomenperänjärvi Clayey gyttja 150-199 38 119 32

Poosjärvi Gyttja 10-190 36 195 18.5

Poosjärvi Sand 207-213 34 131 26

Poosjärvi Gyttja clay 230-240 53 189 28

Poosjärvi Clay 270-390 47 91 52

Poosjärvi Clay 480-520 84 121 69

Lutanjärvi Gyttja 20-360 142 261 54

Lutanjärvi Clayey gyttja 370-408 168 329 51

Lutanjärvi Gyttja clay 420-640 156 206 76

Kivijärvi Gyttja 20-40 63 240 26

Kivijärvi Gyttja 60-70 77 165 47

Kivijärvi Gyttja 90-160 124 211 59

Kivijärvi Gyttja 200-240 143 194 74

Kivijärvi Gyttja clay 260-270 124 214 58

Kivijärvi Sand 447-457 18 38 47

Kivijärvi Clay 457-466 56 122 46

Kivijärvi Clay 466-474 60 100 60

Kivijärvi Clay 490-650 65 95 68

Kivijärvi Clay 680-690 68 97 70

Koskeljärvi Gyttja 50-320 112 185 61

Koskeljärvi Clayey gyttja 343-360 84 117 72

Koskeljärvi Gyttja clay 380-400 71 152 47

Koskeljärvi Gyttja clay 440-540 111 207 54

Lampinjärvi Gyttja 20-110 129 266 48

Lampinjärvi Gyttja 130-140 135 584 23

Lampinjärvi Gyttja clay 160-230 175 350 50

Lampinjärvi Sand 271-283 26 65 40

Lampinjärvi Clay 300-310 48 77 62

Lampinjärvi Clay 385-610 75 107 70

Lampinjärvi Clay 720-730 91 112 81

Valkjärvi Gyttja 20-140 87 150 58

Valkjärvi Gyttja clay 180-290 85 147 58

Valkjärvi Gyttja clay 310-480 115 195 59

Narvijärvi Gyttja 20-210 130 208 63

Narvijärvi Gyttja clay 250-480 131 168 78

Narvijärvi Gyttja clay 510-630 189 263 72

Page 78: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

70

4.6 Pseudo-total element concentrations

The pseudo-total concentrations of the indigenous elements are presented in Appendix C.

The limits of quantification of the pseudo-total element analysis are presented in

Appendix F. The high element concentrations are expressed in mg/kg or g/kg, otherwise

in µg/kg.

Ag, Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr concentrations

The elements of the main concern Ag, Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr,

extracted by HNO3-HF(trace) or LiBO2 fusion method, in the lake sediment profiles vs

lake sediment depths are presented in Figures 32-42. The min, max and arithmetic mean

is presented in Appendix G (Table G-3).

Silver concentrations vary from 23 µg/kg to 162 µg/kg, and AM is 77 µg/kg. The

highest concentrations (>100 µg/kg) are in the Lakes Poosjärvi (143 µg/kg) in the

topmost brown gyttja layer at the depth of 10-190 cm, Lutanjärvi (103 µg/kg) in

the topmost massive gyttja layer at the depth of 20-360 cm, Kivijärvi (123 µg/kg)

in the topmost black gyttja layer at the depth of 20-40 cm and (110 µg/kg) in the

dark sulphide-rich clay layer at the depth of 490-650 cm, Lampinjärvi (162 µg/kg)

in the topmost brown gyttja layer at the depth of 20-110 cm, and Narvijärvi (103

µg/kg) in the topmost brown gyttja layer at the depth of 20-210 cm. All high Ag

concentrations are in the topmost gyttja layers, except in the Lake Kivijärvi. The

lowest value is in the Lake Lampinjärvi in the sand layer at the depth of 271-283

cm (Figure 32).

Chlorine concentrations are high. The variation is from 48 mg/kg to 980 mg/kg,

and AM is 237 mg/kg. The highest Cl concentrations (>400 mg/kg) are in the

Lakes Lampinjärvi (544 mg/kg) in the bottom, varved clay layer at the depth of

720-730 cm, and Narvijärvi (464 mg/kg) in the topmost, brown gyttja layert at the

depth of 20-210 cm, (782 mg/kg) in the dark greenish clayey gyttja layer at the

depth of 250-480 cm, and (980 mg/kg) in the bottom, dark brown gyttja clay layer

at the depth of 510-630 cm. The lowest Cl value is in the Lake Kivijärvi in the

sand layer at the depth of 447-457 cm. In general, chlorine concentrations increase

with the sediment profile depths. In the Lake Narvijärvi chlorine concentrations

are significantly higher than in the other lakes (Figure 33).

Caesium concentrations vary from 936 µg/kg to 7.4 mg/kg, and AM is 4.0 mg/kg.

The lowest Cs value is in the Lake Suomenperänjärvi at the topmost massive

gyttja layer at the depth of 10-60 cm. The highest caesium concentrations (>6.00

mg/kg) are in the Lakes Suomenperänjärvi (6.2 mg/kg) in the greenish massive

gyttja clay layer (deposited during the “lagoon” stage) at the depth of 84-140 cm,

Poosjärvi (6.7 mg/kg) at the bottom, varved clay layer at the depth of 480-520 cm,

and Kivijärvi (6.0 mg/kg) in the sulphide-rich clay layer at the depth of 490-650

cm. The Cs concentrations clearly increase along the sediment profile depths

(Figure 34).

Page 79: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

71

Figure 32. Silver concentrations in HNO3-HF extraction or LiBO2 fusion method of the

sub-samples by sediment profile depths in the reference lakes. The highest concentrations

are in the topmost gyttja layers in the Lakes Lampinjärvi and Poosjärvi. The

concentrations vary from 23 µg/kg to 162 µg/kg. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 33. Chlorine concentrations in HNO3-HF extraction or LiBO2 fusion method of

the sub-samples by sediment profile depths in the reference lakes. The concentrations

vary from 48 000 µg/kg to 980 000 µg/kg. The significantly high Cl concentrations are in

the Lake Narvijärvi along the sediment profile. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 50 100 150 200

Sed

imen

t d

epth

(cm

)

Ag µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1000000 1200000

Sed

imen

t d

epth

(cm

)

Cl µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 80: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

72

Iodine concentrations vary from 1.4 mg/kg to 99 mg/kg, and AM is 27 mg/kg. The

lowest iodine value is in the Lake Lampinjärvi in the bottom, varved clay layer at

the depth of 20-730 cm. The the highest iodine concentrations (>70 mg/kg) are in

the Lakes Lutanjärvi (93 mg/kg) in the bottom, light brown gyttja clay layer

(deposited during the “lagoon” stage) at the depth of 420-640 cm, Kivijärvi (99

mg/kg) in the dark green clayey gyttja layer (deposited during the “lagoon” stage)

at the depth of 260-270 cm, Lampinjärvi (74 m/kg) in the greenish gyttja clay

layer (deposited during the “lagoon” stage) at the depth of 160-230 cm, and

Valkjärvi (77 mg/kg) in the bottom, clayey gyttja layer (deposited during the

independent lake stage or “lagoon” stage) at the depth of 310-480 cm. The iodine

concentrations are unevenly distributed along the sediment profile depths (Figure

35).

Molybdenum concentrations vary from 493 µg/kg to 4.3 mg/kg, and AM is 1.5

mg/kg. The lowest Mo value is in the Lake Kivijärvi in the sand layer at the depth

of 447-457 cm. The highest Mo concentrations (>3.0 mg/kg) are in the Lakes

Kivijärvi (3.4 mg/kg) in the slightly laminated dark grey gyttja layer (deposited

during the independent lake stage, possible anoxic conditions) at the depth of 200-

240 cm and Lampinjärvi (4.3 mg/kg) in the black gyttja layer (deposited during

the independent lake stage) at the depth of 130-140 cm. The molybdenum

concentrations are unevenly distributed along the sediment profile depths (Figure

36).

Niobium concentrations vary from 1.2 mg/kg to 20.3 mg/kg, and AM is 10.6

mg/kg. The highest Nb concentrations (>17 mg/kg) are in Lakes Poosjärvi (18

mg/kg) in the bottom, varved clay layer (deposited during the deglaciation stage)

at the 480-520 cm, Kivijärvi (17.5 mg/kg) in the dark sulphide-rich clay layer

(deposited during the Ancylus Lake or Littorina Sea stage) at the depth of 490-

650 cm and (18.5 mg/kg) in the bottom, varved clay layer (deposited during the

deglaciation stage) at the depth of 680-690 cm, and Lampinjärvi (20.3 mg/kg) in

the bottom, varved clay layer at the depth of 720-730 cm. In general, the Mo

concentrations increase along the sediment profile depths (Figure 37).

Page 81: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

73

Figure 34. Caesium concentrations in HNO3-HF extraction or LiBO2 fusion method of

the sub-samples by sediment profile depths in the reference lakes. The concentrations

vary from 936 µg/kg to 7 400 µg/kg. The highest concentrations are in the bottom, varved

clay layers in the Lakes Kivijärvi and Poosjärvi. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 35. Iodine concentrations in HNO3-HF extraction or LiBO2 fusion method of the

sub-samples by sediment profile depths in the reference lakes. The concentrations vary

from 1 400 µg/kg to 99 000 µg/kg. The highest concentrations are in the Lakes Kivijärvi

in the clay layer and Lutanjärvi in the bottom, gyttja clay layer. The sampling depths vary

in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000

Sed

imen

t d

epth

(cm

)

Cs µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 20000 40000 60000 80000 100000

Sed

imen

t d

epth

(cm

)

I µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 82: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

74

Figure 36. Molybdenum concentrations in HNO3-HF extraction or LiBO2 fusion method

of the sub-samples by sediment profile depths in the reference lakes. The concentrations

vary from 439 µg/kg to 4 300 µg/kg. The highest concentrations are in the Lakes

Lampinjärvi in the black gyttja layer and Kivijärvi in the clayey gyttja layer. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 37. Niobium concentrations in HNO3-HF extraction or LiBO2 fusion method of

the sub-samples by sediment profile depths in the reference lakes. The concentrations

vary from 1 200 µg/kg to 20 300 µg/kg. The highest concentrations are in the bottom,

varved clay layers in the Lakes Lampinjärvi, Kivijärvi and Poosjärvi. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000

Sed

imen

t d

epth

(cm

)

Mo µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000

Sed

imen

t d

epth

(cm

)

Nb µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 83: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

75

Nickel concentrations vary from 10.2 mg/kg to 59 mg/kg, and AM is 37 mg/kg.

The lowest Ni value is in the Lake Kivijärvi in the sand layer at the depth of 447-

457 cm. The highest Ni concentrations (>50 mg/kg) are in Lakes Kivijärvi (50

mg/kg) in the dark sulphide-rich clay layer at the depth of 490-650 cm,

Lampinjärvi (52 mg/kg) at the bottom, varved clay layer at the depth of 720-730

cm, and Narvijärvi (50 mg/kg) in the bottom, dark brown gyttja clay layer at the

depth of 510-630 cm. In the Lakes Poosjärvi, Kivijärvi and Lampinjärvi Ni

concentrations increase significantly along the sediment depths (Figure 38).

Palladium concentrations vary from 61 µg/kg to 297 µg/kg, and AM is 241 µg/kg.

The lowest Pd value is in the Lake Lampinjärvi in the sand layer at the depth of

271-283 cm. The highest Pd concentrations (>250 µg/kg) are in the Lakes

Suomenperänjärvi (258 µg/kg) in the brown massive gyttja layer at the depth of

60-70 cm, Lutanjärvi (297 µg/kg) in the topmost massive gyttja layer at the depth

of 20-360 cm, and Narvijärvi (251 µg/kg) in the bottom, dark brown gyttja clay

layer at the depth of 510-630 cm (Figure 39).

Figure 38. Nickel concentrations in HNO3-HF extraction or LiBO2 fusion method of the

sub-samples by sediment profile depths in the reference lakes. The concentrations vary

from 10 200 µg/kg to 59 000 µg/kg. The highest concentrations are in the bottom, varved

clay layers in the Lakes Kivijärvi, Poosjärvi and Lampinjärvi. The sampling depths vary

in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

10000 20000 30000 40000 50000 60000

Sed

imen

t d

epth

(cm

)

Ni µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 84: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

76

Figure 39. Palladium concentrations in HNO3-HF extraction or LiBO2 fusion method of

the sub-samples by sediment profile depths in the reference lakes. The concentrations

vary from 61 µg/kg to 297 µg/kg. The highest concentration is in the topmost massive

gyttja layer in the Lake Lutanjärvi. The sampling depths vary in different sediment

profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi,

KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi

and NaJ=Lake Narvijärvi.

Selenium concentrations vary from 83 µg/kg to 1 230 µg/kg, and AM is 649

µg/kg. The lowest Se value is in the Lake Poosjärvi in the sand layer at the depth

of 207-213 cm. The highest Se concentrations (>1 000 µg/kg) are in the Lakes

Suomenperänjärvi (1 230 µg/kg) in the topmost massive gyttja layer at the depth

of 10-60 cm, Koskeljärvi (1 170 µg/kg) in the greenish clayey gyttja layer at the

depth of 380-400 cm and Narvijärvi (1 220 µg/kg) in the topmost brown gyttja

layer at the depth of 20-210 cm and (1190 µg/kg) just below the topmost layer, in

the dark greenish clayey gyttja layer at the depth of 250-480 cm. In general, the

selenium concentrations decrease along the sediment profile depths (Figure 40).

Strontium concentrations vary from 44 mg/kg to 187 mg/kg, and AM is 130

mg/kg. The lowest Sr value is in the Lake Poosjärvi in the topmost brown gyttja

layer at the depth of 10-190 cm. The highest Sr concentrations (>170 mg/kg) are

in the Lakes Poosjärvi (174 mg/kg) in the bottom, varved clay layer at the depth

of 480-520 cm, Kivijärvi (186 mg/kg) in the sand layer at the depth of 447-457

cm, and Lampinjärvi (187 mg/kg) in the bottom, varved clay layer at the depth of

720-730 cm. The strontium concentrations clearly increase along the sediment

profile depths (Figure 41).

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350

Sed

imen

t d

epth

(cm

)

Pd (µg/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 85: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

77

Figure 40. Selenium concentrations in HNO3-HF extraction or LiBO2 fusion method of

the sub-samples by sediment profile depths in the reference lakes. The concentrations

vary from 83 µg/kg to 1 230 µg/kg. The highest concentrations are in the topmost gyttja

layers in the Lakes Suomenperäjärvi, Poosjärvi, and Narvijärvi, and in the gyttja clay

layer in the Lake Koskeljärvi. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

Tin concentrations vary from 758 µg/kg to 2.6 mg/kg, and AM is 1.9 mg/kg. The

lowest Sn concentration is in the Lake Suomenperänjärvi at the topmost massive

gyttja layer at the depth of 10-60 cm. The highest Sn concentrations (>2.4 mg/kg)

are in the Lakes Suomenperänjärvi (2.5 mg/kg) in the bottom, dark grey clay layer

at the depth of 150-199 cm, Kivijärvi (2.6 mg/kg and 2.4 mg/kg) in the dark

sulphide-rich clay layer at the depth of 490-650 cm and in the bottom, varved clay

layer at the depth of 680-690 cm and Lampinjärvi (2.4 mg/kg) in the sulphide-rich

clay layer at the depth of 385-610 cm. The tin concentrations increase with the

sediment profile depts. (Figure 42).

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400

Sed

imen

t d

epth

(cm

)

Se µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 86: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

78

Figure 41. Strontium concentrations in HNO3-HF extraction or LiBO2 fusion method of

the sub-samples by sediment profile depths in the reference lakes. The concentrations

vary from 44 000 µg/kg to 187 000 µg/kg. The highest concentrations are in the Lakes

Lampinjärvi in the bottom, varved clay layer and Kivijärvi in the massive clay layer. The

sampling depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi,

PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi,

LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 42. Tin concentrations in HNO3-HF extraction or LiBO2 fusion method of the sub-

samples by sediment profile depths in the reference lakes. The concentrations vary from

758 µg/kg to 2 600 µg/kg. The tin concentrations are variable. The sampling depths vary

in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

40000 60000 80000 100000 120000 140000 160000 180000

Sed

imen

t d

epth

(cm

)

Sr µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000

Sed

imen

t d

epth

(cm

)

Sn (µg/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 87: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

79

Calcium, magnesium sodium, potassium and phosphorus concentrations

Appendix C presents Ca, Mg, K, Na and P concentrations.

Calcium concentration vary from 32 g/kg to 13.1 g/kg. The highest concentrations

(>10 g/kg) are in the Lakes Poosjärvi (11.8 g/kg) in the sulphide-rich clay layer

(deposited during the Ancylus Lake stage) at the depth of 270-390 cm and (11.7

g/kg) at the bottom, varved clay layer at the depth of 480-520 cm), Kivijärvi

(10.1-11.8 g/kg) in the sand layer at the depth of 447-650 cm, Lampinjärvi (11.8

g/kg) in the sand layer at the depth of 271-283 cm, (10.8 mg/kg) in the sulphide-

rich clay layer at the depth of 370-610 cm and (13.1 mg/kg) in the bottom, varved

clay layer at the depth of 720-730 cm, and Valkjärvi (10.2 mg/kg) in the bottom,

dark brown clayey gyttja layer at the depth of 310-480 cm. The the lowest Ca

value is in Lake Poosjärvi in the topmost weakly laminated gyttja layer at the

depth of 10-190 cm. In general, Ca concentrations increase along the sediment

profile depths, with some exceptions.

Magnesium concentrations vary from 2.1 g/kg to 19.2 g/kg. The highest Mg

concentrations are (>17.0 g/kg) in the Lakes Poosjärvi (19.0 g/kg) at the bottom,

varved clay layer at the depth of (480-520 cm, Kivijärvi (17.2 g/kg) in the

sulphide-rich clay layer at the depth of 490-650 cm and (19.0 g/kg) in the bottom,

varved clay layer at the depth of 680-690 cm, and Lampinjärvi (19.2 mg/kg) in

the bottom, varved clay layer at the depth of 720-730 cm. The lowest Mg value is

in the Lake Suomenperänjärvi in the topmost massive gyttja layer at the depth of

10-60 cm. In general, Mg concentrations increase with the sediment profile

depths, with some exceptions.

Sodium concentrations vary from 1.9 g/kg to 18.1 g/kg. The lowest Na value is in

the Lake Suomenperänjärvi at the topmost massive gyttja layer at the depth of 10-

60 cm. The highest Na concentrations (>15.0 g/kg) are in the Lakes Poosjärvi

(15.0 g/kg) in the bottom, varved clay layer at the depth of 480-520 cm, Kivijärvi

(15.6 g/kg) in the sand layer at the depth of 447-457 cm and (15.2 g/kg) at the

bottom, varved clay layer at the depth of 680-690 cm, and Lampinjärvi (18.1 g/kg)

in the bottom, varved clay layer at the depth of720-730 cm. Na concentrations

increase with the sediment profile depths, except in the Lake Lutanjärvi.

Potassium concentrations vary from 3.8 g/kg to 37 g/kg. The lowest K value is in

the Lake Suomenperänjärvi in the massive gyttja layer at the depth of 10-60 cm,

as well as Mg and Na concentrations. The highest K concentrations (>30 g/kg) are

in the Lakes Poosjärvi (34 g/kg) in the bottom, varved clay layer at the depth of

480-520 cm, Kivijärvi (33 g/kg) in the sulphide-rich clay layer at the depth of 490-

650 cm and Lampinjärvi (37 g/kg) in the bottom, varved clay layer at the depth of

720-730 cm, as well as Mg and Na concentrations. The potassium concentrations

increase with the sediment profile depths, except in the Lakes Lutanjärvi and

Valkjärvi.

Phosphorus concentrations vary from 458 mg/kg to 5 210 mg/kg. The lowest P

value is in the Lake Kivijärvi in the sand layer at the depth of 447-457 cm. The

highest concentrations (>2 000 mg/kg) are in the Lakes Suomenperänjärvi (2 060

Page 88: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

80

mg/kg) in the topmost massive gyttja layer at the depth of 10-60 cm, Poosjärvi

(2 080 mg/kg) in the topmost weakly laminated gyttja layer at the depth of 10-190

cm and just below it (5 210 mg/kg) in the sand layer at the depth of207-213 cm,

Lutanjärvi (2 130 mg/kg) in the massive gyttja layer at the depth of 20-360 cm,

Kivijärvi (2 540 mg/kg) in the slightly laminated gyttja layer at the depth of 200-

240 cm, Valkjärvi (2 310 mg/kg) in the topmost brown gyttja layer at the depth of

20-140 cm, and Narvijärvi (2 200 mg/kg) in the topmost brown gyttja layer at the

depth of 20-210 cm. The phosphorus concentrations are the highest in the topmost

gyttja layers, thus, concentrations decrease with the sediment profile depths.

Aluminium, iron and sulphur concentrations

Appendix C presents Al, Fe and S concentrations.

Aluminium concentrations vary from 25 g/kg to 96 g/kg. The lowest Al value is

in the Lake Poosjärvi in the topmost brown gyttja layer at the depth of 10-190 cm.

The highest Al concentrations (>90 g/kg) are in the Lakes Poosjärvi (95 g/kg) in

the bottom, varved clay layer at the depth of 480-520 cm, Kivijärvi (93 g/kg) in

the sulphide-rich clay layer at the depth of 490-650 cm and (96 g/kg) in the

bottom, varved clay layer at the depth of 680-690 cm, and Lampinjärvi (94 g/kg)

in the bottom, varved clay layer at the depth of 720-730 cm. The aluminium

concentrations clearly increase with sediment profile depths.

Iron concentrations vary from 19.3 g/kg to 141 g/kg. The highest Fe

concentrations (>60 g/kg) are in the Lakes Poosjärvi (141 g/kg) in the sand layer

at the depth of 207-213 cm, Kivijärvi (61 g/kg) in the brown gyttja layer at the

depth of60-70 cm and (66 g/kg) in the sulphide-rich layer at the depth of 490-650

cm, and Lampinjärvi (72 g/kg) in the black gyttja layer at the depth of 130-140

cm. The lowest Fe value is in the Lake Suomenperänjärvi in the topmost massive

gyttja layer at the depth of 10-60 cm. The Fe concentrations are unevenly

distributed along the sediment profile depths.

Sulphur concentrations vary from 269 mg/kg to 40 g/kg. The lowest S value is in

the Lake Kivijärvi in the bottom, varved clay layer at the depth of 680-690 cm.

The highest S concentrations (>30 g/kg) are in the Lakes Kivijärvi (36 g/kg) in

the slightly laminated dark grey gyttja layer at the depth of 200-240 cm and

Lampinjärvi (35 g/kg) in the topmost brown gyttja layer at the depth of 20-110

cm and just below it (40 g/kg), in the black gyttja layer at the depth of 130-140

cm. The sulphur concentrations are unevenly distributed along the sediment

profile depths.

Main metal element concentrations

Appendix C presents main heavy metal concentrations.

Arsenic concentrations vary from 2.2 mg/kg to 24 mg/kg. The lowest As

concentration is in the Lake Kivijärvi in the sand layer at the depth of 447-457

cm. The highest As concentrations (>14.0 mg/kg) are in the Lakes Kivijärvi (24

mg/kg and 14.4 mg/kg) in the slightly laminated dark grey gyttja layer at the depth

Page 89: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

81

of 200-240 cm and in the sand layer at the depth of 457-466 cm, and Lampinjärvi

(21.3 mg/kg) in the black gyttja layer at the depth of 130-140 cm. The arsenic

concentrations are unevenly distributed along the sediment profile depths.

Cadmium concentrations vary from 64 µg/kg to 960 µg/kg. The highest Cd

concentrations (>700 µg/kg) are in the Lakes Suomenperänjärvi (764 µg/kg) in

the topmost massive gyttja layer at the depth of 10-60 cm, Poosjärvi (820 µg/kg)

in the topmost, weakly laminated gyttja layer at the depth of 10-190 cm, Kivijärvi

(960 µg/kg) in the topmost black gyttja layer at the depth of 20-40 cm, and

Koskeljärvi (723 µg/kg) in the topmost brown massive gyttja layer at the depth of

50-320 cm. The lowest Cd value is in the Lake Lampinjärvi in the grey clay layer

at the depth of 300-310 cm. The cadmium concentrations are clearly higher in the

topmost gyttja layers than in the other layers, thus Cd concentrations decrease

with sediment profile depths.

Chromium concentrations vary from 30 mg/kg to 116 mg/kg. The lowest Cr value

is in the Lake Suomenperänjärvi in the topmost massive gyttja layer at the depth

of 10-60 cm. The highest Cr concentrations (>100 mg/kg) are in the Lakes

Poosjärvi (116 mg/kg) in the bottom, varved clay layer at the depth of 480-520

cm), Kivijärvi (107 mg/kg) in the sulphide-rich clay layer at the depth of 490-650

cm and (114 mg/kg) in the bottom, varved clay layer at the depth of 680-690 cm,

and Lampinjärvi (112 mg/kg) in the bottom, varved clay layer at the depth of 720-

730 cm. The chromium concentrations increase with the sediment profile depths,

except in the Lakes Valkjärvi and Narvijärvi.

Cobalt concentrations vary 4.7 mg/kg to 33 mg/kg. The lowest Co value is in the

Lake Kivijärvi in the sand layer at the depth of 447-457 cm. The highest cobalt

concentrations (>25 mg/kg) are in the Lakes Poosjärvi (28 mg/kg) in the topmost

weakly laminated gyttja layer at the depth of 10-190 cm, Kivijärvi (33 mg/kg) in

the topmost black gyttja layer at the depth of 20-40 cm, and Lampinjärvi (33

mg/kg) in the topmost brown gyttja layer at the depth of 20-110 cm. The cobalt

concentrations are unevenly distributed along the sediment profile depths.

Copper concentrations vary from 5.7 mg/kg to 49 mg/kg. The highest copper

concentrations (>40 mg/kg) are in the Lakes Poosjärvi (45 mg/kg) in the bottom,

varved clay layer at the depth of 480-520 cm, Kivijärvi (49 mg/kg) in the bottom,

varved clay layer at the depth of 680-690 cm, and Lampinjärvi (43 mg/kg) in the

bottom, varved clay layer at the depth of 720-730 cm. The the lowest Co value is

in the Lake Kivijärvi in the sand layer at the depth of 447-457 cm. The copper

concentrations increase with the sediment profile depths, except in the Lakes

Valkjärvi and Narvijärvi.

Manganese concentrations vary from 302 mg/kg to 1270 mg/kg. The lowest Mn

value is in the Lake Kivijärvi in the sand layer at the depth of 447-457 cm. The

highest Mn concentrations (>900 mg/kg) are in the Lakes Poosjärvi (908 mg/kg

and 1270 mg/kg) in the topmost brown gyttja layer at the depth of 10-190 cm) and

in the sand layer at the depth of 207-213 cm, Kivijärvi (986 mg/kg, 903 mg/kg

and 920 mg/kg) in the topmost black gyttja layer at the depth of 20-40 cm, in the

brown gyttja layer at the depth of 60-70 cm and in the sand layer at the depth of

Page 90: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

82

457-466 cm, and Lampinjärvi (920 mg/kg) in the topmost brown gyttja layer at

the depth of 20-110 cm. The manganese concentrations are unevenly distributed

along the sediment profile depths.

Lead concentrations vary from 4.3 mg/kg to 45 mg/kg and the AM is 16.3 mg/kg.

The lowest Pb value is in the Lake Kivijärvi in the sand layer at the depth of 447-

457 cm. The highest Pb concentrations (>25 mg/kg) are in the Lakes

Suomenperänjärvi (28 mg/kg) in the topmost massive gyttja layer at the depth of

10-60 cm, Poosjärvi (25 mg/kg) in the topmost weakly laminated gyttja layer at

the depth of 10-190 cm, Kivijärvi (30 mg/kg) in the topmost black gyttja layer at

the depth of 20-40 cm, and Lampinjärvi (45 mg/kg) in the topmost brown gyttja

layer at the depth of 20-110 cm. The Pb concentrations decrease with the sediment

profile depths in the Lakes Suomenperänjärvi, Poosjärvi, Kivijärvi and

Lampinjärvi, in the other lakes the lead concentrations are unevenly distributed

along the sediment profile depths (Figure 43).

Zinc concentrations vary from 25 mg/kg to 341 mg/kg. The lowest Zn value is in

the Lake Kivijärvi in the sand layer at the depth of 447-457 cm. The highest

concentrations (>200 mg/kg) are in the Lakes Poosjärvi (341 mg/kg) in the sand

layer at the depth of 207-213 cm, Kivijärvi (232 mg/kg) in the topmost black gyttja

layer at the depth of 20-40 cm and Lampinjärvi (226 mg/kg) in the topmost brown

gyttja layer at the depth of 20-110 cm. In the Lakes Suomenperänjärvi, Lutanjärvi,

Kivijärvi, Koskeljärvi, Lampinjärvi and Narvijärvi the Zn concentrations decrease

with the sediment profile depths, in the Lakes Valkjärvi and Poosjärvi Zn

concentrations are unevenly distributed along the sediment profile depths.

Figure 43. Lead concentrations in HNO3-HF extraction or LiBO2 fusion method of the

sub-samples by sediment profile depths in the reference lakes. The concentrations vary

from 4 300 µg/kg to 45 000 µg/kg. The significantly high Pb concentration is in the Lake

Lampinjärvi in the topmost gyttja layer. The sampling depths vary in different sediment

0

100

200

300

400

500

600

700

800

0 10000 20000 30000 40000 50000

Sed

imen

t d

epth

(cm

)

Pb µg/kg

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 91: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

83

profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi,

KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi

and NaJ=Lake Narvijärvi.

Thorium and uranium concentrations

Thorium concentrations vary from 4.2 mg/kg to 22 mg/kg. The lowest Th value

is in the Lake Poosjärvi in the topmost weakly laminated gyttja layer at the depth

of 10-190 cm. The highest Th concentrations (>19.4 mg/kg) are in the Lakes

Poosjärvi in the bottom, varved clay layer at the depth of 480-520 cm and

Kivijärvi (19.1 mg/kg) in the sulphide-rich clay layer at the depth of 490-650 cm,

and (22 mg/kg) in the bottom, varved clay layer at the depth of 680-690 cm. The

thorium concentrations are the highest in the middle parts or in the bottom of the

sediment profiles.

Uranium concentrations vary from 1.8 mg/kg to 6.5 mg/kg. The lowest U value

is in the Lake Kivijärvi in the sand layer at the depth of 447-457 cm. The highest

U concentrations (>6.0 mg/kg) are in the Lakes Kivijärvi (6.5 mg/kg) in the

slightly laminated dark grey gyttja layer at the depth of 200-240 cm and (6.3

mg/kg) in the bottom, varved clay layer at the depth of 680-690 cm, and

Lampinjärvi (6.0 mg/kg) in the bottom, varved clay layer at the depth of 720-730

cm. The uranium concentrations are the highest in the middle parts or in the

bottom of the sediment profiles.

4.7 In situ distribution coefficient values of the reference lake sediments

Distribution coefficients, in situ Kd values, are used to indicate the mobility and retention

of radionuclides and elements of concern from nuclear fuel waste, as well as from other

sources. With low Kd values, the fraction of radionuclide or element sorption in the solid

stage is low, and the fraction in the liquid stage is high; the retention is low and the

mobility thus high for these low Kd radionuclides.

The radionuclides with the longest half-lives have long interaction times with soils and

sediments, ranging from centuries to millennia, and thus it is proposed that by measuring

the desorption Kd values of most important indigenous stable elements (Ag, Cl, Cs, I, Mo,

Nb, Ni, Pb, Pd Se, Sn, Sr) from field moist samples are a more realistic description of the

slow retention processes at steady state conditions are achieved (Sheppard et al. 2009a,

b, Sheppard 2011). Desorption Kd values of indigenous elements are typically higher than

Kd values of radioactive tracers in sorption experiments, because of the longer interaction

time with the solid stage (Sheppard et al. 2009b). As estimated by Sheppard et al. (2009b),

at Kd values ≤ 0.01 L/kg an element can be considered as mobile as water, whereas an

element with Kd values >10 000 L/kg are practically immobile in certain time boundaries.

For most elements, the in situ Kd values differ among the soil types, and vary with lake

sediment profile depths. The Kd values of the indigenous elements of the reference lake

sediment sample are calculated, the solids are analysed by NH4Ac (pH 4.5) extraction

(Appendix D) and HNO3-HF(trace) extraction or LiBO2 fusion method (Appendix E).

Page 92: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

84

4.7.1 In situ Kd values, solids analysed by NH4Ac (pH 4.5) extraction

The results of in situ Kd values, solids extracted by NH4Ac (pH 4.5) are presented in

Appendix D.

In situ Kd values of Ag, Cl, Cs, I, Mo, Nb, Ni, Pd, Se, Sn and Sr

In situ Kd values of the elements in the main concern (Ag, Cl, Cs, I, Mo, Nb, Ni, Pb, Pd,

Se, Sn and Sr) in the lake sediment profiles vs lake sediment depths, solids extracted by

NH4Ac (pH 4.5), are presented in Figures 44-55. The minimum, maximum and geometric

mean are presented in Appendix G (Table G-4).

Kd values for silver vary from 95 L/kg to 4 360 L/kg, and GM is 399 L/kg. The

lowest Kd value of Ag is in the Lake Poosjärvi in the bottom, varved clay layer

(deposited during the deglaciation stage) at the depth of 480-520 cm. The highest

Kd values (>1 000 L/kg) are in the Lakes Poosjärvi (1 130 L/kg) in the greenish

gyttja layer (deposited during the “lagoon” stage) at the depth of 230-240 cm,

Kivijärvi (1 320 L/kg) in the slightly laminated dark grey gyttja layer (deposited

during the independent lake stage, possible anoxic conditions) at the depth of 200-

240 cm, Koskeljärvi (1 810 L/kg) in the greenish clayey gyttja layer (deposited

during the lake isolation stage) at the depth of 343-360 cm, Lampinjärvi (1 230

L/kg) in the sulphide-rich clay layer (deposited during the Ancylus Lake stage) at

the depth of 385-610 cm, and Valkjärvi (4 360 L/kg) in the topmost brown gyttja

layer at the depth of 20-140 cm (Figure 44).

Kd values for chlorine are distinctly low, they vary from 0.1 L/kg to 3.2 L/kg, and

GM is 1.2 L/kg. The lowest Kd value is in the Lakes Poosjärvi in the sulphide-rich

clay layer (deposited during the Littorina Sea stage) at the depth of 270-390 cm,

and Lampinjärvi in the bottom, varved clay layer (deposited during the

deglaciation stage) at the depth of 720-730 cm. The highest Kd values (>2.5 L/kg)

for Cl are in the topmost gyttja layers in the Lake Suomenperänjärvi (2.8 L/kg) at

the depth of 10-60 cm and Lake Poosjärvi (3.2 L/kg) at the depth of 10-190 cm.

The Kd values decrease along the sediment profile depths (Figure 45).

Page 93: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

85

Figure 44. The Kd values for silver vary from 95 L/kg to 4 360 L/kg, the highest being in

the Lake Valkjärvi (topmost sub-sample, 20-140 cm) and the lowest in the Lake Poosjärvi

(in the bottom sub-sample, 420-520 cm). The highest values are in the topmost gyttja

layers in the Lakes Kivijärvi and Valkjärvi. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi. The scale of X-axis is logarithmic.

Figure 45. The Kd values for chlorine vary from 0.1 L/kg to 3.2 L/kg, the highestbeing in

the Lakes Suomenperänjärvi and Poosjärvi, and the lowest in the Lake Poosjärvi. The

highest values are in the topmost gyttja layers in the Lakes Poosjärvi and

Suomenperänjärvi. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

0

100

200

300

400

500

600

700

800

10 100 1000 10000 100000

Sed

imen

t d

epth

(cm

)

Kd Ag (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Sed

imen

t d

epth

(cm

)

Kd Cl (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 94: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

86

Kd values for caesium vary from 12.1 L/kg to 474 L/kg, and GM is 60 L/kg. The

lowest Kd value is in the Lake Kivijärvi in the sand layer (erosion horizon) at the

depth of 447-457 cm. The the highest Kd values (>300 L/kg) are in the Lakes

Poosjärvi (390 L/kg) in the bottom, varved clay layer at the depth of 480-520 cm,

Lutanjärvi (405 L/kg) in the topmost massive gyttja layer at the depth of 20-360

cm, Kivijärvi (474 L/kg and 326 µg/kg) in the brown gyttja layers at the depth of

60-70 cm and 90-160 cm, and Koskeljärvi (304 L/kg) in the topmost massive

gyttja layer at the depth of 50-320 cm. In the Lakes Suomenperänjärvi, Lutanjärvi,

Koskeljärvi, Valkjärvi and Narvijärvi the Kd values of Cs decrease along the

sediment profile depths. In the Lakes Poosjärvi, Kivijärvi and Lampinjärvi the Kd

values are high both in the topmost gyttja and bottom clay layers (Figure 46).

Kd values for iodine are quite low, they vary from 0.3 L/kg to 227 L/kg, and GM

is 10.9 L/kg. The lowest Kd value of iodine is in the Lake Kivijärvi in the sulphide-

rich clay layer at the depth of 490-650 cm. The highest Kd values (>100 L/kg) are

in the Lakes Poosjärvi (227 L/kg) in the topmost brown gyttja layer at the depth

of 10-190 cm and (132 L/kg) below the topmost layer, in the sand layer at the

depth of 207-213 cm, Kivijärvi (124 L/kg) in the topmost black gyttja layer at the

depth of 20-40 cm and (109 L/kg) below the topmost layer, in the brown gyttja

layer at the depth of 60-70 cm, and Lampinjärvi (184 L/kg) in topmost brown

gyttja layer at the depth of 20-110 cm (Figure 47). Kd values of iodine decrease

significantly along the sediment profiles.

Figure 46. The Kd values for caesium vary from 12.1 L/kg to 474 L/kg, the highest being

in the gyttja layers in the Lakes Lutanjärvi and Kivijärvi, and in the bottom, varved clay

layer in the Lake Poosjärvi. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

Sed

imen

t d

epth

(cm

)

Kd Cs (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 95: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

87

Figure 47. The Kd values for iodine vary from 0.3 L/kg to 227 L/kg, the highest being in

the Lakes Poosjärvi, Kivijärvi and Lampinjärvi, and the lowest in the Lake Kivijärvi. The

highest values are in the topmost gyttja layers in the Lakes Kivijärvi, Poosjärvi and

Lampinjärvi. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

Kd values for molybdenum vary from 0.1 L/kg to 2 540 L/kg, and GM is 37 L/kg.

The lowest Kd value of Mo is in the Lake Lampinjärvi in the bottom, varved clay

layer at the depth of 720-730 cm. The highest Kd values (>100 L/kg) for Mo are

in the Lakes Poosjärvi (322 L/kg) in the topmost brown gyttja layer at the depth

of 10-190 cm, Kivijärvi (274 L/kg) in the topmost black gyttja layer at the depth

of 20-40 cm and (200 L/kg) below the topmost layer, in the brown gyttja layer at

the depth of 60-70 cm, and Lampinjärvi (190 L/kg) in the topmost brown gyttja

layer at the depth of 20-110 cm. The exceptional high Kd value (2 540 L/kg) is in

the Lake Poosjärvi in the sand layer at the depth of 207-213 cm (an erosion

horizon and relates to the lake isolation stage) (Figure 48).

Kd values for niobium vary from 3.0 L/kg to 6 130 L/kg, and GM is 396 L/kg. The

lowest Kd value is in the Lake Lampinjärvi in the black gyttja layer at the depth

of 130-140 cm. The significantly high Kd values (>2 000 L/kg) of Nb are in the

Lakes Poosjärvi (6 060 L/kg) in the topmost weakly laminated gyttja layer at the

depth of 10-190 cm and (6 130 L/kg) in the sand layer at the depth of 207-213 cm,

and Kivijärvi (5 000 L/kg) in the black gyttja layer at the depth of 20-40 cm. The

Kd values for niobium decrease along the sediment profile depths (Figure 49).

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250

Sed

imen

t d

epth

(cm

)

Kd I (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 96: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

88

Figure 48. The Kd values for molybdenum vary from 0.1 L/kg to 2 540 L/kg, the highest

being in the Lakes Poosjärvi, Kivijärvi and Lampinjärvi, and the lowest in the Lake

Lampinjärvi. The significantly high value is in the sand layer in the Lake Poosjärvi. The

sampling depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi,

PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi,

LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 49. The Kd values for niobium vary from 3.0 L/kg to 6 130 L/kg, the highest being

in the Lakes Poosjärvi and Kivijärvi, and the lowest in the Lake Lampinjärvi. The highest

values are in the topmost gyttja layers in the Lakes Poosjärvi and Kivijärvi. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000

Sed

imen

t d

epth

(cm

)

Kd Mo (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000

Sed

imen

t d

epth

(cm

)

Kd Nb (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 97: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

89

Kd values for nickel vary from 0.1 L/kg to 578 L/kg, and GM is 18.3 L/kg. The

lowest Kd value of Ni is in the Lake Lampinjärvi in the sand layer at the depth of

271-283 cm. The clearly higher Kd values (>200 L/kg) are in the Lakes

Suomenperänjärvi (477 L/kg) in the topmost massive gyttja layer at the depth of

10-60 cm, Poosjärvi (470 L/kg) in the bottom, varved clay layer at the depth of

480-520 cm, and Kivijärvi (285 L/kg) in the brown gyttja layer at the depth of 90-

160 cm, and Koskeljärvi (578 L/kg) in the topmost massive gyttja layer at the

depth of 50-320 cm. In the Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi,

Valkjärvi and Narvijärvi Kd values of Ni decrease along the sediment profile

depths, while in the Lakes Poosjärvi and Lampinjärvi the Kd values increase along

the sediment profile depths. In the Lake Kivijärvi the highest Kd values are in the

middle part of the sediment profiles (Figure 50).

The Kd values for palladium vary from 8.0 L/kg to 500 L/kg, and GM is 241 L/kg.

The lowest Kd value is in the Lake Kivijärvi in the sand layer at the depth of 447-

457 cm. The highest Kd values are in the lakes where the pore water results are the

lowest (Figure 51). The pore water and bioavailable palladium concentrations are

low or <LOQ, thus the Kd values should be considered with caution.

Kd values for selenium are low, most of the results are under LOQ. Kd values of

Se vary from 1.1 L/kg to 291 L/kg, and GM is 148 L/kg. The lowest Kd value of

Se is in the Lake Lampinjärvi in the bottom, varved clay layer at the depth of 720-

730 cm. The significantly high Kd value is in the Lake Suomenperänjärvi (291

L/kg) in the topmost gyttja layer at the depth of 10-60 cm (Figure 52).

Figure 50. The Kd values for nickel vary from 0.1 L/kg to 578 L/kg, the highes being in

the Lakes Suomenperänjärvi, Poosjärvi, Kivijärvi and Koskeljärvi, and the lowest in the

Lake Lampinjärvi. The highest values are in the topmost gyttja layers in the Lakes

Koskeljärvi, and Suomenperänjärvi, and Poosjärvi in the bottom, varved clay layer. The

sampling depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi,

PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi,

LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700

Sed

imen

t d

epth

(cm

)

Kd Ni (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 98: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

90

Figure 51. The Kd values for palladium vary from 8.0 L/kg to 500 L/kg. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi. The pore water and

bioavailable palladium concentrations are low or <LOQ, thus the Kd values have to

consider with caution.

Figure 52. The selenium results are few, most of the result are <LOQ. The Kd values for

selenium vary from 1.1 L/kg to 291 L/kg, the highest being in the Lakes Suomenperänjärvi

in the topmost gyttja layer. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Kd values for strontium vary from 0.3 L/kg to 114 L/kg, and GM is 10.5 L/kg. The

lowest Kd value of Sr is in the Lake Kivijärvi in the sand layer at the depth of 447-

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Sed

imen

t d

epth

(cm

)

Kd Pd (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350

Sed

imen

t d

epth

(cm

)

Kd Se (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 99: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

91

457 cm. The highest Kd values (>50 L/kg) are in the Lakes Suomenperänjärvi in

the topmost massive gyttja layer at the depth of 10-60 cm and Kivijärvi (68 L/kg)

in the brown gyttja layer at the depth of 90-160 cm. The considerably high Kd

value is in the Lake Koskeljärvi (114 L/kg) in the topmost massive gyttja layer at

the depth of 50-320 cm. In the Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi,

Lampinjärvi, Valkjärvi and Narvijärvi the Kd values for Sr decrease along the

sediment profile depths, while in the Lake Poosjärvi Kd values increase along the

sediment profile depth. In the Lake Kivijärvi the Kd value is the highest in the

middle part of the sediment profile (Figure 53).

Kd values for tin vary from 11.5 L/kg to 6 280 L/kg, and GM is 753 L/kg. The

lowest Kd value is in the Lake Lampinjärvi in the black gyttja layer at the depth

of 130-140 cm. The significantly high Kd values for Sn are in the Lakes

Suomenperänjärvi (6 280 L/kg) in the topmost massive gyttja layer at the depth

of 10-60 cm, and Poosjärvi (5 000 L/kg) in the bottom, varved clay layer at the

depth of 480-530 cm. In most of the lakes Kd values for Sn are the highest in the

topmost gyttja layers. (Figure 54).

Figure 53. The Kd values for strontium vary from 8.9 L/kg to 114 L/kg, the highest being

in the gyttja layers in the Lakes Suomenperänjärvi, Koskeljärvi and Kivijärvi. The

significantly high value is in the Lake Koskeljärvi. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

Sed

imen

t d

epth

(cm

)

Kd Sr (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 100: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

92

Figure 54. The Kd values for tin vary from 11.5 L/kg to 6 280 L/kg, the highest being in

the topmost gyttja layers in the Lakes Suomenperänjärvi, Poosjärvi, Kivijärvi and

Koskeljärvi. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

In situ Kd values of Ca, Mg, K, Na and P

Appendices D and G-1 present Kd values of Ca, Mg, K, Na and P; and their minimum,

maximum values and geometric means.

Kd values for calcium vary from 0.5 L/kg to 99 L/kg, and GM is 13.3 L/kg. The

highest Kd values (>50 L/kg) are in the Lakes Suomenperänjärvi (60 L/kg) in the

topmost massive gyttja layer at the depth of 10-60 cm, Kivijärvi (54 L/kg) in the

brown gyttja layer at the depth of of 90-160 cm and Koskeljärvi (99 L/kg) in the

topmost massive gyttja layer at the depth of 50-320 cm. The lowest Kd value is in

the Lake Kivijärvi in the sand layer at the depth of 457-466 cm. In the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Lampinjärvi, Valkjärvi and

Narvijärvi the Kd values decrease along the sediment profile depths, in the Lake

Poosjärvi is an opposite trend. In the Lake Kivijärvi the highest Kd values are in

the middle part of the sediment profile.

Kd values for magnesium vary from 0.2 L/kg to 43 L/kg, and GM is 5.2 L/kg. The

lowest Kd value is in the Lake Kivijärvi in the sulphide-rich clay layer at the depth

of 466-474 cm. The highest Kd values (>25 L/kg) are in the Lakes Poosjärvi (25

L/kg) in the bottom, varved clay layer at the depth of 480-520 cm, Kivijärvi (27

L/kg) in the brown gyttja layer at the depth of 90-160 cm, and Koskeljärvi (43

L/kg) in the topmost massive gyttja layer at the depth of 50-320 cm. The Kd values

of Mg show a similar trend as C in the sediment profiles.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000

Sed

imen

t d

epth

(cm

)

Kd Sn (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 101: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

93

Kd values for potassium vary from 2.1 L/kg to 90 L/kg, and GM is 6.5 L/kg. The

lowest Kd value is in the Lake Lampinjärvi in the sulphide-rich layer at the depth

of 385-610 cm. The highest Kd values (>40 L/kg) are in the Lakes

Suomenperänjärvi (51 L/kg and 90 L/kg) in the greenish massive gyttja clay layer

at the depth of 84-140 cm and in the bottom, dark grey clay layer at the depth of

140-200 cm, Kivijärvi (48 L/kg) in the sulphide-rich layer at the depth of 466-666

cm, and Lampinjärvi (46 L/kg) in the greenish gyttja clay at the depth of 160-230

cm.

Kd values for sodium vary from 0.1 L/kg to 6.2 L/kg, and GM is 2.6 L/kg. The

lowest Kd value is in the Lakes Kivijärvi in the sand layer at the depth of 447-457

cm and Lampinjärvi in the sand layer at the depth of 271-283 cm. The highest Kd

values (>5 L/kg) are in the Lakes Suomenperänjärvi at the topmost massive gyttja

layer at the depth of 10-60 cm, Kivijärvi (5.0 L/kg and 5.1 L/kg) in the brown

gyttja layer at the depth of 60-70 cm and slightly laminated dark grey gyttja layer

at the depth of 200-240 cm, and Koskeljärvi (5.1 L/kg) at the topmost massive

gyttja layer at the depth of 50-320 cm.

Kd values for phosphorus are distinctly higher than Kd values of Ca, Mg, K and

Na. The Kd values for P vary from 2.1 L/kg to 4 100 L/kg, and GM is 619 L/kg.

The lowest Kd value is in the Lake Lampinjärvi in the black gyttja layer at the

depth of 130-140 cm. The highest Kd values (>2 500 L/kg) are in the Lakes

Poosjärvi (4 100 L/kg) in the topmost weakly laminated gyttja layer at the depth

of 10-190 cm, Lutanjärvi (2 700 L/kg) in the topmost massive gyttja layer at the

depth of 20-360 cm and Kivijärvi (3 660 L/kg) in the topmost black gyttja layer

at the depth of 20-40 cm. The Kd values are significantly higher in the topmost

gyttja layers than in the other parts of the sediment profiles, thus Kd values

decrease along the sediment depths.

In situ Kd values of Al, Fe and S

Appendices D and G-1 present Kd values for Al, Fe and S and the minimum, maximum

values and geometric means.

Kd values for aluminium vary from 0.1 L/kg to 8 580 L/kg, and GM is 1.6 L/kg.

The lowest Kd value is in the Lake Lampinjärvi in the sand layer at the depth of

271-283 cm. The highest Kd values (>4 000 L/kg) are in the Lakes Kivijärvi

(4 280 L/kg and 6 740 L/kg) in the gyttja layers at the depth of 60-70 cm and 90-

160 cm, Koskeljärvi (8 580 L/kg) in the topmost massive gyttja layer at the depth

of 50-320 cm, and Lampinjärvi (4 250 L/kg) in the bottom, varved clay layer at

the depth of 720-730 cm. The Kd values decrease along the sediment profiles,

except in the Lakes Lampinjärvi the trend is the opposite.

Kd values for iron vary from 0.2 L/kg to 78 600 L/kg, and GM is 457 L/kg. The

lowest Kd value is in the Lake Lampinjärvi in the sand layer at the depth of 271-

283 cm. The highest Kd values (>50 000 L/kg) are in the Lakes Suomenperänjärvi

(55 600 L/kg) in the topmost massive gyttja layer at the depth of 10-60 cm,

Kivijärvi (59 700 L/kg and 56 200 L/kg) in the gyttja layers at the depth of 60-70

cm and 90-160 cm, and in the sulphide-rich clay layer (78 600 L/kg) at the depth

Page 102: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

94

of 490-650 cm; and Lampinjärvi (58 100 L/kg) in the topmost brown gyttja layer

at the depth of 20-110 cm. The Kd values are the highest in the topmost gyttja

layers in the Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Lampinjärvi,

Valkjärvi and Narvijärvi. In the Poosjärvi and Kivijärvi, the highest Kd values are

in the bottom clay layers.

Kd values for sulphur vary from 0.1 L/kg to 4.5 L/kg, and GM is 2.0 L/kg. The

lowest Kd value is in the Lake Kivijärvi in the sand layer at the depth of 447-457

cm. The highest Kd values (>3.5 L/kg) are in the Lakes Poosjärvi (4.1 L/kg and

4.5 L/kg) in the topmost brown gyttja layer at the depth of 10-190 cm and in the

sand layer at the depth of 207-213 cm, and Lampinjärvi (3.6 L/kg) in the topmost

brown gyttja layer at the depth of 20-110 cm. The Kd values for S decrease along

the sediment profile depths.

In situ Kd values of the main metals

Appendices D and G-1 present the main heavy metal concentrations and the minimum,

maximum values and geometric means.

Kd values for arsenic vary from 2.2 L/kg to 1 360 L/kg, and GM is 219 L/kg. The

lowest Kd value is in the Lake Lampinjärvi in the black gyttja layer at the depth

of 130-140 cm. The highest Kd values (>1 000 L/kg) are in the Lakes Kivijärvi

(1 080 L/kg and 1 360 L/kg) in the gyttja layers at the depth of 60-70 cm and 90-

160 cm, and Lampinjärvi in the topmost brown gyttja layer at the depth of 20-110

cm. The Kd values are the highest in the topmost gyttja layers, except in the Lake

Kivijärvi.

Kd values for cadmium vary from 0.1 L/kg to 2 300 L/kg, and GM is 37 L/kg. The

lowest Kd values are in the Lakes Kivijärvi in the sand layers at the depth of 457-

466 cm and in Lampinjärvi at the depth of 271-283 cm. The highest Kd values

(>500 L/kg) are in the Lakes Suomenperänjärvi (955 K/kg) in the topmost massive

gyttja layer at the depth of 10-60 cm, Poosjärvi (507 L/kg) in the bottom, varved

clay layer at the depth of 480-520 cm, Kivijärvi (683 L/kg) in the brown gyttja

layer at the depth of 90-160 cm, and in Koskeljärvi (2 300 L/kg) in the topmost

massive gyttja layer at the depth of 50-320 cm. In the Lakes Suomenperänjärvi,

Koskeljärvi, Lutanjärvi, Valkjärvi and Narvijärvi the Kd values are the highest in

the topmost gyttja layers, while in the Lakes Poosjärvi and Lampinjärvi the

thighest values are in the bottom clay layers. In the Lake Kivijärvi, the highest Kd

value is in the middle parts of the sediment profiles.

Kd values for cobalt vary from 0.1 L/kg to 831 L/kg, and GM is 21 L/kg. The

lowest Kd value is in the Lake Lampinjärvi in the sand layer at the depth of 271-

283 cm. The highest Kd values (>500 L/kg) are in the Lakes Poosjärvi (599 L/kg)

in the bottom, varved clay layer at the depth of 480-520 cm, Kivijärvi (514 L/kg)

in the gyttja layer at the depth of 60-70 cm and Koskeljärvi (831 L/kg) in the

topmost massive gyttja layer at the depth of 50-320 cm. The Kd values of Co

follow the same trend as Kd values of cadmium in the sediment profiles.

Page 103: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

95

Kd values for chromium vary from 0.7 L/kg to 6 630 L/kg, and GM is 432 L/kg.

The lowest Kd value is in the Lake Lampinjärvi in the sand layer at the depth of

271-283 L/kg. The highest Kd values (>4 000 L/kg) are in the Lakes

Suomenperänjärvi (4 400 L/kg) in the topmost massive gyttja layer at the depth

of 10-60 cm, Poosjärvi (6 570 L/kg) in the topmost weakly laminated gyttja layer

at the depth of 10-190 cm, Kivijärvi (4 090 L/kg and 4 290 L/kg) in the topmost

black gyttja layer at the depth of 20-40 cm and below it, in the brown gyttja layer

at the depth of 60-70 cm, and Lampinjärvi in the topmost brown gyttja layer at the

depth of 20-110 cm. The highest Kd values of Cr are in the topmost gyttja layers.

Kd values for copper vary from 0.6 L/kg to 1 020 L/kg, and GM is 21 L/kg. The

highest Kd values (>500 L/kg) are in the Lakes Poosjärvi (642 L/kg) in the topmost

weakly laminated gyttja layer at the depth of 10-190 cm, and Kivijärvi (1 020

L/kg) in the sulphide-rich clay layer at the depth of 490-650 cm. The lowest Kd

value is in the Lake Lampinjärvi in the greenish gyttja clay layer at the depth of

60-230 cm. The highest Kd values of Cu are in the topmost gyttja layers of the

Lakes Suomenperänjärvi, Poosjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and

Narvijärvi, while in the Lake Lampinjärvi the highest value is in the bottom clay

layer.

Kd values for manganese vary from 0.1 L/kg to 430 L/kg, and GM is 15.6 L/kg.

The lowest Kd values of Mn are in the sand layers in the Lakes Kivijärvi at the

depth of 466-474 cm and Lampinjärvi at the depth of 271-283 cm. The highest Kd

values (>150 L/kg) are in the Lakes Suomenperänjärvi (242 L/kg) in the topmost

massive gyttja layer at the depth of 10-60 cm, Kivijärvi (166 L/kg) in the gyttja

layer at the depth of 90-160 cm, and Koskeljärvi in the topmost massive gyttja

layer at the depth of 50-320 cm. In most of the lakes Kd values are the highest in

the topmost gyttja layers.

The range of the Kd values for lead is large. The Kd values vary from 38 L/kg to

140 000 L/kg, and GM is 2 880 L/kg. The lowest Kd value is in the Lake Valkjärvi

in the bottom, brown gyttja layer at the depth of 310-480 cm. The highest Kd

values (>5 000 L/kg) are in the Lakes Kivijärvi (69 100 L/kg and 113 000 L/kg)

in the gyttja layer at the depth of 90-160 cm in the bottom, varved clay layer at

the depth of 680-690 cm, and Lampinjärvi (140 000 L/kg) in the bottom, varved

clay layer at the depth of 720-730 cm. In the Lakes Suomenperänjärvi, Lutanjärvi,

Koskeljärvi, Valkjärvi and Narvijärvi, the highest Kd values for Pb are in the gyttja

layers, while in the Lakes Poosjärvi and Lampinjärvi the highest Kd values are in

the bottom varved clay layers (Figure 55).

Kd values for zinc vary form 0.1 L/kg to 1 530 L/kg, and GM is 21 L/kg, thus the

variation of the Kd values is quite large. The lowest Kd values are in the sand layers

in the Lakes Kivijärvi at the depth of 466-474 cm and Lampinjärvi at the depth of

271-283 cm. The highest Kd values (>400 L/kg) of Zn are in the sub-samples of

Lakes Suomenperänjärvi (434 L/kg) in the topmost sediment layer at the depth of

10-60 cm, Poosjärvi (439 L/kg) in the sand layer at the depth of 207-213 cm and

Koskeljärvi (1 530 L/kg) in the topmost sediment layer (50-320 cm). In the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi, the highest

Page 104: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

96

Kd values are in the topmost sediment layers, while in the Lakes Kivijärvi and

Lampinjärvi the highest Kd values are in the bottom clay layers.

Figure 55. The Kd values for lead vary from 38 L/kg to 140 000 L/kg, the highest being

in the Lakes Kivijärvi and Lampinjärvi, and the lowest in the Lake Valkjärvi. The

significantly high Kd values are in the bottom, varved clay layers in the Lakes Lampinjärvi

and Kivijärvi. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

Kd values for zinc vary form 0.1 L/kg to 1 530 L/kg, and GM is 21 L/kg, thus the

variation of the Kd values is quite large. The lowest Kd values are in the sand layers

in the Lakes Kivijärvi at the depth of 466-474 cm and Lampinjärvi at the depth of

271-283 cm. The highest Kd values (>400 L/kg) of Zn are in the sub-samples of

Lakes Suomenperänjärvi (434 L/kg) in the topmost sediment layer at the depth of

10-60 cm, Poosjärvi (439 L/kg) in the sand layer at the depth of 207-213 cm and

Koskeljärvi (1 530 L/kg) in the topmost sediment layer (50-320 cm). In the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi, the highest

Kd values are in the topmost sediment layers, while in the Lakes Kivijärvi and

Lampinjärvi the highest Kd values are in the bottom clay layers.

In situ Kd values of Th and U

The variation of the Kd values for thorium is large. The Kd values range from 1.1

L/kg to 1 650 000 L/kg, and GM is 22 700 L/kg. The lowest Kd value is in Lake

Lampinjärvi in the black gyttja layer at the depth of 130-140 cm. The the highest

Kd values (>10 000 L/kg) are in the Lakes Suomenperänjärvi (1 650 000 L/kg) in

the topmost massive gyttja layer at the depth of 10-60 cm, and in the Kivijärvi

(194 000 L/kg and 109 000 L/kg) in the sulphide-rich clay layer at the depth of

490-650 cm and in the bottom, varved clay layer at the depth of 680-690 cm. In

0

100

200

300

400

500

600

700

800

0 20000 40000 60000 80000 100000 120000 140000 160000

Sed

imen

t d

epth

(cm

)

Kd Pb (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 105: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

97

general, the highest Kd values of Th are either in the topmost gyttja or in the

bottom clay layers.

The variation of the Kd values for uranium is also large. The range is from

0.9 L/kg to 55 600 L/kg, and GM is 2 030 L/kg. The lowest Kd value is in the Lake

Lampinjärvi in the sand layer at the depth of 271-283 cm. The highest Kd values

(>45 000 L/kg) of U are in the Lakes Suomenperänjärvi (53 700 L/kg) in the

topmost massive gyttja layer at the depth of 10-60 cm, Poosjärvi (46 200 L/kg) in

the topmost weakly laminated gyttja layer at the depth of 10-190 cm, Kivijärvi

(55 600 L/kg) in the gyttja layer at the depth of 60-70 cm, Lampinjärvi (49 200

L/kg) in the topmost brown gyttja layer at the depth of 20-110 cm, and Narvijärvi

(46 400 L/kg) in the topmost gyttja layer at the depth of 20-210 cm.

4.7.2 In situ Kd values, solids analysed by HNO3-HF extraction or LiBO2 fusion

The results of in situ Kd values, solids extracted by HNO3-HF or LiBO2 fusion are

presented in Appendix E.

In situ Kd values of Ag, Cl, Cs, I, Mo, Nb, Ni, Pd, Se, Sn and Sr

In situ Kd values of the elements in main concerned (Ag, Cl, Cs, I, Mo, Nb, Ni, Pb, Pd,

Se, Sn and Sr) in the lake sediment profiles vs lake sediment depths, solids extracted by

HNO3-HF(trace) or LiBO2 fusion method, are presented in Figures 56-66. The minimum,

maximum and geometric means are presented in Appendix G (Table G-5).

Kd values for silver vary from 3 190 L/kg to 130 000 L/kg, and GM is 18 000 L/kg.

The lowest value is in the Lake Lampinjärvi in the sand layer at the depth of 271-

283 cm. The highest Kd values (>70 000 L/kg) are in the Lakes Poosjärvi (71 800

L/kg) in the greenish gyttja clay layer at the depth of 230-240 cm, Lampinjärvi

(73 600 L/kg) in the sulphide-rich clay layer at the depth of 385-610 cm and

Narvijärvi (81 500 L/kg) in the topmost brown gyttja layer at the depth of 20-210

cm. The significantly high Kd value is in the Lake Valkjärvi (130 000 L/kg) in the

topmost gyttja layer at the depth of 20-140 cm. The Kd values for silver are

unevenly distributed along the sediment profile depths (Figure 56).

Kd values for chlorine are low. The range is from 0.1 L/kg to 194 L/kg, and GM

is 9.8 L/kg. The lowest Kd values are in the Lake Lampinjärvi in the sulphide-rich

clay layer at the depth of 385-610 cm and in the bottom, varved clay layer at the

depth of 720-730 cm. The clearly higher Kd values (>10 L/kg) are in the Lake

Suomenperänjärvi (19.4 L/kg and 17.5 L/kg) in the topmost massive gyttja layer

at the depth of 10-60 cm and just below it, in the massive clayey gyttja layer at

the depth of 60-70 cm. The highest Kd values for Cl are in the topmost gyttja layers

(Figure 57).

Kd values for caesium vary from 1 690 L/kg to 91 000 L/kg, and GM is 5 460

L/kg. The lowest Kd value is in the Lake Poosjärvi in the topmost weakly

laminated gyttja layer at the depth of 10-190 cm. The highest Kd values (>20 000

L/kg) are in the Lakes Kivijärvi (29 500 L/kg) in the sulphide-rich clay layer at

the depth of 490-650 cm, and Lampinjärvi (29 900 L/kg) in the bottom, varved

Page 106: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

98

clay layer at the depth of 720-730 cm. The significantly high Kd value (91 000

L/kg) is in the Lake Poosjärvi in the bottom, varved clay layer at the depth of 480-

520 cm. In the Lakes Suomenperänjärvi, Poosjärvi, Kivijärvi and Lampinjärvi,

the Kd values for Cs increase with the sediment profile depths, while in the Lakes

Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi the trend is the opposite (Figure

58).

Figure 56. The Kd values for silver vary from 3 190 L/kg to 130 000 L/kg. The

significantly high value is in the topmost gyttja layer in the Lake Kivijärvi. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 500000 1000000 1500000

Sed

imen

t d

epth

(cm

)

Kd Ag (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 107: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

99

Figure 57. The Kd values for chlorine vary from 0.1 L/kg to 194 L/kg. The significantly

high value is in the topmost gyttja layer in the Lake Suomenperänjärvi. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 58. The Kd values for caesium vary from 1 690 L/kg to 91 000 L/kg, the highest

being in the Lakes Poosjärvi, Kivijärvi and Lampinjärvi, and the lowest in the Lake

Poosjärvi. The significantly high value is in the bottom, varved clay layer in the Lake

Poosjärvi. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

0

100

200

300

400

500

600

700

800

0,0 5,0 10,0 15,0 20,0

Sed

imen

t d

epth

(cm

)

Kd Cl (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 20000 40000 60000 80000 100000

Sed

imen

t d

epth

(cm

)

Kd Cs (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 108: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

100

Kd values for iodine vary from 3.8 L/kg to 13 100 L/kg, and GM is 247 L/kg. The

highest Kd values (>5 000 L/kg) are in the Lakes Suomenperänjärvi (6 120 L/kg)

in the topmost massive gyttja layer at the depth of 10-60 cm, Poosjärvi (7 910

L/kg) in the topmost weakly laminated gyttja layer at the depth of 10-190 cm,

Kivijärvi (5 500 L/kg) in the gyttja layer at the depth of 60-70 cm, and

Lampinjärvi (13 100 L/kg) in the topmost brown gyttja layer at the depth of 20-

110 cm. The lowest Kd value is in the Lake Kivijärvi in the sulphide-rich clay

layer at the depth of 466-474 cm. The Kd values of iodine clearly decrease with

the sediment profile depths (Figure 59).

Kd values for molybdenum vary from 20 L/kg to 2 820 000 L/kg, and GM is 2 900

L/kg. The lowest Kd value is in the Lake Poosjärvi in the bottom, varved clay layer

at the depth of 480-520 cm. The significantly high Kd value is in the Lake

Poosjärvi (2 820 00 L/kg) under the topmost gyttja layer, in the sand layer at the

depth of 207-213 cm). In addition, the Kd values are high in the Lakes Kivijärvi

(25 400 L/kg) in the topmost black gyttja layer at the depth of 10-190 cm and

Lampinjärvi (27 600 L/kg) in the topmost brown gyttja layer at the depth of 20-

110 cm. The Kd values of molybdenum decrease clearly with the sediment profile

depths, except in the Lake Koskeljärvi (Figure 60).

Kd values for niobium are high. The range is large, from 1470 L/kg to 9 430 000

L/kg, and GM is 155 000 L/kg (Figure 47). The lowest Kd value is in the Lake

Lampinjärvi in the black gyttja layer at the depth of 130-140 cm. The

exceptionally high Kd values (>1 000 0000 L/kg) are in the Lake Poosjärvi

(9 430 000 L/kg and 2 390 000 L/kg) in the sand layer and in the sulphide-rich

clay layer (Figure 61).

Figure 59. The Kd values for iodine vary from 3.8 L/kg to 13 100 L/kg. The highest values

are in the topmost gyttja layers. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi. The scale of X-axis is logarithmic.

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000

Sed

imen

t d

epth

(cm

)

Kd I (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 109: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

101

Figure 60. The Kd values for molybdenum vary from 21 L/kg to 48 100 L/kg, the highest

being in the Lakes Poosjärvi, Kivijärvi and Lampinjärvi, and the lowest in the Lake

Poosjärvi. The highest value is in the sand layer in the Lake Poosjärvi. The sampling

depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake

Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi. The scale of X-axis is

logarithmic.

Kd values for nickel vary a lot; the range is from 1.7 L/kg to 19 000 L/kg, and GM

is 315 µg/kg. The lowest Kd value is in the Lake Kivijärvi in the sand layer at the

depth of 447-457 cm. The highest Kd values (>10 000 L/kg) are in the Lakes

Suomenperänjärvi (10 400 L/kg) in the topmost massive gyttja layer at the depth

of 10-60 cm, Poosjärvi (19 000 L/kg) in the bottom, varved clay layer at the depth

of 480-520 cm and Koskeljärvi (15 800 L/kg) in the topmost massive gyttja layer

at the depth of 50-320 cm. The Kd values of Ni are considerably high either in the

topmost gyttja layers or in the bottom clay layers (Figure 62).

The Kd values for palladium vary from 122 L/kg to 29 700 L/kg, and GM is 5 200

L/kg (Figure 63). The lowest Kd value is in the Lake Kivijärvi in the sand layer at

the depth of 447-457 cm. The highest Kd values are in the lake sediments where

the pore water results are the lowest (Appendices A and I).

Kd values for selenium vary from 4.9 L/kg to 6 980 L/kg, and GM is 1 420 L/kg.

The lowest Kd value is in the Lake Lampinjärvi at the bottom, varved clay layer

at the depth of 720-730 cm. The highest Kd values (>3 000 L/kg) are in the Lakes

Suomenperänjärvi (5 500 L/kg) in the topmost massive gyttja layer at the depth

of 10-60 cm, Lutanjärvi (3 440 L/kg) in the topmost massive gyttja layer at the

depth of 20-360 cm, Koskeljärvi (4 400 L/kg) in the topmost massive gyttja layer

at the depth of 50-320 cm, and Lampinjärvi (6 980 L/kg) in the topmost brown

gyttja layer at the depth of 20-110 cm. In all lake profiles, the highest Kd values

are in the topmost, organic-rich gyttja layers (Figure 64).

0

100

200

300

400

500

600

700

800

10 100 1000 10000 100000 1000000 10000000

Sed

imen

t d

epth

(cm

)

Kd Mo (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 110: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

102

Figure 61. The Kd values for niobium vary from 1470 L/kg to 2 390 000 L/kg, being the

the highest in the Lakes Poosjärvi, and the lowest in the Lake Lampinjärvi. The

significantly high value is in the sand layer in the Lake Poosjärvi. The sampling depths

vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 62. The Kd values for nickel vary from 1.7 L/kg to 18 900 L/kg, the being the the

highest in the Lakes Suomenperänjärvi, Poosjärvi, Lampinjärvi and Koskeljärvi, and the

lowest in the Lake Kivijärvi. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi. The scale of X-axis is logarithmic.

0

100

200

300

400

500

600

700

800

0 2000000 4000000 6000000 8000000 10000000

Sed

imen

t d

epth

(cm

)

Kd Nb (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000

Sed

imen

t d

epth

(cm

)

Kd Ni (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 111: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

103

Figure 63. The Kd values for palladium vary from 122 L/kg to 29 700 L/kg, being the the

highest in the Lakes Lutanjärvi, Suomenperänjärvi, Narvijärvi and Kivijärvi. The

sampling depths vary in different sediment profiles. SPJ=Lake Suomenperänjärvi,

PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi,

LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 64. The Kd values for selenium vary from 4.9 L/kg to 6 980 L/kg, being the the

highest in the topmost gyttja layers in the Lakes Lampinjärvi, Suomenperänjärvi,

Koskeljärvi and Lutanjärvi. The sampling depths vary in different sediment profiles.

SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake

Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and

NaJ=Lake Narvijärvi.

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000 35000

Sed

imen

t d

epth

(cm

)

Kd Pd (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000

Sed

imen

t d

epth

(cm

)

Kd Se (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 112: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

104

Kd values for strontium vary from 14.4 L/kg to 651 L/kg, and GM is 48 L/kg. The

lowest Kd value is in the Lake Narvijärvi in the bottom, dark brown gyttja clay

layer at the depth of 510-630 cm. The highest Kd values (>250 L/kg) are in the

Lakes Poosjärvi (362 L/kg and 651 L/kg) in the sand layer at the depth of 207-

213 cm and in the bottom, varved clay at the depth of 420-520 cm, Kivijärvi (303

L/kg) in the gyttja layer at the depth of 90-160 cm, Koskeljärvi (370 L/kg) in the

topmost brown gyttja layer at the depth of 50-320 cm, and Lampinjärvi in the

bottom, varved clay layer at the depth of 720-730 cm. In the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Kivijärvi, Valkjärvi and Narvijärvi,

the Kd values decrease with the sediment profile depths, while in the Lakes

Poosjärvi and Lampinjärvi the trend is the opposite (Figure 65).

Kd values for tin are high. The range is large, from 4 450 L/kg to 3 770 000 L/kg,

and GM is 201 000 L/kg. The lowest Kd value is in the Lake Lampinjärvi in the

black gyttja layer at the depth of 30-140 cm. The highest Kd values (>200 000

L/kg) are in the Lakes Suomenperänjärvi (369 000 L/kg) in the massive clayey

gyttja layer at the depth of 60-70 cm, Poosjärvi (208 000 L/kg) in the sulphide-

rich clay layer at the depth of 270-390 cm, Kivijärvi (257 000 L/kg) in the bottom,

varved clay layer at the depth of 680-690 cm, Koskeljärvi (244 000 L/kg) in the

bottom, gyttja clay layer at the depth of 440-540 cm, and Lampinjärvi (315 000

L/kg) in the bottom, varved clay layer at the depth of 720-730 cm. The

exceptionally high Kd values are in the Lake Poosjärvi in the bottom, varved clay

layer (3 770000 L/kg) at the depth of 480-520 cm and in the sand layer (3 045000

L/kg) at the depth of 207-213 cm. In the Lakes Kivijärvi, Koskeljärvi and

Lampinjärvi the Kd values are the highest in the bottom sediment samples, while

in the Lakes Lutanjärvi, Valkjärvi and Narvijärvi Kd values are the highest in the

topmost gyttja layers. In the Lakes Suomenperänjärvi and Poosjärvi Kd values are

the highest in the middle parts of the sediment profiles. (Figure 66).

Page 113: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

105

Figure 65. The Kd values for strontium vary from 14.4 L/kg to 651 L/kg. The significantly

high value is in the bottom, varved clay layer in the Lake Poosjärvi. The sampling depths

vary in different sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi,

LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake

Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi.

Figure 66. The Kd values for tin vary from 4450 L/kg to 3 770 000 L/kg. The significantly

high values are in the sand layer and in the bottom, varved clay layer in the Lake

Poosjärvi. The sampling depths vary in different sediment profiles. SPJ=Lake

Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake Lutanjärvi, KiJ=Lake Kivijärvi,

KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi, VaJ=Lake Valkjärvi and NaJ=Lake

Narvijärvi.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700

Sed

imen

t d

epth

(cm

)

Kd Sr (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

0

100

200

300

400

500

600

700

800

0 1000000 2000000 3000000 4000000

Sed

imen

t d

epth

(cm

)

Kd Sn (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 114: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

106

In situ Kd values of Ca, Mg, K, Na and P

Appendices E present Kd values of Ca, Mg, K, Na, and P and G-2 their minimum,

maximum values and geometric means.

Kd values for calcium are low. The range is from 11.6 L/kg to 321 L/kg, and GM

is 36 L/kg. The lowest Kd value is in the Lake Lampinjärvi in the black gyttja layer

at the depth of 130-140 cm. The highest Kd (>150 L/kg) values are in the Lakes

Poosjärvi (162 L/kg and 321 L/kg) in the sand layer at the depth of 207-213 cm

and in the bottom, varved clay layer at the depth of 420-520 cm, Kivijärvi (151

L/kg) in the gyttja layer at the depth of 90-160 cm, and Koskeljärvi (191 L/kg) in

the topmost black gyttja layer at the depth of 50-320 cm. In the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi, the Kd

values for calcium decrease with the sediment profile depths, while in the Lakes

Poosjärvi and Lampinjärvi the trend is the opposite. The highest Kd values are in

the Lake Kivijärvi in the topmost gyttja layers.

Kd values for magnesium are also low, range is from 8.2 L/kg to 566 L/kg, and

GM is 40 L/kg. The highest Kd (>250 L/kg) values are in the Lakes Poosjärvi (566

L/kg) in the bottom, varved clay layer at the depth of 480-520 cm and Kivijärvi

(250 L/kg and 259 L/kg) in the gyttja layers at the depth of of 60-70 cm and 90-

160 cm. The lowest Kd value is in the Lake Kivijärvi in the sand layer at the depth

of 447-457 cm. In all lakes the Kd values are the highest in the topmost gyttja

layers, except in Poosjärvi.

The range of the Kd values for potassium is large. The Kd values vary from 194

L/kg to 37 900 L/kg, and GM is 424 L/kg. The lowest Kd value is in the Lake

Lutanjärvi in the bottom, light brown gyttja clay layer (deposition during the

“lagoon” stage) at the depth of 420-640 cm. The highest Kd values (>30 000 L/kg)

are in the Lakes Suomenperänjärvi (31 200 L/kg) in the bottom, dark grey clay

layer at the depth of 150-199 cm, Poosjärvi (37 900 L/kg) in the sulphide-rich clay

layer (deposition during the Littorina Sea stage) at the depth of 270-390 cm,

Kivijärvi (30 100 L/kg) in the massive clay layer (erosion horizon) at the depth of

457-466 cm, and Lampinjärvi (33 200 L/kg) in the greenish gyttja clay layer

(deposited during the “lagoon” stage) at the depth of 160-230 cm. The Kd values

are quite unevenly distributed along the sediment profile depths.

Kd values for sodium are also low, the range is from 9.7 L/kg to 287 L/kg, and

GM is 28 L/kg. The lowest Kd value is in the Lake Narvijärvi at the bottom, dark

brown gyttja clay layer at the depth of 510-630 cm. The highest Kd values (>200

L/kg) are in the Lakes Suomenperänjärvi (204 L/kg) in the massive clayey gyttja

layer at the depth of 60-70 cm, Poosjärvi (288 L/kg) in the sand layer at the depth

of 207-213 cm, and Kivijärvi (292 L/kg and 284 L/kg) in the topmost black gyttja

layer at the depth of 20-40 cm and in the gyttja layer at the depth of 60-70 cm. In

general, the Kd values of Na decrease with the sediment profile depths.

The range of Kd values for phosphorus is large. The Kd values vary from 11.4

L/kg to 140 000 L/kg, and GM is 13 800 L/kg. The lowest Kd value is in the Lake

Lampinjärvi in the black gyttja layer at the depth of 130-140 cm. The highest Kd

Page 115: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

107

values (>100 000 L/kg) are in the Lake Poosjärvi (108 000 L/kg and 140 000

L/kg) in the topmost weakly laminated gyttja layer at the depth of 10-190 cm and

at in the sand layer at the depth of 207-213 cm. In all sediment profiles, the highest

Kd values are in topmost gyttja layers.

In situ Kd values of Al, Fe and S

Appendices E present Kd values of Al, Fe and S; and G-2 their minimum, maximum

values and geometric means.

The range of Kd values for aluminium is large. The Kd vary from 27 L/kg to

2 440 000 L/kg, and GM is 7 390 L/kg. The lowest Kd value is in the Lake

Lampinjärvi in the black gyttja layer at the depth of 130-140 cm. The highest Kd

values (>500 000 L/kg) of Al are in the Lakes Kivijärvi (549 000 L/kg and

740 000 L/kg) in the gyttja layer at the depth of 90-160 cm and in the bottom,

varved clay layer at the depth of 490-650 cm, Koskeljärvi (710 000 L/kg) in the

greenish clayey gyttja layer at the depth of 343-360 cm, and in the Lampinjärvi

(2 440 000 L/kg) in the bottom, varved clay layer at the depth of 720-730 cm. The

aluminium Kd values are rather unevenly distributed along the sediment profiles.

The range of Kd values for iron is also large. The Kd values vary from 7.7 L/kg to

3 080 000 L/kg, and GM is 4 758 L/kg. The lowest Kd value is in the Lake

Lampinjärvi in the sand layer at the depth of 271-283 cm. The highest Kd values

(>1 000 000 L/kg) are in the Lakes Poosjärvi in the bottom, varved clay layer at

the depth of 480-520 cm, Kivijärvi (1 050 000 L/kg and 3 080 000 L/kg) in the

gyttja layer at the depth of 60-70 cm and in the sulphide-rich layer at the depth of

490-650 cm. In the Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi

and Narvijärvi, the Kd values of iron decrease with the sediment profile depths,

while in the Lakes Poosjärvi, Kivijärvi and Lampinjärvi the trend is the opposite.

Kd values for sulphur are low, the range is from 0.6 L/kg to 34 L/kg, and GM is

12.5 L/kg. The lowest Kd value is in the Lake Lampinjärvi in the bottom, varved

clay layer at the depth of 720-730 cm. The highest Kd values (>20 L/kg) are in the

Lakes Suomenperänjärvi in the topmost massive gyttja layer at the depth of 10-60

cm, Kivijärvi (21 L/kg and 24 L/kg) in the gyttja layers at the depths of 60-70 cm

and 90-160 cm, and Koskeljärvi in the topmost black gyttja layer at the depth of

50-320 cm. In all lakes the highest Kd values of S are in the topmost gyttja layers,

while in the Lakes Poosjärvi and Kivijärvi under the topmost layers.

In situ Kd values of main heavy metals

Appendices E present Kd values of main heavy metals; and G-2 their minimum, maximum

values and geometric means.

Kd values for arsenic vary from 21 L/kg to 32 000 L/kg, and GM is 4 010 L/kg.

The lowest Kd value is in the Lake Lampinjärvi in the black gyttja layer at the

depth of 130-140 cm. The highest Kd values (>15 000 L/kg) of As are in the Lakes

Poosjärvi (23 600 L/kg and 31 100 L/kg) in the topmost weakly laminated gyttja

layer at the depth of 10-190 cm and in the sand layer at the depth of 207-213 cm,

Page 116: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

108

Kivijärvi (16 800 L/kg) in the gyttja layer at the depth of 90-160 cm, and

Lampinjärvi (32 000 L/kg) in the topmost brown gyttja layer at the depth of 20-

110 cm. In the all lake sediment profiles the the highest Kd values are in the

topmost gyttja layers, except in the Lake Kivijärvi.

Kd values for cadmium vary from 0.3 L/kg to 4 110 L/kg, and GM is 63 L/kg. The

lowest Kd value is in the Lake Kivijärvi in the sand layer at the depth of 447-457

cm. The highest Kd values (>1 000 L/kg) are in the Lakes Suomenperänjärvi

(1 710 L/kg) in the topmost massive gyttja layer at the depth of 10-60 cm,

Poosjärvi (1 040 L/kg) in the sand layer at the depth of 207-213 cm, Kivijärvi

(1 070 L/kg) in the gyttja layer at the depth of 90-160 cm, and Koskeljärvi (4 110

L/kg) in the topmost black gyttja layer at the depth of 50-320 cm. In the Lakes

Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi, the Kd

values of Cd decrease with the sediment profile depths. In the Lake Lampinjärvi,

the highest Kd value is in the bottom clay layer, and in the other lakes, Kd values

are quite unevenly distributed.

Kd values for cobalt vary from 0.7 L/kg to 28 700 L/kg, and GM is 123 L/kg. The

highest Kd values (>4 000 L/kg) are in the Lakes Poosjärvi (6 580 L/kg and 28 700

L/kg) in the sand layer at the depth of 207-213 cm and in the bottom, varved clay

layer at the depth of 480-520 cm, Koskeljärvi (7 890 L/kg) in the topmost black

gyttja layer at the depth of 50-320 cm, and Lampinjärvi (8 030 L/kg) in the

bottom, varved clay layer at the depth of 720-730 cm. The lowest Kd value is in

the Lake Kivijärvi in the sand layer at the depth of 457-466 cm. The Kd values of

Co are the highest in the topmost gyttja layers in the Lakes Suomenperänjärvi,

Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi. In the Lakes Poosjärvi and

Lampinjärvi, the the highest Kd values are in the bottom varved clay layers.

Kd values for chromium are high. The range is from 56 L/kg to 906 000 L/kg, and

GM is 14 100 L/kg. The highest Kd values (>600 000 L/kg) are in the Lakes

Poosjärvi (800 000 L/kg) in the bottom, varved clay layer at the depth of 420-520

cm, Kivijärvi (603 000 L/kg) in the bottom, varved clay layer at the depth of 680-

690 cm, and Lampinjärvi (906 000 L/kg) in the bottom, varved clay layer at the

depth of 720-730 cm. In the Lake Lampinjärvi is the lowest Kd value in the black

gyttja layer at the depth of 130-140 cm. The Kd values of Cr are the highest in the

topmost gyttja layer in the Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi,

Valkjärvi and Narvijärvi. In the Lakes Poosjärvi, Kivijärvi and Lampinjärvi, the

trend is the opposite.

Kd values for copper vary from 10.4 L/kg to 26 000 L/kg, and GM is 4 820 L/kg.

The highest Kd values (>20 000 L/kg) are in the Lakes Suomenperänjärvi (21 000

L/kg) in the topmost massive gyttja layer at the depth of 10-60 cm, Poosjärvi

(26 000 L/kg) in the topmost weakly laminated gyttja layer at the depth of 10-190

cm, Lutanjärvi (23 000 L/kg) in the topmost massive gyttja layer at the depth of

20-360 cm, and Lake Kivijärvi (21 100 L/kg and 25 000 L/kg) in the gyttja layers

at the depth of 60-70 cm and 90-160 cm. The lowest Kd value is in the Lake

Lampinjärvi in the black gyttja layer at the depth of 130-140 cm. The highest Kd

values are in in topmost gyttja layers, except in the Lake Kivijärvi.

Page 117: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

109

Kd values for manganese vary from 0.8 L/kg to 1 390 L/kg, and GM is 70 L/kg.

The lowest Kd value is in the Lake Kivijärvi in the sand layer at the depth of 447-

457 cm. The highest Kd values (>600 L/kg) are in the Lakes Suomenperänjärvi

(679 L/kg) in the topmost massive gyttja layer at the depth of 10-60 cm, Poosjärvi

(779 L/kg) in the bottom, varved clay layer at the depth of 480-520 cm, and in the

Koskeljärvi (1 390 L/kg) in the topmost black gyttja layer at the depth of 50-320

cm. In the Lakes Poosjärvi, Kivijärvi and Lampinjärvi, the highest Kd values are

in the bottom, varved clay layers, while in the other lakes the Kd values are the

highest in the topmost gyttja layers.

Kd values for lead are quite high. The Kd values vary from 1 100 L/kg to 785 000

L/kg, and GM is 5 000 L/kg (Figure 59). The highest Kd values (>450 000 L/kg)

are in the Lakes Poosjärvi (571 000 L/kg) in the sand layer at the depth of 207-

213 cm, Kivijärvi (460 000 L/kg and 554 000 L/kg) in the gyttja layer at the depth

of 90-160 cm and in the bottom, varved clay layer at the depth of 680-690 cm,

and Lampinjärvi (785 000 L/kg) in the bottom, varved clay layer at the depth of

720-730 cm. In the Lake Lutanjärvi is the lowest Kd value in the bottom, light

brown gyttja clay layer at the depth of 420-640 cm. The Kd values are the highest

in the topmost gyttja layers in the Lakes Suomenperänjärvi, Lutanjärvi,

Koskeljärvi, Valkjärvi and Narvijärvi, while in the Lakes Kivijärvi and

Lampinjärvi the highest Kd values are in the bottom, varved clay layers (Figure

67).

The range of Kd values for zinc is from 1.6 L/kg to 30 300 L/kg, and GM is 118

L/kg. The lowest Kd value is in the Lake Lampinjärvi in the sand layer at the depth

of 271-283 cm. The highest Kd values (>10 000 L/kg) are in the Lakes Poosjärvi

(22 300 L/kg) in the bottom, varved clay layer at the depth of 480-520 cm,

Kivijärvi (30 300 L/kg) in the bottom, varved clay layer at the depth of 680-690

cm, and Lampinjärvi (18 000 L/kg) in the bottom, varved clay layer at the depth

of 720-730 cm. The highest Kd values of Zn are in the topmost gyttja layers in the

Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi, Valkjärvi and Narvijärvi, while

in the other studied lakes in the bottom clay/gyttja clay layers.

Page 118: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

110

Figure 67. The Kd values for lead vary from 1 100 L/kg to 785 000 L/kg, the highest being

in the Lakes Poosjärvi, Kivijärvi and Lampinjärvi. The sampling depths vary in different

sediment profiles. SPJ=Lake Suomenperänjärvi, PoJ=Lake Poosjärvi, LuJ=Lake

Lutanjärvi, KiJ=Lake Kivijärvi, KJ=Lake Koskeljärvi, LaJ=Lake Lampinjärvi,

VaJ=Lake Valkjärvi and NaJ=Lake Narvijärvi. The scale of X-axis is logarithmic.

In situ Kd values of Th and U

Kd values for thorium vary from 13.7 L/kg to 2 350 000 L/kg, and GM is 35 100

L/kg. The tlowest Kd value is in the Lake Lampinjärvi in the black gyttja layer at

the depth of 130-140 cm. The highest Kd values (>1 500 000 L/kg) are in the

Lakes Kivijärvi (1 930 000 L/kg and 1 850 000 L/kg) in the sulphide-rich clay

layer at the depth of 490-650 cm and in the bottom, varved clay layer at the depth

of 680-690 cm, Lampinjärvi (2 350 000) in the topmost brown gyttja layer at the

depth of 20-110 cm, (1 770 000 L/kg) in the bottom varved clay layer at the depth

of 720-730 cm and in the Narvijärvi (1 310 000 L/kg) in the bottom, dark brown

gyttja clay layer at the depth of 510-630 cm. The highest Kd values of Th are in

the topmost gyttja layers in the Lakes Suomenperänjärvi, Lutanjärvi, Koskeljärvi,

Valkjärvi and Narvijärvi, while in the Lakes Poosjärvi, Kivijärvi and Lampinjärvi

in the bottom varved clay layers.

Kd values for uranium range from 5.3 L/kg to 195 000 L/kg, and GM is 5 550

L/kg. The lowest Kd value of U is in the Lake Lampinjärvi in the black gyttja layer

at the depth of 130-140 cm. The highest Kd values (>140 000 L/kg) are in the

Lakes Suomenperänjärvi (143 000 L/kg) in the topmost massive gyttja layer at the

depth of 10-60 cm, Kivijärvi (195 000 L/kg) in the gyttja layer at the depth of 60-

70 cm, Lampinjärvi in the topmost brown gyttja layer at the depth of 20-110 cm,

and Narvijärvi (175 000 L/kg) in the topmost brown gyttja layer at the depth of

20-210 cm. In all lakes the highest Kd values of U are in the topmost gyttja layers,

except in the Lake Kivijärvi below the topmost gyttja layer.

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 10000000

Sed

imen

t d

epth

(cm

)

Kd Pb (L/kg)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 119: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

111

4.8 Grain size distribution

Classification of mineral soils and sediments is typically based on the origin and grain

size distribution, whereas organic soils and sediments are typically classified on the

amount of organic matter. The classification of soil and sediment data in the biosphere

assessment (Posiva 2014, Table 3-2, p. 56) are based on the Finnish geotechnical soil

classification (“GEO”; Jääskeläinen 2009, ch. 1; Rantamäki et al. 1979, ch. 3; Korhonen

et al. 1974), on the forest compartment survey methods of the Finnish Forest Institute; at

present Luke (Rautio et al. 2004, section 3.1), and on the interpretation of the acoustic-

seismic mapping of the sea sediments (Rantataro 2001. 2002, Rantataro & Kaskela 2009).

In the national soil maps of the Geological Survey, the construction engineering (RT) soil

classification (RIL 1964) is applied (Haavisto-Hyvärinen & Kutvonen 2007, p. 6). The

RT classification corresponds to the classification used in forestry and agriculture

(Aaltonen 1949).

Table 17 presents clay and organic matter contents (%) by sub-samples of the reference

lakes. Clay content varies from 0% to 68%. The highest clay contents are in the Lakes

Poosjärvi, Kivijärvi and Lampinjärvi. Organic matter content (LOI) varies from 1.6% to

32%. The highest organic matter contents are in the topmost sediment layers (19%-32%)

where sediment is gyttja or gyttja clay. In the clay sediments, the organic matter content

is low (Figure 68).

Figures 69-76 present grain size distribution of the studied reference lakes (grain size

classification as used in the biosphere assessment; Posiva 2014, Table 3-2). Table 18

presents cumulative weight percent of the grain size distribution of the reference lakes.

Page 120: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

112

Figure 68. Clay content (broken line) varies from 0% to 68%. The the highest clay

contents are in the Lakes Poosjärvi, Kivijärvi and Lampinjärvi. Organic matter content

(LOI) (contiguous line) varies from 1.6 % to 32 %. The highest organic matter contents

are in the topmost sediment layers (21%-32%), where sediment is mainly gyttja.

0

100

200

300

400

500

600

700

800

0 20 40 60 80

Sed

imen

t d

epth

(cm

)

LOI and clay content (%)

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

SPJ

PoJ

LuJ

KiJ

KJ

LaJ

VaJ

NaJ

Page 121: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

113

Table 17. Clay and organic matter contents (%) by sub-samples in the reference lakes

(NA = not analysed). The highest values are marked in bold.

ID number Lake name

Sediment type

Sub-sampling interval cm

Clay content %

LOI % 500o C

SPJ Suomenperänjärvi Gyttja 10-60 2.5 32

SPJ Suomenperänjärvi Clayey gyttja 60-70 0.0 15.6

SPJ Suomenperänjärvi Gyttja clay 84-140 10.4 7.8

SPJ Suomenperänjärvi Clayey gyttja 150-199 NA 5.8

PoJ Poosjärvi Gyttja 10-190 6.3 23

PoJ Poosjärvi Sand 207-213 NA 11.3

PoJ Poosjärvi Gyttja clay 230-240 0.0 8.4

PoJ Poosjärvi Clay 270-390 20 2.5

PoJ Poosjärvi Clay 480-520 49 3.3

LuJ Lutanjärvi Gyttja 20-360 15.5 21

LuJ Lutanjärvi Clayey gyttja 370-408 3.4 12.9

LuJ Lutanjärvi Gyttja clay 420-640 4.8 10.3

KiJ Kivijärvi Gyttja 20-40 NA 18.7

KiJ Kivijärvi Gyttja 60-70 NA 22

KiJ Kivijärvi Gyttja 90-160 12.4 24

KiJ Kivijärvi Gyttja 200-240 2.9 16.2

KiJ Kivijärvi Gyttja clay 260-270 8.7 11.2

KiJ Kivijärvi Sand 447-457 32 1.3

KiJ Kivijärvi Clay 457-466 NA 3.1

KiJ Kivijärvi Clay 466-474 NA 3.1

KiJ Kivijärvi Clay 490-650 48 3.4

KiJ Kivijärvi Clay 680-690 68 3.8

KJ Koskeljärvi Gyttja 50-320 1.3 25

KJ Koskeljärvi Clayey gyttja 343-360 17.1 14.4

KJ Koskeljärvi Gyttja clay 380-400 NA 12.7

KJ Koskeljärvi Gyttja clay 440-540 9.2 9.9

LaJ Lampinjärvi Gyttja 20-110 2.1 24

LaJ Lampinjärvi Gyttja 130-140 NA 19.9

LaJ Lampinjärvi Gyttja clay 160-230 2.1 12.3

LaJ Lampinjärvi Sand 271-283 NA 1.6

LaJ Lampinjärvi Clay 300-310 4.7 2.6

LaJ1 Lampinjärvi Clay 385-610 15.2 2.7

LaJ1 Lampinjärvi Clay 720-730 30 2.8

VaJ Valkjärvi Gyttja 20-140 0.0 30

VaJ Valkjärvi Gyttja clay 180-290 2.2 12.7

VaJ Valkjärvi Gyttja clay 310-480 6.0 11.2

NaJ Narvijärvi Gyttja 20-210 7.1 24

NaJ Narvijärvi Gyttja clay 250-480 3.8 12.6

NaJ Narvijärvi Gyttja clay 510-630 6.4 10.3

Page 122: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

114

Figure 69. The grain size distribution of the Lake Suomenperänjärvi, sediment layers are

classified as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral

soil, fine-g. m. soil=fine-grained mineral soil).

Figure 70. The grain size distribution of the Lake Poosjärvi, sediment layers are

classified as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral

soil, fine-g. m. soil=fine-grained mineral soil).

Page 123: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

115

Figure 71. The grain size distribution of the Lake Lutanjärvi, sediment layers are

classified as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral

soil, fine-g. m. soil=fine-grained mineral soil).

Figure 72. The grain size distribution of the Lake Kivijärvi, sediment layers are classified

as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral soil, fine-

g. m. soil=fine-grained mineral soil).

Page 124: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

116

Figure 73. The grain size distribution of the Lake Koskeljärvi, sediment layers are

classified as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral

soil, fine-g. m. soil=fine-grained mineral soil).

Figure 74. The grain size distribution of the Lake Lampinjärvi, sediment layers are

classified as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral

soil, fine-g. m. soil=fine-grained mineral soil).

Page 125: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

117

Figure 75. The grain size distribution of the Lake Valkjärvi, sediment layers are classified

as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral soil, fine-

g. m. soil=fine-grained mineral soil).

Figure 76. The grain size distribution of the Lake Narvijärvi, sediment layers are

classified as used in the biosphere assessment (med.-g. m. soil=medium-grained mineral

soil, fine-g. m. soil=fine-grained mineral soil).

Page 126: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

118

Table 18. The cumulative weight percents (%) of the grain size distribution by different sieve sizes (mm) of the reference lakes.

Sample Suomeperän-järvi

Suomeperän-järvi

Suomeperän-järvi

Poosjärvi Poosjärvi Poosjärvi Poosjärvi Lutanjärvi Lutanjärvi Lutanjärvi

Sampling depth (cm)

10-60 60-70 80-140 10-190 230-240 270-390 480-520 20-360 370-408 420-640

0.125 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.063 mm 41.8 26.9 44.3 63.8 27.2 96.2 100.0 84.7 43.4 69.1

0.037 mm 19.7 23.1 39.0 58.3 20.0 87.6 99.3 76.1 36.6 62.7

0.027 mm 14.8 18.5 35.6 48.8 17.2 81.3 97.0 63.7 33.1 56.2

0.017 mm 7.4 15.7 29.5 39.4 14.3 71.9 95.6 54.4 28.6 49.8

0.008 mm 7.4 13.0 24.3 26.8 11.4 57.8 91.1 41.9 20.6 37.0

0.004 mm 4.9 8.3 16.5 12.6 2.9 36.0 76.1 28.0 11.4 19.3

0.001 mm 2.5 0.0 10.4 6.3 0.0 20.3 49.3 15.5 3.4 4.8

Sample Kivijärvi Kivijärvi Kivijärvi Kivijärvi Kivijärvi Kivijärvi Koskeljärvi Koskeljärvi Koskeljärvi Lampinjärvi

Sampling depth (cm)

90-160 200-240 260-270 447-474 490-650 680-690 50-320 343-360 440-540 20-110

0.125 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.063 mm 83.7 37.8 71.2 90.6 99.8 94.9 57.9 80.0 54.4 56.7

0.037 mm 76.4 29.1 65.4 86.1 97.9 91.0 39.5 74.3 45.2 39.9

0.027 mm 59.9 26.2 59.6 83.8 94.3 88.4 26.3 68.6 42.1 29.4

0.017 mm 45.5 20.4 51.9 74.7 90.7 88.4 18.4 62.9 38.0 21.0

0.008 mm 28.9 11.6 36.5 63.4 81.9 85.8 7.9 51.4 26.7 12.3

0.004 mm 18.6 5.8 21.2 49.8 65.8 80.6 3.9 38.1 17.5 6.3

0.001 mm 12.4 2.9 8.7 31.7 48.0 67.6 1.3 17.1 9.2 2.1

Sample Lampinjärvi Lampinjärvi Lampinjärvi Lampinjärvi Valkjärvi Valkjärvi Valkjärvi Narvijärvi Narvojärvi Narvijärvi

Sampling depth (cm)

160-230 300-310 385-610 720-730m 20-140 180-290 310-480 20-210 250-480 510-630

0.125 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.063 mm 53.7 61.0 87.4 100.0 44.9 50.0 58.4 53.7 53.8 58.3

0.037 mm 46.5 48.5 77.8 100.0 27.2 39.2 50.3 33.9 40.4 49.2

0.027 mm 44.4 40.7 75.4 98.8 19.0 32.6 46.3 25.4 32.7 45.5

0.017 mm 38.2 34.4 62.5 96.1 13.6 23.9 40.3 17.0 21.1 38.3

0.008 mm 26.9 25.0 50.5 92.0 9.5 13.1 28.2 12.7 13.5 27.2

0.004 mm 15.5 14.1 31.3 68.6 2.7 6.5 14.1 8.5 7.7 14.6

0.001 mm 2.1 4.7 15.2 30.2 0.0 2.2 6.0 7.1 3.8 6.4

Page 127: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

119

4.9 Kd values of the key elements versus LOI and clay content

The Figures 77-78 present the bioavailable Kd values of Se, Pb, Nb, Sr, Cl and versus LOI

(organic matter) content. The Kd values of Ag, Cs, Mo, Ni, Pd and Sn show little or no

correlation with the LOI content. The Kd values increased when the LOI content

increased. The Figure 79 presents bioavailable Kd values of Se, I and Mo versus clay

content. The Kd values of Ag, Cl, Cs, Nb, Ni, Pb, Pd, Sn and Sr show little or not at all

correlation with clay content. The Kd values decreased when the clay content decreased.

In addition, bioavailable and/or pore water concentrations of Ag and Sn are <LOQ.

The Figure 80 presents the pseudo-total Kd values of Cl, I and Se versus LOI content. The

Kd values of the other key elements show only little or no correlation with the LOI

content. There is also only slight correlation or no correlation at all with the Kd values of

the key elements versus clay content. The Figure 81 presents the correlation between LOI

and clay content.

Figure 77. Correlation between the bioavailable Kd values of Nb, Pb and Se and organic

matter content of the lake sediment profiles.

1

10

100

1000

10000

100000

1000000

0 10 20 30 40

Kd

(b

ioav

aila

ble

)

LOI %

Se

Pb

Nb

Page 128: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

120

Figure 78. Correlation between the bioavailable Kd values of Cl, I and Sr and organic

matter content of the lake sediment profiles.

Figure 79. Correlation between the bioavailable Kd values of I, Mo and Se and clay

content of the lake sediment profiles.

0,01

0,1

1

10

100

1000

10000

0 5 10 15 20 25 30 35

Kd

(b

ioav

aila

ble

)

LOI %

Sr

Cl

I

0,1

1

10

100

1000

0 10 20 30 40 50

Kd

(b

ioav

aila

ble

)

Clay %

Se

I

Mo

Page 129: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

121

Figure 80. Correlation between the pseudo-total Kd values of Cl, I and Se and organic

matter content of the lake sediment profiles.

Figure 81. Correlation of LOI and clay content in the lake sediment profiles.

1,0E-1

1,0E+0

1,0E+1

1,0E+2

1,0E+3

1,0E+4

1,0E+5

0 5 10 15 20 25 30 35

Kd

(p

seu

do

-to

tal)

LOI %

Se

Cl

I

0

5

10

15

20

25

30

35

0 10 20 30 40 50

LOI %

Clay %

Page 130: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

122

Page 131: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

123

5 SUMMARY

The report presents the results of geochemical and physical properties and the in situ

distribution coefficients, Kd values, of the deep lake sediment samples taken from the

different lithological units of the eight lakes from the Reference Area. The sampling

depths of the sediment samples vary by different lake sediment profiles (see Table 11)

due to different sedimentological history. Altogether 39 sub-samples have been taken.

The lakes were isolated from the Baltic Sea about 2200-6500 years BP. The Lakes

Valkjärvi, Koskeljärvi, Suomenperänjärvi, Poosjärvi and Narvijärvi were isolated during

the Littorina Sea stage, when the Baltic Sea was connected to ocean and thus salt content

of water was higher than the present brackish Baltic Sea. The Lakes Kivijärvi,

Lampinjärvi and Lutanjärvi were isolated during the Limnea Sea stage, when the

circumstances were more similar to the present Baltic Sea. The elevation of the lakes

varies from 13.9 m a.s.l to 51.1 m a.s.l. The surface area of the lakes varies considerably

(40 ha-658 ha).

The lithofacies of the Lakes Koskeljärvi, Poosjärvi, Lampinjärvi, Kivijärvi and

Suomenperänjärvi include sediments from the different stages of the Baltic Sea after the

last glaciation: deglaciation stage - Ancylus Lake stage - Littorina Sea stage - “lagoon”

sedimentation stage - isolation stage and independent lake stage. In the Lakes Lutanjärvi,

Valkjärvi and Narvijärvi sediment cores were shorter, and thus the lithofacies include

only “lagoon” sedimentation stage - isolation stage and independent lake stage.

pH values decrease along the sediment profile depths, except in the Lakes Poosjärvi,

Kivijärvi and Lampinjärvi where the trend is the opposite due to the highest clay content

(30%-68%) in the bottom, clay layers. Total carbon (9%-16%) and organic matter (19%-

32%) contents are the highest in the topmost gyttja layers. Retention and mobility of

elements are regulated highly by Eh-pH conditions, however, redox-potential was not

possible to measure from the lake sediments. Redox-potential is used to determine if

oxidizing or reducing conditions are prevalent in water, sediments or soil, and to predict

the states of different chemical species of elements.

The anion concentrations of the pore water are low, except SO42-. The sulphate, phosphate

and DOC concentrations are the highest in the Lake Lampinjärvi. The DIC concentrations

are the highest in the bottom varved clay layers in the Lakes Lampinjärvi and Poosjärvi.

In the lake sediment samples the pore water concentrations of Ag, Cs, Mo, Nb and Se are

low, but Sr and especially Cl concentrations are high. The concentrations of main cations

(Ca, Mg, K and Na), phosphorus and sulphur are considerably high. Concentrations of

main metals soluble to pore water vary by elements and by profile depths.

The bioavailable and pseudo-total chlorine concentrations are significantly high in the

lake sediment samples, and Cl is distinctly retained into topmost gyttja layers in all lake

sediment profiles. The Kd values for the bioavailable chlorine are 3-5 times higher in the

topmost layers than in the bottom sediment layers, while Kd values for the pseudo-total

chlorine are even 5-30 times higher in the topmost than in the bottom sediment layers.

Bioavailable and pseudo-total nickel and strontium concentrations are also high. Iodine,

molybdenum and niobium concentrations vary between the lake sediment samples and

Page 132: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

124

sediment profile depths. Bioavailable selenium results are few, most of the results are

<LOQ. The bioavailable metal concentrations varied considerably, Cr, Co and Cu

concentrations are high, while Sn and Pd are remarkable low. Cation exchange capacity

and base saturation vary between the different sediment samples and sediment profiles.

The highest values are mainly in the topmost gyttja or bottom clay layers.

As estimated by Sheppard et al. (2009b), at Kd values ≤0.01 L/kg an element can be

considered as mobile as water, whereas an element with Kd values >10 000 L/kg is

practically immobile. For different elements, the in situ Kd values differ among the

sediment types, and vary also with sediment profile depths. The pseudo-total Kd values

(geometric mean) for silver, chromium, niobium, phosphorus, lead, tin and thorium are >

10 000 L/kg, thus most of these elements can be considered as practically immobile. The

Kd values for chlorine are low being easily soluble and retention is very low.

Page 133: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

125

6 CONCLUSION

The mobility and retention of the indigenous elements in the lake sediments is affected

by parameters specific to the element and to the sediment type. Chemical form of the

element, speciation, is the most important factor affecting the mobility and retention

properties of the elements. Sediment redox potential and pH influence on the speciation.

The Kd data of the lake sediments are inherently extremely variable, but also vary

systematically with key environmental factors, thus their co-influence is important for

each individual element, and their acting in different sediment types by site to site and by

sediment depths. Organic matter content and mineral composition, especially clay and

silt fraction, have a distinct influence on the Kd values. However, only the bioavailable

Kd values of Cl, I, Nb, Pb, Se and Sr show the correlation with LOI content, and Kd values

of I, Mo and Se with clay content. Only the pseudo-total Kd values of Cl, I and Se

correlated with LOI content, and slightly or not at all with the clay content.

Page 134: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

126

Page 135: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

127

7 REFERENCES

Aaltonen, V.T. 1949. Maaperäsanaston ja maalajien luokituksen tarkistus (in Finnish;

Revision of soil clossary and classification of soil types). Maataloustieteellinen

aikakausikirja (“Agronomical Journal”) 21:37-66.

Andersson, K., Torstenfelt, B. & Rydberg, J. 1979. Leakage of niobium-94 from an

underground rock repository. Swedish Nuclear Fuel and Waste Management Co.

SKBF/KBS Technical Report 79-26. 18 p.

Ashworth, D.J., Moore, J. & Shaw, G. 2008. Effects of soil type, moisture contents, redox

potential and methyl bromide fumigation on Kd values of radio-selenium in soil. Journal

of Environmental Radioactivity 99. pp. 1136-1142.

Barrow, N.J. 1970. Comparison of the adsorption of molybdate, sulfate and phosphate by

soils. Soil Science 109. pp. 282-288.

Barrow, N. J. 1972. Influence of solution of calcium on the adsorbtion of phosphate,

sulphate and molybdate by soils. Soil Science 113. pp. 175-180.

Baston, G.M.N., Berry, J.A., Littleboy, A.K. & Pilkington, N.J. 1992. Sorption of

activationproducts on London clay and Dungeness aquiver gravel. Radiochimica Acta

58/59. pp. 225-233.

Björck, S. 1995. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary

International 27. pp. 19-40.

Bloomfield, C. 1981. The translocations of metals in soils. The Chemistry of Soil

Processes. Greenland, D.J & Hayes, M.H.B. (eds). John Wiley & Sons, New York. 463

p.

Bodek, L., Lyman, W., Reehl, W.F. & Rosenblatt, D.H. (eds.) 1988. Environmental

Inorganic Chemistry. Pergamon Press, New York.

Bondar, Y.I. & Zabrodskii, V.N. 2001. Sorption of 137Cs and 90Sr ionic species on soil

of various types. Radiochemistry 43. pp. 643-646.

Choppin, F., Chabroullet, C. & Martin-Garin, A. 2009. Selenite interactions with some

particulate organic and mineral fractions isolated from a grassland soil. European Journal

of Soil Science 60. pp. 369-376.

Echeverria, G., Morel, J.L. & Leclerc-Cessac, E. 2005. retention and phytoavailability of

radioniobium in soils. Journal of Environmental Radioactivity 78. pp. 343-352.

Elsokkary, I.H. & Låg, J. 1980. Status of some trace elements in Egyptian soils and in

wheat grains. Jordundersökelselsens Saetrykk 285. 35 p.

Eronen, M., Heikkinen, O. & Tikkanen, M. 1982. Holocene development and present

hydrology of Lake Pyhäjärvi in Satakunta, southwestern Finland. Fennia 160. pp. 195-

223.

Page 136: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

128

Eronen, M., Glückert, G., van de Plassche, O., van der Plicht, J. & Rantala P. 1995. Land

uplift in the Olkiluoto-Pyhäjärvi area, southwestern Finland, during the last 8000 years.

Nuclear waste commission of Finnish power companies, report YJT-95-17. 26 p.

Eronen, M., Glückert, G., Hatakka, L., van de Plassche, O., van der Plicht, J. & Rantala,

P. 2001. Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in

SW Finland based on studies of isolation contacts. Boreas 30. pp. 17-30.

Erviö, R. 1975. Kyröjoen vesistoalueen rikkipitoiset viljelysmaat (in Finnish with an

English abstract: Cultivated sulphate soils in the drainage basin of River Kyrönjoki).

Journal of the Scientific Agricultural Society of Finland 4: 550–561.

Gustafsson, J.P. & Johnsson, L. 1992. Selenium retention in the organic matter of

Swedish forest soils. Journal of Soil Science 43. pp. 461-472.

Haapanen, R., Aro, L., Kirkkala, T., Koivunen, S., Lahdenperä, A-M & Paloheimo, A.

2010. Potential reference mires and lakes ecosystems for Biosphere Assessment of

Olkiluoto site. Eurajoki, Finland: Posiva Oy. Working Report 2010-67. 218 p.

http://www.posiva.fi/

Haavisto-Hyvärinen, M. & Kutvonen, H. 2007. Maaperäkartan käyttöopas (in Finnish:

User guide to the soil map). Geological Survey of Finland, Espoo, Finland. 61 p.

www.gsf.fi

Heikkilä, R. 1999. Human influence on the sedimentation in the delta of the River

Kyrönjoki, western Finland. Monographs of Boreal Environment Research 15. 64 p.

Hildebrand, E.E. & Blume, W.E. 1974. Lead fixation bt clay minerals.

Naturwissenschaften 61. 169 p.

Huhta, P. & Räsänen, M. 2010. Kokemäenjoen suiston kehitys ja tulevaisuus. In:

Korhonen, R. (ed.), Geotietoa Satakunnasta. GeoPori-, GeoSatakunta- ja InnoGeo-

projektien loppuraportti (in Finnish with an English summary: Geological data from the

Province Satakunta in Finland). Report on the projects entitled GeoPori, GeoSatakunta

and InnoGeo. Geological Survey of Finland, Report 183, pp. 105-114. www.gsf.fi

Jääskeläinen, R. 2009. Geotekniikan perusteet (in Finnish: The basics of geotechnics).

Tammertekniikka, Tampere, Finland. 332 p.

Kabata-Pendias, A. & Pendias, H. 1992. Trace elements in soils and plants. 2nd Edition.

CRC Press, London. 365 p.

Keskinen, R., Ekholm, P., Yli-Halla, M. & Hartikainen, H. 2009. Efficiency of different

methods in extracting selenium from agricultural soils of Finland. Geoderma 153. pp. 87-

93.

Koljonen, T. (ed.), Gustavsson, N., Noras, P. & Tanskanen, H. 1992. The Geochemical

Atlas of Finland, Part 2: Till. Geological Survey of Finland, Espoo. pp. 143-217.

Page 137: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

129

Koch-Steindl, H. & Pröhl, G. 2001. Considerations on the behavior of long-lived

radionuclides in the soil. Radiation and Environmental Biophysics 40. pp. 93-104.

Korhonen, K-H., Gardemeister, R. & Tammirinne, M. 1974. Geotekninen maaluokitus

(in Finnish: Geotechnical soil classification). VTT Geotekniikan laboratorio

(Geotechnical laboratory), Otaniemi, Finland.

Lahdenperä, A-M. 2016. Geochemical and physical properties and in situ distribution

coefficients of the deep soil pits OL-KK22, OL-KK23 and OL-KK24 at Olkiluoto.

Eurajoki, Finland: Posiva Oy. Working Report 2016-12. 150 p. http://www.posiva.fi/

Lakin, H.W. & Dawidson, D.F. 1967. The relation of the geochemistry of selenium to its

occurence in soil. Selenium in Biomedicine, Westpoint, Connecticut. 27 p.

Lang, F. & Kaupenjohann, M. 2000. Molybdenum at german Norway spruce sites:

contents and mobility. Canadian Journal of Forest Research 30. pp. 1034-1040.

Lindroos, P., Hyyppä, J., Stén, C.-G. & Tuittila, H. 1983. Rauman - Kokemäen seudun

maaperä (in Finnish with an English summary: Quaternary deposits in the Rauma and

Kokemäki map-sheet areas). Geological Survey of Finland. 71 p.

Martens, D.A. & Suarez, D.L. 1999. Transformations of volatile methylated selenenium

in soil. Soil Biology and Biochemistry 31. pp. 1355-1361.

McGrath, S.P. 1995. Chromium and nickel. In Alloway, B.J. (ed.) Heavy metals in soils.

2nd edition. UK: Blackie Academic & Professional. pp. 152-178.

McGrath, S.P., Micó, C., Curdy, R. & Zhao, F.J. 2010. Predicting molybdenium toxixity

to higher plants: influence of soil properties. Environmental Pollution 158. pp. 3095-

3102.

Melkerud, P-A. 1983. Quaternary deposits and bedrock outcrops in an area lake Gårdsjon,

southwestern Sweden, with physical, mineralogical and geochemical investigations.

Reports in Forest Ecology and Forest Soils 44. Uppsala, Swedish University of

Agricultural Sciences. 87 p.

Meriwerther, J.R., Beck, J.N., Keeley, D.F., Langley, M.P., Thompson, R.H. & Young,

J.C. 1988. Radionuclides in Lousiana soils. Journal of Environmental Quality. 562 p.

Meyers, P.A. 1994. Preservation of elemental and isotopic source identification of

sedimentary organic matter. Chemical Geology 114. Pp. 289-302.

Meyers, P.A. & Ishiwatari, R. 1993. Lacustrine organic geochemistry - an overview of

indicators of organic matter sources and diagenesis in lake-sediments. Organic

Geochemistry 20: 7. Pp. 867-900.

Nakamaru, Y.M. & Sekine, K. 2008. Sorption behavior of selenium and antimony in soils

as a function of phosphate ion concentration. Soil Science and Plant Nutrition 54. pp.

332-341.

Page 138: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

130

Neal, R.H., Sposito, G., Holzclaw, K.M & Traina, S.J. 1987. Selenite adsorption on

Alluvial soils: II Solution composition effects. Soil Science Society of America Journal

51. pp. 1165-1169.

Norrish, K. 1975. The geochemistry and mineralogy of trace elements. In Nicholas,

D.J.D. & Egan, A.R. (eds.) Trace elements in soil-plant-animal systems. Academic Press,

New York. 55 p.

Ojala, A.E.K. 2011. Sedimenttistratigrafia ja sedimentaatioympäristön muutokset

Itämerestä kuroutuneissa järvissä Satakunnassa (in Finnish with an English abstract:

Sediment lithostratigraphy and past changes in sedimentary environment in isolated lakes

in Satakunta region). Eurajoki, Finland: Posiva Oy. Working Report 2011-87. 64 p.

http://www.posiva.fi/

Ojala, A.E.K., Ikävalko, O., Palmu, J-P., Vanhala, H., Valjus, T., Suppala, I., Salminen,

R., Lintinen, P. & Huotari, P. 2007. Espoon Suurpellon alueen maaperän ominaispiirteet

(In Finnish: The features of overburden in the Suurpelto area, Espoo). Geological Survey

of Finland, Open file Report P22.4/2007/39. 51 p.

http://arkisto.gsf.fi/p22/p22_4_2007_39.pdf.

Ojala, A.E.K., Virkki, H., Palmu, J-P., Hokkanen, K. & Kaija, J. 2006. Olkiluodon

Pyhäjärven alueen valuma-alueiden alueellinen kehittyminen 2000 BP-8000 AP (in

Finnish with an English abstract: Regional development of river basins in the Olkiluoto-

Pyhäjärvi area, SW Finland, 2000 BP-8000 AP). Eurajoki, Finland: Posiva Oy. Working

Report 2006-113. 97 p. http://www.posiva.fi/

Pajunen, H. 2004. Järvisedimentit kuiva-aineen ja hiilen varastoina (in Finnish with an

English summary: Lake sediments in dry matter and carbon storage). Geological Survey

of Finland, Espoo, Report 160. 308 p. www.gsf.fi

Pajunen, M., Airo, M-L., Elminen, T., Mänttäri, T., Niemelä, R., Vaarma, M., Wasenius,

P. & Wennerström, M. 2008. Tectonic evolution of the Svecofennian crust in southern

Finland. In: Pajunen, M. (ed.) Tectonic evolution of the Svecofennian crust in southern

Finland - a basis for characterizing bedrock technical properties. Geological Survey of

Finland, Espoo, Special Paper 47. pp. 15-160. www.gsf.fi

Pajunen, M. & Wennerström, M. 2008. Satakunnan hiekkakiven hauraiden rakenteiden

kehityksestä. In: Korhonen, R. (ed.) Geotietoa Satakunnasta. GeoPori, GeoSatakunta ja

InnoGeo loppuraportti (in Finnish with an English summary: Geological data from the

Province Satakunta in Finland). Report on the projects entitled GeoPori, GeoSatakunta

and InnoGeo. Geological Survey of Finland, Report 183. pp. 11-63. www.gsf.fi.

Palko, J. & Ruokanen, I. 1994. Siika-Pattijoen uusjakoalueen metsäojitus: Arvio

happamien sulfaattimaiden esiintymisestä alueella ja toimenpide-ehdotus

happamuushaittojen ehkäisemiseksi (in Finnish; Forest drainage of Siika-Pattijoki area –

assessment of occurrence of acid sulphate soils and action plan to prevent acidity

problems). Oulun vesi- ja ympäristöpiiri & Pohjois-Pohjanmaan metsälautakunta, Oulu,

Finland. 12 p.

Page 139: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

131

Perttunen, M., Lappalainen, E., Taka, M. & Herola, E. 1984. Vehmaan, Mynämäen,

Uudenkaupungin ja Yläneen kartta-alueiden maaperä (in Finnish with an English

summary: Quaternary deposits in the Vehmaa, Mynämäki, Uusikaupunki and Yläne map-

sheet areas). Geological Survey of Finland. 51 p.

Pezzarossa, B., Piccotino, D. & Petruzzelli, G. 1999. Sorption and desorption of selenium

in different soils of the Mediterranean area. Communications in Soil Science and Plant

Analysis 30. pp. 2669-2679.

Pezzarossa, B. & Petruzzelli, G. 2001. Selenium contamination in soil: Sorption and

desorption of selenium in different soils of the Mediterranean area. Communications in

Soil Science and Plant Analysis 30. pp. 2669-2679.

Posiva 2014. Safety case for the spent nuclear fuel disposal at Olkiluoto – Data Basis for

the Biosphere Assessment BSA-2012. Eurajoki, Finland: Posiva Oy. POSIVA 2012-28.

1446 p. http://www.posiva.fi/

Posiva 2013. Safety case for the disposal of spent nuclear fuel at Olkiluoto – Biosphere

Assessment 2012. Eurajoki, Finland: Posiva Oy. POSIVA 2012-10. 251 p.

http://www.posiva.fi/

Posiva 2012. Safety case for the disposal of spent nuclear fuel at Olkiluoto – Terrain and

Ecosystem Development Modelling in the Biosphere Assessment BSA-2012. Eurajoki,

Finland: Posiva Oy. POSIVA 2012-29. 379 p. http://www.posiva.fi/

Påsse, T. 1990a. Empirical estimation of isostatic uplift using lake-tilting method at Lake

Fegen at Sväven southwestern Sweden. Mathematical geology 22. No. 7. pp. 803-834.

Påsse, T. 1996. A mathematical model of the shore-level displacement in Fennoscandia.

Swedish Nuclear Fuel and Waste Management Co, SKB Technical Report 96. 24 p.

www.skb.se.

Påsse, T. 1998. Lake-tilting, a method for estimation of isostatic uplift. Boreas 27. pp.

69-80.

Påsse, T. 2001. An empirical model of glacio-isostatic movements and shore-level

displacement in Fennoscandia. Swedish Nuclear Fuel and Waste Management Co, SKB

Technical Report R-01-41. 59 p. www.skb.se.

Påsse, T. & Andersson, L. 2005. Shore-level displacement in Fennoscandia calculated

from empirical data. GFF, Vol. 127. pp. 253-268. Stockholm. www.gff-

online.se/site/article.asp?articleID=845.

Rantamäki, M., Jääskeläinen, R. & Tammirinne, M. 1979. Geotekniikka (in Finnish:

Geotechnics). 464. Otakustantamo, Finland. 301 p.

Rantataro, J. 2001. Akustis-seismiset tutkimukset Olkiluodon läheisellä merialueella

vuonna 2000 (in Finnish with an English abstract: Acuistic-seismic research in the sea

area near Olkiluoto in year 2000. Working Report 2001-11. Posiva Oy, Helsinki. 62 p.

http://www.posiva.fi/

Page 140: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

132

Rantataro, J. 2002. Sedimenttikivialueen rajaus ja Olkiluodon merialueen akustis-

seismisten luotausten täydentävä tulkinta (in Finnish with an English abstract: The

estimation of sedimentary rock covered area as well ass supplementary interpretation of

acoustic-seismic research in Olkiluoto area). Working Report 2002-38. Posiva Oy.

Olkiluoto, Finland. 17 p. http://www.posiva.fi/

Rantataro, J. & Kaskela, A. 2009. Acoustic-seismic studies in the sea area close to

Olkiluoto in 2008. Eurajoki, Finland: Posiva Oy. Working Report 2009-112. 32 p.

http://www.posiva.fi/

Rautio, P., Latvajärvi, H., Jokela, A. & Kangas-Korhonen, P. 2004. Forest resources on

Olkiluoto Island. Eurajoki, Finland: Posiva Oy. Working Report 2004-35. 109 p.

http://www.posiva.fi/

Rigol, A., Vidal, M. & Rauret, G. 2002. An overview of the effect of organic matter on

soil-radiocaesium interaction: implications in root uptake. Journal of Environmental

Radioactivity 58. pp. 191-216.

RIL 1964. Pohjarakennuksen normit (in Finnish: Standards of ground conctruction).

Julkaisuja (Publications) A 45. Rakennusinsinööriliitto (Union of construction

engineers), Finland.

Rose, A.W. 1979. Geochemistry in mineral exploration. 2nd edition. Amsterdam,

Academic Press. 657 p.

Sheppard, S. 2011. Robust prediction of Kd from soil properties for environmental

assessment. Human and Ecological Risk Assessment 17. pp. 263-279.

Sheppard, S.C., Grant, C.A. & Drury, C.F. 2009a. Trace elements in Ontario soils –

Mobility, concentration profiles, and evidence of non-point-source pollution. Canadian

Journal of Soil Science 89: pp. 489-499.

Sheppard, S., Long, J., Sanipelli, B. & Sohlenius, G. 2009b. Solid/liquid partition

coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp.

Report R-09-27. Swedish Nuclear Fuel and Waste Management Co., Stockholm. 78 p.

http://www.skb.se/

Sheppard, M.I., Sheppard, S.C. & Grant, C.A. 2007. Solid/liquid partition coefficients to

model trace element critical loads for agricultural soils in Canada. Canadian Journal of

Soil Science 87. pp. 189-201.

Sheppard, M.I. & Thibault, D.H. 1990. default solid/liquid partition coefficients, Kds for

major soil types: a compendium. Health Physics 59 (4). pp. 471-482.

Sheppard, S.C., Sheppard, M.I. & Evenden, W. G. 1990. A novel method used to examine

variation in Tc sorption among 34 soils, aerated and anoxic. Journal of Environmental

Radioactivity 11. pp. 215-233.

Söderlund, M., Lusa, M., Virtanen, S., Välimaa, I., Hakanen, M., Lehto, J. & Lahdenperä,

A-M. 2013. Distribution coefficients of caesium, chlorine, iodine, niobium, selenium and

Page 141: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

133

technetium on Olkiluoto soils. Eurajoki, Finland: Posiva Oy. Working Report 2013-68.

150 p. http://www.posiva.fi/

Tidball, R.R. 1976. Lead in soils. In Lovering, T.G. (ed.) Lead in environment. USA

Geological Survey, Professional Papers 957, 43.

Vuorela, A., Penttinen, T. & Lahdenperä, A-M. 2009. Review of Bothnian Sea shore-

level displacement data and use of a GIS tool to estimate isostatic uplift. Eurajoki,

Finland: Posiva Oy. Working Report 2009-17. 191 p. http://www.posiva.fi/

Vuori, E., Vääriskoski, J., Hartikainen, H., Kumpulainen, J., Aarnio, T. & Niinivaara, K.

1994. A long-term study of selenite sorption in Finnish cultivated soils. Agriculture,

Ecosystems and Environment 48. pp. 91-98.

Page 142: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

134

Page 143: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

135

APPENDICES

Appendix A

Table A. Pore water element concentrations (µg/L) of the deep lake sediments

Appendix B

Table B. Bioavailable element concentrations (µg/kgDW) of the deep lake sediments,

extracted by NH4Ac (pH 4.5)

Appendix C

Table C. Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments,

extracted by HNO3-HF(trace) or LiBO2 fusion

Appendix D

Table D. Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids

extracted by NH4Ac (pH 4.5)

Appendix E

Table E. Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids

extracted by HNO3-HF(trace) or LiBO2 fusion

Appendix F

Table F. Limit of quantification (LOQ) of the analysed elements

Appendix G

Table G-1. Arithmetic mean, min and max values of the main pore water elements (Ag,

Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr)

Table G-2. Arithmetic mean, min and max values of the main bioavailable elements (Ag,

Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr)

Table G-2. Arithmetic mean, min and max values of the main pseudo-total elements (Ag,

Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr)

Table G-4. Geometric mean, min and max values of the distribution coefficients (Kd

values), solids extracted by NH4Ac (pH 4.5) of the deep lake sediments

Table G-5. Geometric mean, min and max values of the distribution coefficients (Kd

values), solids extracted by HNO3-HF extraction or LiBO2 fusion method of the deep lake

sediments

Appendix H

Knowledge quality assessment for data

Page 144: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

136

Table A. Pore water element concentrations (µg/L) of the deep lake sediments (-=no result). Under LOQ values are marked in grey and

italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

LOQ 0.01 1.0 0.1 0.005 2.0 0.05 0.005 0.001 10.0 50 0.005 0.001

Suomenperänjärvi 10-60 0.006 140 0.5 0.001 140 84 0.1 0.002 20 68800 0.4 0.9

Suomenperänjärvi 60-70 0.008 355000 2.2 0.001 353 37 120 0.006 851 586000 52 4820

Suomenperänjärvi 84-140 0.001 465000 4.1 0.002 496 46 147 0.04 5690 528800 35 7690

Suomenperänjärvi 150-199 0.006 574000 3.5 0.001 430 56 187 0.06 8870 526000 66 10100

Poosjärvi 10-190 - 473 0.4 0.001 136 36 0.5 0.0006 68 113700 6.5 5.1

Poosjärvi 207-213 0.001 336 0.4 0.001 187 118 0.1 - 30 54400 0.5 5.9

Poosjärvi 230-240 0.001 894000 9.0 0.006 376 50 148 0.01 16800 499000 56 9280

Poosjärvi 270-390 0.007 14700 3.6 0.002 429 45 12.6 0.0004 991 433000 27 965

Poosjärvi 480-520 0.001 231 2.5 0.001 290 79 0.02 0.001 932 36400 0.2 0.6

Lutanjärvi 20-360 0.002 1130 0.4 0.001 1910 63 0.7 0.001 3450 237000 3.5 11.4

Lutanjärvi 370-408 - 1090000 9.7 0.005 3780 51 178 0.02 12600 510000 59 9570

Lutanjärvi 420-640 0.002 75600 6.0 - 8120 36 48 0.008 18030 507000 45 1320

Kivijärvi 20-40 - 3120 1.2 0.001 147 44 3.4 0.001 296 260000 30 52

Kivijärvi 60-70 0.004 158 0.5 0.001 348 82 0.1 0.0009 52 73000 1.4 1.0

Kivijärvi 90-160 - 73 0.6 0.000 1040 93 0.1 0.001 313 52300 0.5 1.0

Kivijärvi 200-240 0.002 798000 14.7 0.001 2080 56 182 0.02 5440 501000 50 11100

Kivijärvi 260-270 0.004 445000 6.6 0.002 3290 41 128 0.009 23600 516000 101 6630

Kivijärvi 447-457 0.004 495000 18.0 - 786 59 117 0.005 10900 523000 155 10400

Kivijärvi 457-466 0.003 616000 15.1 0.002 665 70 197 0.01 4600 523000 112 12800

Kivijärvi 466-474 0.009 163 1.8 0.002 882 48 0.4 0.0008 4330 479000 4.0 101

Kivijärvi 490-650 0.004 125 1.3 0.001 813 48 0.01 0.001 4690 110300 0.6 0.7

Koskeljärvi 50-320 0.002 128 0.3 0.001 748 40 0.04 0.002 126 33800 0.2 1.7

Koskeljärvi 343-360 0.001 86 0.8 0.001 1930 64 0.1 0.0009 719 225 1.2 2.3

Koskeljärvi 380-400 0.006 265000 3.6 0.001 2850 37 140 0.06 5290 511000 44 5750

Koskeljärvi 440-540 0.004 538000 4.5 0.003 4150 47 184 0.2 12300 498000 42 9050

Page 145: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

137

Table A. Pore water element concentrations (µg/L) of the deep lake sediments (-=no result). Under LOQ values are marked in grey and

italics. LOQ of the element is given in the second line.

Reference lake Sampling

depth cm

Ag

AgAg

AgAAAAg

Al As Au

B Ba Be Bi Br Ca Cd Ce

LOQ 0.01 1.0 0.1 0.005 2.0 0.05 0.005 0.001 10.0 50 0.005 0.001

Lampinjärvi 20-110 - 285 0.4 0.002 594 60 0.4 0.001 456 190000 6.2 6.2

Lampinjärvi 130-140 0.006 1510000 960 0.001 1050 70 184 0.04 2990 554000 59 13500

Lampinjärvi 160-230 - 1190000 24 0.004 1800 68 189 0.02 17300 490000 86 13600

Lampinjärvi 271-283 0.007 752000 37 0.005 487 71 129 0.012 11800 508000 119 13900

Lampinjärvi 300-310 0.01 237000 12.8 0.001 1200 41 125 0.01 3850 505000 51 4920

Lampinjärvi 385-610 0.001 3850 3.0 0.001 1720 48 4.4 0.002 6150 530000 40 518

Lampinjärvi 720-730 0.01 39 2.0 0.001 997 66 0.01 0.001 7130 112000 0.6 0.9

Valkjärvi 20-140 0.01 404 0.4 0.01 531 58 0.3 0.002 1030 186000 2.3 7.6

Valkjärvi 180-290 0.002 124000 4.7 0.001 1520 34 67 0.005 6970 557400 44 2810

Valkjärvi 310-480 0.005 403000 6.9 0.001 2900 43 134 0.02 16500 507000 76 6580

Narvijärvi 20-210 0.001 338 0.5 0.001 1200 66 0.2 0.001 4660 147000 1.7 4.0

Narvijärvi 250-480 - 184 1.1 0.002 4900 62 0.3 0.002 18500 320000 2.6 9.1

Narvijärvi 510-630 0.002 213000 3.4 0.004 9200 35 132 0.02 31000 507000 52 4770

Page 146: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

138

Table A. (cont´d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

LOQ 500 0.005 0.5 0.005 0.05 0.001 0.001 0.001 1.0 0.002 0.001

Suomenperänjärvi 10-60 11200 2.7 0.4 0.2 0.8 0.05 0.04 0.01 42 - 0.06

Suomenperänjärvi 60-70 8570 2780 18.8 0.5 144 243 125 26 349000 0.2 262

Suomenperänjärvi 84-140 12700 2230 171 0.5 230 460 232 74 1470000 0.9 509

Suomenperänjärvi 150-199 18200 2470 308 0.6 1700 626 325 110 1320000 1.0 711

Poosjärvi 10-190 10400 220 0.3 0.9 0.7 0.20 0.1 0.04 271 0.01 0.3

Poosjärvi 207-213 16200 3.5 0.3 0.2 1.2 0.3 0.2 0.05 736 0.01 0.4

Poosjärvi 230-240 21200 3250 149 1.8 490 576 312 115 617000 1.7 673

Poosjärvi 270-390 33300 940 2.1 0.3 101 64 33 10.7 69600 0.01 71

Poosjärvi 480-520 47900 0.8 0.1 0.1 25 0.03 0.02 - 35 0.05 0.04

Lutanjärvi 20-360 66600 288 0.5 0.2 0.9 0.5 0.3 0.07 643 0.01 0.7

Lutanjärvi 370-408 129000 2920 63 1.4 45 430 216 66 820000 1.2 520

Lutanjärvi 420-640 163000 1580 10.5 0.5 8.6 63 34 9.8 518000 0.09 75

Kivijärvi 20-40 18700 885 0.6 0.8 4.3 2.1 1.2 0.4 238 0.03 2.6

Kivijärvi 60-70 12900 2.7 0.3 0.3 0.6 0.05 0.03 0.01 59 - 0.05

Kivijärvi 90-160 18800 15.0 0.6 0.3 0.8 0.07 0.05 0.01 69 0.01 0.1

Kivijärvi 200-240 33200 2380 209 0.9 33 721 396 158 2550000 0.9 894

Kivijärvi 260-270 52300 2110 136 0.4 198 370 197 69 1220000 0.7 448

Kivijärvi 447-457 81000 5220 315 0.8 214 418 212 107 1650000 1.1 581

Kivijärvi 457-466 85200 5020 195 0.6 41 824 443 153 1970000 0.6 940

Kivijärvi 466-474 88500 253 0.3 0.3 5.5 3.9 2.1 0.7 62200 0.02 5.0

Kivijärvi 490-650 125000 5.2 0.2 0.2 22 0.05 0.03 0.01 17.0 0.03 0.07

Kivijärvi 680-690 NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi 50-320 63700 1.5 1.1 0.2 1.6 0.1 0.08 0.01 101 0.01 0.1

Koskeljärvi 343-360 131000 41 1.0 0.4 3.0 0.2 0.1 0.02 73 0.01 0.20

Koskeljärvi 380-400 125000 2120 67 0.9 209 335 178 44 1090000 0.4 392

Koskeljärvi 440-540 176000 2170 218 0.8 792 554 292 83 989000 1.0 629

Page 147: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

139

Table A. (cont`d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

LOQ 500 0.005 0.5 0.005 0.05 0.001 0.001 0.001 1.0 0.002 0.001

Lampinjärvi 20-110 66700 221 0.3 0.5 1.9 0.3 0.1 0.05 103 - 0.4

Lampinjärvi 130-140 131000 2470 1350 1.1 2100 1068 586 254 6230000 14.2 1390

Lampinjärvi 160-230 206000 2200 549 1.0 816 818 446 176 1690000 3.1 996

Lampinjärvi 271-283 274000 4180 755 0.6 96 535 273 144 4320000 1.9 751

Lampinjärvi 300-310 413000 3230 95 0.3 67 278 141 50 721000 0.2 326

Lampinjärvi 385-610 872000 848 1.3 0.3 68 25 13.2 4.3 42600 0.01 30

Lampinjärvi 720-730 1300000 3.0 0.1 0.2 22 0.06 0.03 - 115 0.01 0.06

Valkjärvi 20-140 18900 26 0.6 0.2 1.6 0.2 0.1 0.05 98 - 0.2

Valkjärvi 180-290 35900 1490 23 0.5 125 157 90 28 362000 0.2 181

Valkjärvi 310-480 55000 2500 141 0.6 206 388 211 69 1300000 0.8 449

Narvijärvi 20-210 200000 36 0.5 0.3 1.5 0.2 0.09 0.02 133 - 0.2

Narvijärvi 250-480 726000 199 1.1 0.5 5.9 0.7 0.4 0.07 5550 0.01 0.7

Narvijärvi 510-630 996000 3220 30 0.7 26 272 141 39 770000 0.3 319

Page 148: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

140

Table A. (cont´d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

LOQ 0.001 0.03 0.001 1.0 0.001 50 0.001 0.2 0.001 2.0 0.1 0.01

Suomenperänjärvi 10-60 0.003 0.005 0.01 1.6 0.001 7280 0.6 10.1 0.01 17930 500 0.3

Suomenperänjärvi 60-70 0.2 0.0008 49 19.0 0.0007 6140 2990 575 10.3 224000 53200 0.4

Suomenperänjärvi 84-140 0.4 0.005 90 139 0.001 1250 4220 1200 22.2 434000 162000 0.9

Suomenperänjärvi 150-199 0.6 0.01 122 187 0.002 780 5390 1550 32 488000 152000 1.8

Poosjärvi 10-190 0.0005 0.0003 0.04 1.1 0.001 12300 4.0 38 0.01 26300 19900 0.03

Poosjärvi 207-213 0.0009 0.005 0.07 0.6 0.0003 5870 3.0 23 0.02 16900 2970 -

Poosjärvi 230-240 0.5 0.002 117 72 0.002 614 5280 1660 30 444000 233000 0.7

Poosjärvi 270-390 0.06 0.06 12.8 43 0.0003 64100 539 700 3.3 341100 136000 0.2

Poosjärvi 480-520 0.005 0.002 0.008 81 - 42000 0.3 23 - 33600 1040 46

Lutanjärvi 20-360 0.004 0.01 0.1 39 0.0001 18600 8.4 77 0.03 141000 17700 0.1

Lutanjärvi 370-408 0.4 0.009 84 392 0.0006 31000 5320 1730 15.6 909000 74600 1.1

Lutanjärvi 420-640 0.07 0.004 12.8 759 0.002 123000 935 1030 2.6 762000 74600 0.7

Kivijärvi 20-40 0.003 0.01 0.4 2.5 0.0005 22400 40 139 0.1 46300 50100 0.1

Kivijärvi 60-70 0.0009 0.004 0.01 1.1 0.0008 7280 0.6 23 0.01 26000 2240 0.1

Kivijärvi 90-160 0.003 0.01 0.02 3.1 0.001 8810 0.5 17.1 0.01 28400 1470 0.2

Kivijärvi 200-240 0.7 0.02 146 185 0.001 1200 6010 743 36 551000 199000 1.0

Kivijärvi 260-270 0.4 0.02 74 322 0.0008 25600 4010 1010 16.2 641000 134000 1.2

Kivijärvi 447-457 0.4 0.005 80 273 0.0008 912 5530 1330 23 553000 110000 1.8

Kivijärvi 457-466 0.9 0.02 165 216 0.001 930 6150 2430 47 986000 781000 1.0

Kivijärvi 466-474 0.004 0.05 0.8 508 0.0009 114000 79 219 0.2 352000 146000 0.1

Kivijärvi 490-650 0.002 0.03 0.01 185 0.0008 83600 0.5 47 0.01 102000 5330 4.4

Kivijärvi 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi 50-320 0.008 0.03 0.02 8.1 0.0005 7250 0.8 5.3 0.01 21500 272 1.0

Koskeljärvi 343-360 0.007 0.04 0.04 81 0.0007 28100 1.6 46 0.02 140000 1920 0.9

Koskeljärvi 380-400 0.4 0.02 68 301 0.0009 1680 3450 615 14.7 480000 65500 1.1

Koskeljärvi 440-540 0.6 0.04 112 413 0.0009 5580 4910 1440 28 727000 157000 1.8

Page 149: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

141

Table A. (cont`d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

LOQ 0.001 0.03 0.001 1.0 0.001 50 0.001 0.2 0.001 2.0 0.1 0.01

Lampinjärvi 20-110 0.001 0.03 0.05 1.0 0.0009 14200 4.6 53 0.01 72000 20900 0.1

Lampinjärvi 130-140 1.1 0.04 212 44 0.002 827 7680 853 68 558000 192000 22

Lampinjärvi 160-230 0.9 0.04 168 160 0.002 619 7390 1620 42 798000 192000 1.9

Lampinjärvi 271-283 0.6 0.02 102 238 0.001 782 7130 1510 28 696000 191000 6.9

Lampinjärvi 300-310 0.3 0.02 54 257 0.0005 20300 2690 1770 11.9 759000 130000 1.5

Lampinjärvi 385-610 0.02 0.04 5.1 235 0.003 124000 313 542 1.2 410000 264000 0.2

Lampinjärvi 720-730 0.0007 0.03 0.01 60 0.0001 85500 0.6 40 - 84000 87400 24

Valkjärvi 20-140 0.05 0.02 0.03 11.2 - 11600 6.8 40 0.01 72400 11500 0.3

Valkjärvi 180-290 0.4 0.002 33 203 0.001 38500 1880 595 7.2 372000 66900 0.5

Valkjärvi 310-480 0.7 0.03 77 464 0.001 13700 3930 1080 19.6 627000 125000 1.5

Narvijärvi 20-210 0.003 0.02 0.03 89 0.0005 21400 3.2 42 0.01 125000 6520 0.3

Narvijärvi 250-480 0.005 0.2 0.1 1720 0.0002 81700 7.5 124 0.06 429000 13400 1.1

Narvijärvi 510-630 0.3 0.1 55 4630 0.0006 67500 3030 851 11.0 850000 64600 1.3

Page 150: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

142

Table A. (cont´d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

LOQ 50 0.001 0.001 0.05 0.001 1.0 0.005 0.02 0.001 0.001 0.02 0.005

Suomenperänjärvi 10-60 23600 0.01 0.4 2.3 0.0001 24 0.1 - 0.1 0.0009 13.0 0.01

Suomenperänjärvi 60-70 46000 0.03 1560 2700 0.006 63 3.7 0.2 475 0.0005 36 0.05

Suomenperänjärvi 84-140 92500 0.2 2960 4300 0.01 388 2.0 0.2 828 0.001 45 0.07

Suomenperänjärvi 150-199 113000 0.3 4090 5750 0.02 426 1.8 0.3 1130 0.001 38 0.02

Poosjärvi 10-190 25000 - 1.7 190 - 19.3 0.4 0.3 0.5 0.0008 31 0.03

Poosjärvi 207-213 34000 - 2.3 7.8 0.0005 37 0.03 - 0.7 0.001 8.9 0.02

Poosjärvi 230-240 69800 0.1 3960 5680 0.02 309 0.3 0.2 1100 0.0004 75 0.05

Poosjärvi 270-390 145000 0.01 334 2200 0.002 46 5.0 0.1 93 0.0005 63 0.01

Poosjärvi 480-520 158000 0.02 0.3 2.8 0.0007 113 0.1 0.01 0.06 0.006 15.0 -

Lutanjärvi 20-360 184000 0.01 3.7 82 0.001 42 0.3 0.01 1.1 0.0001 14.0 0.04

Lutanjärvi 370-408 594000 0.1 3240 3370 0.01 691 0.5 0.3 979 0.0004 122 0.07

Lutanjärvi 420-640 604000 0.07 434 3260 0.002 490 12.0 0.2 134 0.0002 70 0.09

Kivijärvi 20-40 29000 - 15.8 444 0.0007 20 1.5 0.1 4.7 0.001 49 0.1

Kivijärvi 60-70 25600 - 0.4 7.9 0.0 22 0.2 0.01 0.1 0.0001 14.3 0.02

Kivijärvi 90-160 56100 0.01 0.6 6.4 - 32 0.02 - 0.1 0.001 9.7 0.01

Kivijärvi 200-240 166000 0.08 5450 3700 0.02 2030 0.1 0.2 1450 0.0002 21 0.09

Kivijärvi 260-270 298000 0.1 2580 5570 0.009 513 4.0 0.4 753 0.0003 45 0.08

Kivijärvi 447-457 224000 0.1 4410 5240 0.01 1390 0.1 0.6 1210 0.001 29 0.2

Kivijärvi 457-466 335000 0.2 4960 10300 0.02 298 0.2 0.5 1340 0.001 37 0.01

Kivijärvi 466-474 348000 0.01 27 707 0.002 69 0.2 0.02 8.2 0.001 57 0.02

Kivijärvi 490-650 350000 0.02 0.3 24 0.0007 138 0.03 - 0.07 0.005 34 0.02

Kivijärvi 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi 50-320 74400 0.03 0.8 1.9 0.0006 59 - - 0.2 0.0007 6.6 0.01

Koskeljärvi 343-360 178000 0.03 1.0 26 0.002 77 0.1 0.01 0.3 0.0004 23 0.04

Koskeljärvi 380-400 246000 0.09 2210 2990 0.01 454 1.8 0.2 627 0.0003 51 0.1

Koskeljärvi 440-540 340000 0.2 3550 4840 0.01 702 0.4 0.2 977 0.0009 60 0.2

Page 151: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

143

Table A. (cont`d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

LOQ 50 0.001 0.001 0.05 0.001 1.0 0.005 0.02 0.001 0.001 0.02 0.005

Lampinjärvi 20-110 82000 - 2.0 71 - 33 0.4 0.02 0.6 0.001 18.9 0.03

Lampinjärvi 130-140 120000 5.4 8480 3450 0.03 132000 - 0.3 2140 0.001 3.9 0.1

Lampinjärvi 160-230 341000 0.4 6330 5130 0.02 2240 0.2 0.4 1670 0.0005 28 0.08

Lampinjärvi 271-283 369000 0.5 5990 5390 0.01 1920 0.02 0.5 1640 0.0007 28 0.4

Lampinjärvi 300-310 698000 0.2 1780 6500 0.005 469 1.5 0.2 513 0.001 45 0.1

Lampinjärvi 385-610 1210000 0.01 160 1910 0.0008 113 2.2 0.2 47 0.0004 48 0.03

Lampinjärvi 720-730 1110000 0.02 0.4 5.3 - 72 - 0.01 0.09 0.004 25 0.03

Valkjärvi 20-140 63400 0.008 1.9 28 - 45 0.1 0.009 0.6 - 15.1 0.02

Valkjärvi 180-290 165000 0.04 985 2800 0.005 146 12.4 0.2 293 - 50 0.08

Valkjärvi 310-480 285000 0.2 2510 5530 0.01 685 5.1 0.3 736 0.001 40 0.1

Narvijärvi 20-210 204000 0.02 1.3 17.3 0.001 56 0.2 0.007 0.4 - 19.9 0.03

Narvijärvi 250-480 811000 0.06 3.4 106 0.001 179 0.2 0.01 0.9 0.001 54 0.07

Narvijärvi 510-630 1120000 0.1 1720 3950 0.005 424 1.2 0.2 497 0.001 84 0.1

Page 152: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

144

Table A. (cont´d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

LOQ 0.001 0.005 50 0.005 0.01 0.2 100 0.001 0.05 0.1 0.001 0.001

Suomenperänjärvi 10-60 0.004 0.002 103000 0.4 0.04 0.2 17800 0.07 - 292 0.0005 0.01

Suomenperänjärvi 60-70 0.03 0.02 1720000 0.06 10.0 0.6 70300 260 0.03 3310 0.06 40

Suomenperänjärvi 84-140 0.04 0.03 2940000 0.3 38 5.0 97900 541 0.01 4350 0.1 75

Suomenperänjärvi 150-199 0.05 0.05 3150000 0.7 85 6.1 115000 768 0.02 4650 0.1 108

Poosjärvi 10-190 0.0003 0.002 198000 0.07 0.03 - 33100 0.2 0.01 541 0.0003 0.03

Poosjärvi 207-213 0.002 - 36600 0.4 0.04 - 32300 0.4 - 357 0.0003 0.06

Poosjärvi 230-240 0.03 0.05 3130000 0.2 39 1.0 95700 742 - 2720 0.1 98

Poosjärvi 270-390 0.02 0.006 1150000 0.07 1.0 4.1 57400 67 0.01 2450 0.01 11.0

Poosjärvi 480-520 0.004 0.003 159000 1.7 0.01 25 6900 0.04 - 267 0.001 0.01

Lutanjärvi 20-360 0.01 0.002 359000 0.1 0.06 0.2 34200 0.6 0.01 1330 0.0004 0.1

Lutanjärvi 370-408 0.08 0.03 4740000 0.4 14.7 0.5 94500 542 0.05 9190 0.08 73

Lutanjärvi 420-640 0.06 0.01 2530000 0.6 2.0 1.2 72400 70 0.02 7020 0.02 10.5

Kivijärvi 20-40 0.01 0.001 289000 0.09 0.07 0.4 27400 2.4 - 1180 0.0006 0.4

Kivijärvi 60-70 0.004 0.001 70800 0.2 0.01 0.2 27000 0.08 0.01 369 0.0005 0.01

Kivijärvi 90-160 0.002 0.002 99300 0.08 0.05 - 25200 0.1 0.01 327 0.0007 0.01

Kivijärvi 200-240 0.04 0.07 4490000 1.4 46 0.5 94500 1000 0.07 3710 0.1 122

Kivijärvi 260-270 0.07 0.04 3240000 0.7 21 1.3 84400 439 0.04 6720 0.08 63

Kivijärvi 447-457 0.02 0.05 3360000 0.2 52 4.0 70800 752 0.06 3260 0.1 74

Kivijärvi 457-466 0.04 0.09 4720000 0.2 66 4.7 111000 973 0.03 2760 1.0 140

Kivijärvi 466-474 0.02 0.004 1400000 0.1 0.03 3.7 17200 4.4 - 3100 0.0008 0.7

Kivijärvi 490-650 0.008 - 505000 0.3 0.02 11.8 10300 0.06 0.01 746 0.0008 0.01

Kivijärvi 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi 50-320 0.0007 0.002 64700 0.2 0.07 0.1 18300 0.2 0.01 203 0.001 0.02

Koskeljärvi 343-360 0.01 0.001 529000 0.2 0.09 1.7 19100 0.2 0.01 1420 0.001 0.03

Koskeljärvi 380-400 0.05 0.05 2570000 0.6 18.6 1.6 77400 381 0.1 5300 0.09 56

Koskeljärvi 440-540 0.08 0.06 3480000 0.7 47 4.0 106000 646 0.01 7500 0.1 93

Page 153: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

145

Table A. (cont`d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

LOQ 0.001 0.005 50 0.005 0.01 0.2 100 0.001 0.05 0.1 0.001 0.001

Lampinjärvi 20-110 0.01 0.002 284000 0.08 0.02 0.1 29300 0.3 0.02 990 0.0001 0.05

Lampinjärvi 130-140 0.08 0.1 7670000 0.7 330 7.1 96000 1650 0.4 593 0.2 179

Lampinjärvi 160-230 0.09 0.08 4910000 1.2 79 1.0 97000 1150 0.03 4690 0.12 138

Lampinjärvi 271-283 0.05 0.05 5270000 0.4 107 3.5 80600 1010 0.06 3510 0.2 97

Lampinjärvi 300-310 0.05 0.05 3110000 1.0 17.1 5.9 99900 330 0.06 4900 0.07 48

Lampinjärvi 385-610 0.02 0.001 1530000 0.2 0.4 7.8 40400 27 - 3400 0.006 4.2

Lampinjärvi 720-730 0.007 0.002 344000 0.8 0.02 42 4800 0.06 0.01 709 0.001 0.01

Valkjärvi 20-140 0.01 0.001 323000 0.1 0.04 0.7 24000 0.3 0.01 1140 0.002 0.03

Valkjärvi 180-290 0.05 0.03 1730000 0.1 6.2 1.6 64200 172 0.02 4480 0.04 26

Valkjärvi 310-480 0.07 0.05 3190000 0.7 28 3.0 82700 428 0.03 6670 0.1 66

Narvijärvi 20-210 0.01 0.002 350000 0.2 0.01 0.6 18200 0.2 0.01 1250 0.001 0.03

Narvijärvi 250-480 0.03 0.005 1350000 0.3 0.1 2.2 27800 0.6 - 2970 0.002 0.09

Narvijärvi 510-630 0.1 0.07 3510000 1.0 9.3 1.3 73400 290 0.03 8880 0.07 45

Page 154: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

146

Table A. (cont´d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

LOQ 0.01 0.001 0.1 0.001 0.001 0.001 0.1 0.01 0.002 0.001 1.0 0.005

Suomenperänjärvi 10-60 0.003 - 0.3 0.6 0.005 - 0.004 1.4 0.4 0.04 94 0.1

Suomenperänjärvi 60-70 0.02 5.1 11.5 1.7 13.4 21 0.7 26 2020 75 12800 1.3

Suomenperänjärvi 84-140 0.1 30 23 0.3 28 69 0.03 508 294 166 10500 6.2

Suomenperänjärvi 150-199 0.2 93 26 0.5 39 170 0.3 680 3810 237 12400 10.8

Poosjärvi 10-190 0.008 - 0.1 0.9 0.01 - 0.009 0.07 2.0 0.1 1170 0.02

Poosjärvi 207-213 0.002 - 0.2 0.2 0.02 0.1 0.09 0.5 2.2 0.1 41 0.03

Poosjärvi 230-240 0.03 38 39 0.6 37 76 0.03 99 3820 216 13900 2.3

Poosjärvi 270-390 0.03 0.3 0.6 0.7 3.7 6.5 0.1 0.5 430 23 1580 0.2

Poosjärvi 480-520 0.004 0.1 1.6 0.3 0.002 0.3 0.1 3.1 0.2 0.02 6.3 0.2

Lutanjärvi 20-360 0.002 - 0.3 0.4 0.04 - 0.1 0.9 5.8 0.2 1360 0.1

Lutanjärvi 370-408 0.05 8.0 22 1.5 24 56 0.04 454 3360 125 20800 3.4

Lutanjärvi 420-640 0.04 0.5 5.5 0.4 3.7 3.6 0.2 61 581 20 8480 1.2

Kivijärvi 20-40 0.04 - 0.1 2.0 0.1 0.1 0.06 0.08 23 0.8 4320 0.1

Kivijärvi 60-70 0.0006 - 0.4 0.3 0.004 - 0.05 0.6 0.4 0.03 181 0.1

Kivijärvi 90-160 - - 0.4 0.3 0.009 - 0.1 1.2 0.6 0.06 103 0.1

Kivijärvi 200-240 0.04 30 20 0.4 46 163 0.3 1220 4070 270 16400 1.7

Kivijärvi 260-270 0.08 11.1 28 1.4 23 46 1.0 606 2730 128 13900 2.3

Kivijärvi 447-457 0.2 50 25 6.9 26 155 0.3 951 2450 159 13400 2.0

Kivijärvi 457-466 0.2 62 10.6 0.4 54 198 0.5 386 3810 333 15200 11.7

Kivijärvi 466-474 0.01 - 0.4 0.06 0.2 0.2 0.05 0.05 39 1.3 219 0.02

Kivijärvi 490-650 0.004 - 1.0 0.6 0.005 0.1 0.06 1.3 0.4 0.03 4.4 0.1

Kivijärvi 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi 50-320 0.006 0.1 1.5 0.3 0.009 0.1 0.04 2.7 0.7 0.07 23 0.2

Koskeljärvi 343-360 0.007 - 0.7 1.0 0.02 0.1 0.007 2.6 1.5 0.1 285 0.2

Koskeljärvi 380-400 0.09 10.9 17.5 1.2 20.0 32 0.3 481 2550 112 12300 3.9

Koskeljärvi 440-540 0.2 46 34 0.5 34 100 0.3 577 3650 203 12500 5.2

Page 155: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

147

Table A. (cont`d). Pore water element concentrations (µg/L) of the deep lake sediments (-=no result, NA=not analysed). Under LOQ values

are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

LOQ 0.01 0.001 0.1 0.001 0.001 0.001 0.1 0.01 0.002 0.001 1.0 0.005

Lampinjärvi 20-110 0.004 - 0.3 0.9 0.02 - 0.01 0.2 2.7 0.1 957 0.04

Lampinjärvi 130-140 0.2 676 459 0.02 73 812 1.3 3640 5020 461 18500 38

Lampinjärvi 160-230 0.08 112 89 0.4 53 231 0.5 1520 4190 313 18000 5.0

Lampinjärvi 271-283 0.4 202 71 3.5 33 263 0.5 3760 2980 203 15000 7.0

Lampinjärvi 300-310 0.5 11.7 7.6 0.5 16.0 57 0.2 486 1840 91 9820 4.7

Lampinjärvi 385-610 0.02 0.1 0.8 0.6 1.5 2.0 0.06 0.5 199 8.4 933 0.2

Lampinjärvi 720-730 0.001 - 0.8 0.3 0.005 1.2 0.2 3.8 0.4 0.03 8.1 0.1

Valkjärvi 20-140 0.008 0.008 0.2 1.2 0.01 0.03 0.06 1.0 1.7 0.07 356 0.07

Valkjärvi 180-290 0.03 2.4 7.5 1.8 10.3 10.9 0.06 66 1270 58 7210 0.9

Valkjärvi 310-480 0.1 15.0 30 1.4 25 54 0.2 688 2880 147 14500 4.9

Narvijärvi 20-210 0.002 - 0.3 1.0 0.01 - 0.03 0.7 1.6 0.08 296 0.1

Narvijärvi 250-480 0.04 - 0.6 0.8 0.05 0.1 0.08 1.4 6.8 0.3 569 0.2

Narvijärvi 510-630 0.2 3.3 9.2 1.3 15.9 22 0.2 250 2280 83 14600 2.1

Page 156: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

148

Appendix B

Table B. Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result). Under LOQ

values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

LOQ 5.0 500 10.0 0.5 500 20 1.0 0.5 500 5000 2.0 0.5

Suomenperänjärvi 10-60 2.3 1320000 220 0.1 973 14900 396 26 972 3700000 424 6000

Suomenperänjärvi 60-70 1.7 797000 403 0.1 914 1720 340 71 3110 2390000 152 19000

Suomenperänjärvi 84-140 0.1 496000 386 0.2 308 1990 199 82 8940 2050000 49 16700

Suomenperänjärvi 150-199 0.9 517000 584 0.1 584 2000 203 87 10900 1740000 67 18100

Poosjärvi 10-190 1.4 1060000 358 0.2 824 4270 326 40 1190 1700000 571 6290

Poosjärvi 207-213 0.5 676000 207 0.1 697 24500 220 13.8 827 1480000 215 4440

Poosjärvi 230-240 1.4 947000 237 0.1 408 1320 209 66 24100 1310000 80 16000

Poosjärvi 270-390 1.1 207000 342 0.12 216 7490 103 103 645 680000 79 12900

Poosjärvi 480-520 0.1 213000 789 0.3 849 43900 117 183 1030 1260000 110 6660

Lutanjärvi 20-360 1.0 895000 203 0.09 5395 9270 279 33 9160 2630000 282 9630

Lutanjärvi 370-408 2.3 1290000 465 0.03 6664 1390 334 68 22600 2710000 120 24600

Lutanjärvi 420-640 1.2 368000 432 0.2 9023 2920 229 77 25500 2970000 121 13300

Kivijärvi 20-40 2.1 1450000 283 0.09 824 5040 584 59 1880 1710000 736 13800

Kivijärvi 60-70 1.7 676000 488 0.07 1330 15500 135 41 1120 2030000 328 5040

Kivijärvi 90-160 0.8 491000 813 0.08 3750 23900 208 33 2040 2840000 347 8750

Kivijärvi 200-240 2.0 745000 746 0.21 4890 584 306 56 14500 3020000 110 24300

Kivijärvi 260-270 1.6 543000 586 0 4860 1860 237 60 41500 2490000 180 17600

Kivijärvi 447-457 1.8 119000 638 0.05 446 4700 36 9.8 3100 372000 40 3770

Kivijärvi 457-466 1.1 421000 774 0.2 243 3040 158 63 2280 1020000 66 13500

Kivijärvi 466-474 1.5 150000 98 0.3 1220 9350 99 83 2040 967000 106 13100

Kivijärvi 490-650 0.9 182000 705 0.2 1260 23200 105 165 3220 1050000 129 8930

Kivijärvi 680-690 0.9 221000 975 0.05 1500 57300 118 194 1480 981000 94 6090

Koskeljärvi 50-320 0.3 1100000 115 0.2 2860 18800 295 23 2180 3361000 406 5290

Koskeljärvi 343-360 2.4 313000 363 0.2 3950 9120 205 49 3090 2450000 252 5560

Koskeljärvi 380-400 1.5 379000 593 0.2 3880 1890 254 71 67000 2110000 84 18200

Koskeljärvi 440-540 0.8 506000 537 0.2 5010 1280 252 66 15500 3300000 62 17000

Page 157: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

149

Appendix B

Table B. (cont`d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

LOQ 5.0 500 10.0 0.5 500 20 1.0 0.5 500 5000 2.0 0.5

Lampinjärvi 20-110 0.3 817000 482 0.1 2430 6720 303 44 2810 3040000 650 11200

Lampinjärvi 130-140 0.8 1390000 2780 0.1 2280 262 299 23 10200 2910000 126 21300

Lampinjärvi 160-230 2.0 1370000 735 0.2 4080 982 333 62 33700 3100000 166 25900

Lampinjärvi 271-283 1.2 220000 969 0.2 631 2949 52 9.6 4830 393000 36 5510

Lampinjärvi 300-310 1.1 239000 483 0.04 708 6030 129 60 2210 685000 31 9090

Lampinjärvi 385-610 0.9 190000 429 0.06 1280 11800 106 127 1950 842000 85 12500

Lampinjärvi 720-730 2.4 164000 487 0.2 1650 27100 93 151 2570 870000 107 4850

Valkjärvi 20-140 2.4 687000 168 0.05 2350 7760 156 25 4840 2060000 221 4260

Valkjärvi 180-290 1.7 359000 251 0.2 2370 2710 195 64 11300 1760000 106 15100

Valkjärvi 310-480 0.9 423000 513 0.05 3210 1860 202 59 25500 2690000 101 14600

Narvijärvi 20-210 1.2 805000 237 - 4290 9050 231 41 12700 2030000 287 6260

Narvijärvi 250-480 0.9 142000 389 0.07 7960 6270 166 66 18300 1390000 114 5870

Narvijärvi 510-630 0.9 435000 649 0.1 13900 2380 341 96 38400 1950000 100 18600

Page 158: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

150

Appendix B

Table B. (cont´d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

LOQ 5000 5.0 10.0 0.5 10.0 0.5 0.5 0.5 500 0.5 0.5

Suomenperänjärvi 10-60 40200 13010 1560 45 196 512 239 239 2310000 23 638

Suomenperänjärvi 60-70 20500 4390 1920 56 833 1380 695 695 4740000 6.6 1920

Suomenperänjärvi 84-140 22200 2300 1580 29 1080 1050 543 543 3850000 2.9 1340

Suomenperänjärvi 150-199 19500 2260 1570 33 2620 1070 546 546 3110000 2.0 1450

Poosjärvi 10-190 40600 8960 2060 107 442 496 244 244 6730000 14.9 696

Poosjärvi 207-213 20100 1040 1150 37 137 374 192 192 4040000 6.4 531

Poosjärvi 230-240 22500 3970 2530 42 1170 1160 637 637 5310000 7.7 1510

Poosjärvi 270-390 14100 1200 571 25 5220 731 390 390 1450000 6.0 887

Poosjärvi 480-520 33500 468 495 29 9420 767 476 476 1160000 6.1 806

Lutanjärvi 20-360 135000 6320 1560 89 338 935 488 488 3440000 19.0 1250

Lutanjärvi 370-408 177000 4270 1960 26 509 1550 806 806 4530000 15.0 2120

Lutanjärvi 420-640 117000 2430 1190 10.0 829 1060 520 520 2040000 9.7 1320

Kivijärvi 20-40 50900 10400 2280 151 1700 1100 577 285 6870000 19.9 1580

Kivijärvi 60-70 34000 1370 1220 151 226 357 175 97 3500000 15.8 526

Kivijärvi 90-160 44200 3780 1530 100 253 823 401 197 3850000 14.5 1150

Kivijärvi 200-240 63400 4020 3020 36 511 1960 1100 508 13000000 2.9 2920

Kivijärvi 260-270 63800 2820 2140 11.7 1040 1220 682 303 3900000 7.2 1660

Kivijärvi 447-457 15100 1230 373 9.7 359 149 79 45 870000 1.9 215

Kivijärvi 457-466 27300 2950 1130 24 5770 803 427 174 2850000 2.3 982

Kivijärvi 466-474 32000 1560 425 14.8 5640 825 426 170 2280000 7.0 1020

Kivijärvi 490-650 64500 659 509 19.0 7000 763 424 148 1370000 3.4 867

Kivijärvi 680-690 74600 353 559 25 10100 760 480 122 1200000 3.4 764

Koskeljärvi 50-320 137000 1260 1650 52 309 400 193 193 1780000 20 536

Koskeljärvi 343-360 121000 4020 917 36 486 596 303 303 1160000 3.3 755

Koskeljärvi 380-400 121000 2390 1370 32 1170 1340 703 703 3730000 2.7 1780

Koskeljärvi 440-540 155000 2490 1760 22 1010 1140 645 645 4330000 2.7 1520

Page 159: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

151

Appendix B

Table B. (cont`d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

LOQ 5000 5.0 10.0 0.5 10.0 0.5 0.5 0.5 500 0.5 0.5

Lampinjärvi 20-110 178000 8360 2200 125 444 933 483 483 5980000 15.6 1320

Lampinjärvi 130-140 258000 4760 4860 124 615 1560 868 868 22300000 2.5 2320

Lampinjärvi 160-230 259000 3980 3840 41 943 1810 1020 1020 7480000 5.2 2600

Lampinjärvi 271-283 64400 1250 705 10.7 295 227 115 115 1730000 2.3 340

Lampinjärvi 300-310 112000 1780 844 11.1 2390 538 276 276 1110000 1.4 680

Lampinjärvi 385-610 206000 1140 489 17.4 5420 750 396 396 1380000 6.8 940

Lampinjärvi 720-730 500000 463 455 25 9911 602 388 388 870000 4.7 636

Valkjärvi 20-140 49000 1260 1690 32 645 256 112 112 2150000 7.8 364

Valkjärvi 180-290 37100 2270 1410 15.2 1100 1100 601 601 2770000 2.9 1480

Valkjärvi 310-480 46400 2540 1800 12.0 1000 1050 556 556 3590000 3.5 1410

Narvijärvi 20-210 400000 2370 1420 45 512 515 255 255 1910000 10.7 691

Narvijärvi 250-480 640000 2510 752 26 762 732 435 435 1790000 6.7 879

Narvijärvi 510-630 1050000 4490 1280 13.5 924 1460 796 796 3260000 2.0 1880

Page 160: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

152

Appendix B

Table B. (cont´d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

LOQ 0.5 5.0 0.5 50 0.5 5000 0.5 50 0.5 500 10 5.0

Suomenperänjärvi 10-60 7.8 2.0 95 119 0.04 120000 2950 79 22 450000 121000 8.5

Suomenperänjärvi 60-70 6.9 0.4 276 333 - 63400 8730 1010 69 442000 112000 21

Suomenperänjärvi 84-140 5.5 - 207 1020 0.09 63900 7760 1100 63 505000 177000 18.4

Suomenperänjärvi 150-199 4.1 4.7 203 1060 0.1 70600 8460 1320 67 492000 143000 35

Poosjärvi 10-190 6.2 2.4 95 242 0.1 159000 2990 166 25 219000 500000 8.8

Poosjärvi 207-213 5.1 2.0 75 85 0.1 62600 2050 229 18.8 188000 317000 1.8

Poosjärvi 230-240 1.7 0.2 233 834 0.002 33100 7950 1730 69 617000 316000 4.3

Poosjärvi 270-390 1.1 2.5 148 157 - 22500 5800 406 48 415000 162000 3.8

Poosjärvi 480-520 3.2 1.9 164 148 0.07 641000 2990 518 60 862000 120000 35

Lutanjärvi 20-360 14.8 2.6 182 845 0.07 430000 4460 406 46 850000 201000 15.3

Lutanjärvi 370-408 9.0 3.9 305 1900 0.08 160000 10280 2460 80 1350000 119000 48

Lutanjärvi 420-640 2.8 - 199 2030 0.01 482000 6420 913 60 926000 104000 34

Kivijärvi 20-40 15.5 3.1 223 307 0.2 202000 6710 681 58 214000 426000 13.4

Kivijärvi 60-70 5.9 3.3 67 118 0.05 166000 2260 98 17.0 364000 295000 13.1

Kivijärvi 90-160 6.9 2.1 162 182 0.2 235000 3850 145 42 783000 245000 12.1

Kivijärvi 200-240 24 1.2 396 1840 0.02 29700 10510 1610 130 1160000 397000 37

Kivijärvi 260-270 3.2 3.0 242 1810 0.04 87100 8600 1540 78 937000 191000 32

Kivijärvi 447-457 0.5 4.4 29 216 0.03 7260 1830 344 9.5 139000 25300 28

Kivijärvi 457-466 3.9 1.6 155 387 0.002 44900 5190 1130 54 553000 390000 8.5

Kivijärvi 466-474 3.1 2.4 156 399 0.03 376000 5960 429 52 548000 247000 2.9

Kivijärvi 490-650 2.8 1.3 158 417 0.003 603000 4010 419 51 711000 105000 16.6

Kivijärvi 680-690 1.9 4.3 166 193 0.06 688000 3120 620 70 684000 76600 38

Koskeljärvi 50-320 10.1 3.0 78 - 0.07 151000 2580 107 17.7 930000 117000 10.1

Koskeljärvi 343-360 6.1 3.2 120 325 0.05 214000 2680 446 30 813000 64700 10.8

Koskeljärvi 380-400 5.4 4.2 256 446 0.01 41200 8480 857 75 667000 81000 39

Koskeljärvi 440-540 5.2 0.01 231 1280 0.06 44200 7540 1680 71 997000 211000 35

Page 161: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

153

Appendix B

Table B. (cont`d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

LOQ 0.5 5.0 0.5 50 0.5 5000 0.5 50 0.5 500 10 5.0

Lampinjärvi 20-110 7.9 5.1 181 189 0.08 262000 5120 280 48 701000 482000 9.7

Lampinjärvi 130-140 13.6 1.5 314 1230 0.07 25300 8950 2200 99 1330000 402000 72

Lampinjärvi 160-230 4.9 2.1 365 1512 0.06 28600 12500 3300 118 1630000 378000 39

Lampinjärvi 271-283 0.7 5.3 43 319 0.009 8350 2600 574 13.4 248000 43000 82

Lampinjärvi 300-310 1.7 2.6 105 511 0.05 78300 4100 814 34 400000 131000 43

Lampinjärvi 385-610 3.0 0.5 144 330 0.1 296000 5550 470 44 516000 123000 11.7

Lampinjärvi 720-730 3.3 2.7 131 129 0.05 406000 2340 357 54 465000 113000 9.8

Valkjärvi 20-140 7.2 2.0 47 380 0.1 117000 2410 270 11.9 494000 246000 11.7

Valkjärvi 180-290 3.2 0.7 223 987 0.1 133000 7540 846 71 631000 120000 23

Valkjärvi 310-480 2.7 1.8 203 2010 0.002 49400 7130 1190 67 750000 149000 40

Narvijärvi 20-210 13.2 0.8 102 2180 0.1 232000 3170 444 25 972000 158000 14.7

Narvijärvi 250-480 3.7 3.8 159 3810 0.009 388000 3030 343 49 1060000 69700 11.5

Narvijärvi 510-630 3.6 5.1 297 9520 0.001 217000 8880 1230 83 1370000 97200 53

Page 162: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

154

Appendix B

Table B. (cont´d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

LOQ 5000 0.5 0.5 20 0.5 500 5.0 2.0 0.5 0.5 5.0 0.5

Suomenperänjärvi 10-60 166000 8.2 3030 1110 0.003 51900 6420 2.0 776 0.3 506 0.2

Suomenperänjärvi 60-70 106000 13.9 9880 3420 0.1 57100 767 3.2 2410 0.001 792 0.4

Suomenperänjärvi 84-140 107000 13.7 8550 3710 0.04 35600 427 3.2 2050 0.07 917 0.1

Suomenperänjärvi 150-199 121000 13.5 8580 4790 0.3 30600 397 2.7 2270 0.1 923 0.1

Poosjärvi 10-190 131000 8.2 3380 8420 0.1 79200 5280 3.1 784 0.008 1000 0.3

Poosjärvi 207-213 91400 5.5 2520 1210 0.02 99000 1020 1.3 580 - 270 0.02

Poosjärvi 230-240 98800 5.6 8830 6120 0.2 41800 145 0.7 2130 - 908 0.2

Poosjärvi 270-390 280000 2.3 5450 2830 0.002 28900 2270 1.5 1390 0.2 708 0.07

Poosjärvi 480-520 337000 2.8 3290 1320 0.04 28900 4270 2.2 765 0.04 818 0.1

Lutanjärvi 20-360 682000 14.9 5220 3110 0.2 113000 2100 4.2 1230 - 1210 0.09

Lutanjärvi 370-408 913000 14.5 12300 3610 0.04 90200 174 3.4 2990 0.01 1150 0.3

Lutanjärvi 420-640 709000 6.9 7430 4780 0.4 47500 2080 0.9 1770 0.02 592 0.1

Kivijärvi 20-40 137000 14.3 7310 7820 0.3 74000 6710 4.5 1780 0.2 1250 0.1

Kivijärvi 60-70 144000 8.0 2610 1170 0.005 67600 5520 1.8 592 - 934 0.04

Kivijärvi 90-160 327000 9.7 5040 1840 0.4 53500 1470 2.0 1100 0.05 783 0.06

Kivijärvi 200-240 411000 11.2 15700 4670 0.2 361000 75 6.7 3610 0.09 445 0.2

Kivijärvi 260-270 476000 10.4 9370 6220 0.03 49000 189 2.3 2310 - 559 0.2

Kivijärvi 447-457 61000 1.7 1780 1230 0.1 44600 38 1.2 460 0.06 85 0.1

Kivijärvi 457-466 123000 5.5 6060 5940 0.05 32600 198 3.2 1550 0.07 588 0.06

Kivijärvi 466-474 266000 3.3 5690 4100 0.003 16900 1890 2.6 1430 0.008 564 0.1

Kivijärvi 490-650 433000 3.3 3400 2120 0.01 34600 3860 1.8 955 0.007 761 0.06

Kivijärvi 680-690 501000 3.0 3210 1100 0.5 32400 4550 2.1 762 0.1 820 0.09

Koskeljärvi 50-320 435000 11.0 2680 1080 0.2 56500 1380 - 672 0.07 444 0.02

Koskeljärvi 343-360 346000 7.0 3150 3140 0.2 49600 1740 1.7 732 0.003 573 0.08

Koskeljärvi 380-400 307000 13.9 9880 2660 0.09 49400 215 2.9 2360 0.015 675 0.4

Koskeljärvi 440-540 441000 13.0 8860 4110 0.06 86600 104 2.9 2110 0.004 629 0.8

Page 163: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

155

Appendix B

Table B. (cont`d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

LOQ 5000 0.5 0.5 20 0.5 500 5.0 2.0 0.5 0.5 5.0 0.5

Lampinjärvi 20-110 400000 9.2 6140 3870 0.3 65800 4470 3.5 1400 - 982 0.3

Lampinjärvi 130-140 147000 19.8 13200 4560 0.3 373000 13 1.5 3090 - 325 1.4

Lampinjärvi 160-230 700000 12.7 15300 6760 0.3 63900 82 1.1 3520 0.04 711 0.2

Lampinjärvi 271-283 119000 3.5 2630 1630 0.06 26800 24 0.8 714 0.1 114 0.1

Lampinjärvi 300-310 281000 4.5 4390 3270 0.05 28200 271 2.6 1130 0.2 443 0.3

Lampinjärvi 385-610 561000 3.8 5320 3070 0.4 32500 2190 1.8 1340 0.1 488 0.1

Lampinjärvi 720-730 902000 2.7 2540 1050 0.01 30000 3310 2.1 587 0.1 501 0.1

Valkjärvi 20-140 243000 4.3 2120 1460 0.01 78000 1120 2.5 517 0.06 462 0.3

Valkjärvi 180-290 257000 6.5 8450 3270 0.003 44100 898 0.8 1970 0.1 584 0.5

Valkjärvi 310-480 369000 14.3 8030 4610 0.01 42200 197 2.9 1930 0.06 434 0.2

Narvijärvi 20-210 733000 7.0 3320 1820 - 86700 3060 1.7 790 0.02 630 0.4

Narvijärvi 250-480 977000 4.9 3550 3180 0.1 130000 1960 0.9 800 0.003 759 0.06

Narvijärvi 510-630 1760000 12.6 10400 4710 0.3 75100 227 2.1 2400 0.1 814 0.3

Page 164: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

156

Appendix B

Table B. (cont´d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

LOQ 2.0 2.0 5000 1.0 2.0 50 1000 0.5 5.0 20 0.5 0.5

Suomenperänjärvi 10-60 0.8 0.3 305000 23 273 65 170000 674 8.9 17600 0.1 87

Suomenperänjärvi 60-70 0.5 0.2 5100000 5.3 444 64 185000 2190 7.9 10400 0.4 252

Suomenperänjärvi 84-140 0.4 0.7 4360000 9.6 508 63 167000 1710 2.7 8910 0.2 182

Suomenperänjärvi 150-199 0.4 0.3 3970000 9.8 505 - 140000 1730 1.5 8700 0.2 203

Poosjärvi 10-190 0.5 0.8 958000 23 274 - 274000 742 2.1 10400 0.5 86

Poosjärvi 207-213 0.3 0.4 184000 7.7 140 31 281000 570 5.4 11000 0.1 70

Poosjärvi 230-240 0.5 0.4 6390000 8.5 454 - 213000 1850 5.2 5300 0.3 190

Poosjärvi 270-390 0.2 0.3 753000 11.7 367 60 119000 1110 1.1 4700 0.2 127

Poosjärvi 480-520 0.8 0.3 131000 23 476 56 255000 755 3.2 12300 0.2 120

Lutanjärvi 20-360 0.4 0.2 976000 7.9 238 - 189000 1260 3.9 20800 0.3 164

Lutanjärvi 370-408 0.2 0.1 9430000 10.7 390 - 197000 2620 7.4 23600 0.3 286

Lutanjärvi 420-640 0.3 0.0 4610000 9.5 312 68 164000 1560 1.4 19600 0.2 174

Kivijärvi 20-40 0.7 0.1 1180000 39 416 - 233000 1680 11.1 9100 0.4 198

Kivijärvi 60-70 0.5 0.4 258000 29.0 181 - 154000 574 2.7 12300 0.3 65

Kivijärvi 90-160 0.3 0.3 279000 8.6 277 - 181000 1220 5.6 22500 0.2 147

Kivijärvi 200-240 0.4 0.4 14000000 21 469 - 323000 3440 1.3 11400 0.5 370

Kivijärvi 260-270 0.4 0.3 6460000 10.5 478 127 195000 2040 2.5 16700 0.3 214

Kivijärvi 447-457 0.1 0.3 1100000 3.9 86 - 25500 312 5.8 1770 0.3 28.

Kivijärvi 457-466 0.2 0.1 3290000 12.2 478 105 113000 1230 2.3 2870 0.2 137

Kivijärvi 466-474 0.3 0.1 1220000 10.9 440 - 167000 1170 3.4 8570 0.2 146

Kivijärvi 490-650 0.3 0.4 280000 19.5 366 30 235000 917 2.2 9870 0.2 127

Kivijärvi 680-690 0.8 0.3 90800 19.6 481 - 286000 761 1.6 9990 0.3 108

Koskeljärvi 50-320 0.2 0.3 194000 8.5 298 - 214000 600 5.5 23300 0.3 71

Koskeljärvi 343-360 0.3 0.3 674000 7.0 232 32 124000 733 2.3 18900 0.1 101

Koskeljärvi 380-400 0.7 0.8 4630000 7.9 364 - 125000 2140 6.3 12300 0.3 237

Koskeljärvi 440-540 0.1 0.8 7250000 11.6 425 - 177000 1800 4.7 15200 0.3 201

Page 165: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

157

Appendix B

Table B. (cont`d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

LOQ 2.0 2.0 5000 1.0 2.0 50 1000 0.5 5.0 20 0.5 0.5

Lampinjärvi 20-110 0.6 0.2 1230000 13.8 360 - 277000 1410 5.1 19000 0.3 166

Lampinjärvi 130-140 0.1 0.1 23900000 10.8 630 100 303000 2890 4.5 4450 0.3 279

Lampinjärvi 160-230 0.2 0.0 12100000 17.2 746 - 249000 3170 3.9 14300 0.4 340

Lampinjärvi 271-283 0.2 0.4 2010000 3.7 153 - 28000 472 3.5 2010 0.1 42

Lampinjärvi 300-310 0.1 0.5 1530000 14.6 287 31 88700 860 1.3 4750 0.1 93

Lampinjärvi 385-610 0.5 0.2 807000 17.9 330 - 147000 1090 7.9 7350 0.2 125

Lampinjärvi 720-730 0.4 0.4 189000 23 412 59 198000 569 16.6 7840 0.2 93

Valkjärvi 20-140 0.4 0.3 1000000 8.9 202 - 120000 448 6.0 15000 0.1 45

Valkjärvi 180-290 0.3 0.6 3690000 8.2 431 - 139000 1700 3.7 11900 0.2 198

Valkjärvi 310-480 0.2 0.2 5760000 10.3 474 37 160000 1630 0.9 14000 0.3 183

Narvijärvi 20-210 0.4 0.6 1010000 15.3 226 - 145000 717 4.4 19600 0.2 91

Narvijärvi 250-480 0.2 0.6 1240000 7.8 236 59 133000 871 13.5 17200 0.2 122

Narvijärvi 510-630 0.5 0.1 6060000 11.2 404 98 162000 2140 2.6 20900 0.3 255

Page 166: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

158

Appendix B

Table B. (cont´d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

LOQ 2.0 0.5 50 0.5 0.5 0.5 50 2.0 0.5 0.5 500 5.0

Suomenperänjärvi 10-60 0.7 421 1020 101 26 1170 8.3 2110 2880 158 40800 217

Suomenperänjärvi 60-70 1.4 1260 863 48 76 2160 15.3 1600 8320 463 23600 458

Suomenperänjärvi 84-140 1.2 1890 608 6.9 70 1080 8.1 788 5570 417 10100 407

Suomenperänjärvi 150-199 1.3 2140 478 11.3 69 1010 13.2 850 5850 478 9740 404

Poosjärvi 10-190 1.4 242 851 137 28 878 30 1450 2950 163 47300 302

Poosjärvi 207-213 1.0 143 427 36 22 393 15.3 464 2220 134 18100 183

Poosjärvi 230-240 0.1 1330 864 10.0 72 1080 13.2 280 6220 461 15700 202

Poosjärvi 270-390 4.4 1310 349 18.9 49 585 16.1 207 4020 330 2390 173

Poosjärvi 480-520 5.5 971 276 25 57 1870 2.0 508 4720 395 1070 273

Lutanjärvi 20-360 1.6 372 1390 86 53 1110 10.2 2530 5900 320 45700 418

Lutanjärvi 370-408 0.7 1040 1170 22 89 2170 20 1740 8820 570 27800 429

Lutanjärvi 420-640 3.0 749 791 11.4 64 1130 19.3 1050 5980 408 12000 229

Kivijärvi 20-40 4.8 498 1400 140 66 1480 101 1600 7170 385 61000 703

Kivijärvi 60-70 0.3 201 1200 70 21 740 8.2 1390 2100 121 20900 192

Kivijärvi 90-160 0.4 289 1480 109 47 1130 22 2540 4880 279 28900 287

Kivijärvi 200-240 1.7 1010 568 9.1 130 2960 4.1 1580 11900 879 26200 1090

Kivijärvi 260-270 2.4 1190 1110 21 82 1330 32 1610 6990 524 18600 285

Kivijärvi 447-457 0.7 227 361 26 9.5 186 21 419 821 65 2800 52

Kivijärvi 457-466 1.1 1660 388 14.7 58 664 8.1 162 4270 369 6910 349

Kivijärvi 466-474 1.7 1640 225 20 54 720 12.1 127 4520 339 2270 353

Kivijärvi 490-650 6.6 1120 336 26 51 1070 6.0 427 4450 347 1200 222

Kivijärvi 680-690 7.1 824 358 24 63 2060 16.1 545 4650 435 1260 285

Koskeljärvi 50-320 1.2 408 1070 80 20 1250 12.4 2140 2300 127 34500 265

Koskeljärvi 343-360 0.6 332 937 64 32 1180 9.1 1650 3750 202 31800 270

Koskeljärvi 380-400 2.4 1230 676 15.0 81 1280 25 1530 7790 521 14300 479

Koskeljärvi 440-540 0.0 1430 640 5.3 80 1260 17.2 1570 6760 514 14000 351

Page 167: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

159

Appendix B

Table B. (cont`d). Bioavailable element concentrations (µg/kgDW) of the deep lake sediments, extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

LOQ 2.0 0.5 50 0.5 0.5 0.5 50 2.0 0.5 0.5 500 5.0

Lampinjärvi 20-110 1.1 346 1010 153 51 1280 8.2 1630 5750 330 50500 382

Lampinjärvi 130-140 1.5 1200 1180 1.8 103 2590 32 8370 9380 691 33200 630

Lampinjärvi 160-230 1.2 1740 1510 10.3 118 2040 18.4 2780 10480 774 28900 279

Lampinjärvi 271-283 0.1 486 522 13.4 14.6 288 8.0 1130 1250 94 4390 72

Lampinjärvi 300-310 2.2 964 295 7.4 35 542 2.0 662 2850 237 4820 209

Lampinjärvi 385-610 3.0 1360 329 12.0 49 709 17.1 373 4050 312 2160 258

Lampinjärvi 720-730 7.8 585 387 14.2 53 1690 9.0 1050 3760 356 1220 304

Valkjärvi 20-140 0.7 269 444 91 12.3 957 5.1 1620 1410 73 19100 276

Valkjärvi 180-290 1.4 894 623 25 73 1420 10.1 946 6690 464 12200 245

Valkjärvi 310-480 1.4 1150 920 17.4 72 1320 7.1 1580 6120 476 14900 355

Narvijärvi 20-210 2.1 351 757 77 28 1070 29 1390 3150 171 32800 380

Narvijärvi 250-480 1.2 319 531 29 53 1110 8.1 1250 5190 336 13200 191

Narvijärvi 510-630 2.4 1020 781 16.2 92 1710 1.0 1330 8830 583 22500 401

Page 168: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

160

Appendix C

Table C. Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion (element

marked in italics) (-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

LOQ 5.0 2000 20 1.0 500 100 5.0 1.0 500 10000 2.0 1.0

Suomenperänjärvi 10-60 75 25300000 3690 0.9 9550 126000 3130 149 40600 5430000 761 147000

Suomenperänjärvi 60-70 83 59800000 7170 3.4 28100 447900 4500 267 141000 8880000 213 138000

Suomenperänjärvi 84-140 67 70400000 8120 2.9 31300 546000 4210 357 319000 9980000 93 97800

Suomenperänjärvi 150-199 62 66800000 7430 1.6 29500 545000 2830 342 281000 9720000 110 89300

Poosjärvi 10-190 143 25000000 9130 1.4 6720 201000 2190 254 29300 3230000 820 60700

Poosjärvi 207-213 33 51600000 13100 1.1 4010 379000 3310 92 10100 8820000 485 81700

Poosjärvi 230-240 86 62500000 10900 1.7 19400 549000 3370 234 432000 9440000 104 88000

Poosjärvi 270-390 37 79100000 7850 1.4 21800 688000 3930 306 6220 11800000 159 104000

Poosjärvi 480-520 85 95100000 9600 1.3 30000 857000 4800 407 4970 11700000 202 125000

Lutanjärvi 20-360 103 48900000 3790 2.2 27200 378000 3870 198 146000 7670000 438 132000

Lutanjärvi 370-408 73 61700000 10100 1.3 39200 456000 5110 301 261000 9870000 151 118000

Lutanjärvi 420-640 62 63700000 7590 2.7 44100 500000 2090 273 794000 10900000 189 99100

Kivijärvi 20-40 123 50700000 8440 3.9 15600 437000 4540 311 39500 8260000 959 107900

Kivijärvi 60-70 89 35900000 5520 2.3 11800 328000 1020 158 24900 6580000 442 59800

Kivijärvi 90-160 113 40000000 10100 2.3 19200 354000 2620 172 38500 7920000 543 112000

Kivijärvi 200-240 91 45800000 24100 4.4 30100 384000 3840 303 312000 8240000 150 103000

Kivijärvi 260-270 85 57500000 8220 1.4 31300 482 3910 244 1060000 9930000 220 87500

Kivijärvi 447-457 25 53600000 2240 0.8 7040 602000 3010 54 81800 10100000 81 41600

Kivijärvi 457-466 48 76100000 14400 2.8 27700 673000 3420 319 8550 11800000 119 95300

Kivijärvi 466-474 47 79800000 8470 4.5 27700 670000 3420 322 6810 11200000 188 103000

Kivijärvi 490-650 72 92500000 8820 2.0 40800 756000 2840 381 9540 10700000 180 121000

Kivijärvi 680-690 110 95500000 12200 2.7 28100 882000 2990 472 5330 11100000 198 133000

Koskeljärvi 50-320 77 40100000 2620 0.8 16700 212000 2110 131 36900 6470000 723 141000

Koskeljärvi 343-360 69 60900000 4390 1.9 29000 413000 4170 214 98700 8760000 358 130000

Koskeljärvi 380-400 55 63700000 7280 2.2 45800 458000 905 297 173000 8770000 146 109000

Koskeljärvi 440-540 58 63700000 6010 2.2 47900 490000 2810 313 350000 1030000 109 93300

Page 169: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

161

Appendix C

Table C. (cont`d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(element marked in italics) (-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

LOQ 5.0 2000 20 1.0 500 100 5.0 1.0 500 10000 2.0 1.0

Lampinjärvi 20-110 162 45100000 13900 2.7 18500 363000 1340 267 78800 7360000 955 122000

Lampinjärvi 130-140 91 41600000 21300 2.1 30000 355000 2110 328 178000 6820000 168 76600

Lampinjärvi 160-230 77 57800000 11100 1.6 32100 459000 2640 266 644000 8620000 143 93400

Lampinjärvi 271-283 23 52400000 2860 0.7 8520 496000 787 49 73300 11800000 79 98000

Lampinjärvi 300-310 34 65500000 4730 2.9 19700 600000 1760 191 27800 1100000 64 81500

Lampinjärvi 385-610 56 75900000 6930 2.3 30300 657000 2443 295 10800 10800000 142 106000

Lampinjärvi 720-730 90 93800000 7130 3.1 26800 880000 2310 340 5910 13100000 210 125000

Valkjärvi 20-140 70 41500000 4240 2.5 18000 345000 1070 129 105000 6880000 330 116000

Valkjärvi 180-290 97 62700000 6930 2.9 31200 508000 2550 261 433000 9420000 185 100000

Valkjärvi 310-480 82 60800000 8330 2.7 31400 516000 1660 250 745000 10200000 132 91400

Narvijärvi 20-210 103 46100000 4950 2.6 26400 337000 2650 224 115000 6460000 453 123000

Narvijärvi 250-480 69 63400000 5860 3.0 42700 462000 4140 302 231000 8040000 199 119000

Narvijärvi 510-630 58 64700000 7500 2.2 57000 464000 2460 313 228000 8620000 147 1100000

Page 170: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

162

Appendix C

Table C. (cont´d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(element marked in italics) (-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

LOQ 10000 5.0 20 1.0 20 1.0 1.0 1.0 2000 2.0 1.0

Suomenperänjärvi 10-60 228000 8680 29600 936 16200 9530 5360 1240 19300000 4280 12500

Suomenperänjärvi 60-70 155000 15600 78500 4290 28800 8530 4850 1440 49500000 14800 10500

Suomenperänjärvi 84-140 131000 15900 87200 6240 30500 5340 3200 1180 35300000 18200 6330

Suomenperänjärvi 150-199 119000 14500 90000 5610 32200 5130 3140 1180 47500000 16000 6180

Poosjärvi 10-190 108000 27800 41500 1590 18300 3520 2030 946 42300000 5370 4680

Poosjärvi 207-213 67000 23200 81700 1780 6500 4840 2650 1010 141000000 9590 5920

Poosjärvi 230-240 131000 12800 86500 4110 26600 5160 3140 1240 41200000 14600 6390

Poosjärvi 270-390 118000 15900 97600 4860 30000 5870 3640 1460 46700000 18600 7230

Poosjärvi 480-520 222000 22400 116000 6720 44900 6360 3960 1610 56600000 22900 7870

Lutanjärvi 20-360 201000 24500 65400 3740 21200 7530 4270 1420 36100000 10600 10100

Lutanjärvi 370-408 234000 14100 70600 4370 23700 6480 4000 1390 40400000 12500 8440

Lutanjärvi 420-640 261000 13800 73800 4640 26500 5780 3530 1280 31100000 15000 6920

Kivijärvi 20-40 135000 33400 79600 4040 33800 6190 3620 1510 59600000 13400 7750

Kivijärvi 60-70 117000 12700 70500 3250 12800 3460 1930 897 61300000 8860 4230

Kivijärvi 90-160 122000 24000 54300 3630 20500 5620 2980 1480 30000000 9250 7540

Kivijärvi 200-240 148000 13000 69800 3570 31500 6640 3930 1640 53400000 10200 8530

Kivijärvi 260-270 173000 12400 68100 4180 32000 5230 3120 1300 29300000 14000 6440

Kivijärvi 447-457 47600 4740 48000 1480 5650 2680 1720 901 20900000 8780 2940

Kivijärvi 457-466 127000 16000 89100 5240 32300 5770 3460 1320 41400000 18200 6790

Kivijärvi 466-474 151000 17400 97800 5330 30600 5990 3460 1490 54200000 18600 6900

Kivijärvi 490-650 303000 21100 107000 6020 39900 6500 3760 1610 53700000 22600 7950

Kivijärvi 680-690 318000 24800 114000 7410 48600 6750 3710 1560 66200000 23900 8190

Koskeljärvi 50-320 232000 11900 45000 1630 15700 9170 5090 1600 26000000 7130 12000

Koskeljärvi 343-360 189000 20300 77700 3590 25200 7360 4320 1450 42000000 14300 9320

Koskeljärvi 380-400 231000 16000 71100 4580 31200 6410 3790 1390 42100000 14800 7700

Koskeljärvi 440-540 253000 14000 78000 4660 25300 5340 3240 1220 32300000 15200 6410

Page 171: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

163

Appendix C

Table C. (cont`d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(element marked in italics) (-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

LOQ 10000 5.0 20 1.0 20 1.0 1.0 1.0 2000 2.0 1.0

Lampinjärvi 20-110 240000 33000 66200 2950 24400 6400 3570 1660 50200000 9990 8490

Lampinjärvi 130-140 340000 13000 75900 3040 23200 4600 2700 1210 71700000 10400 6210

Lampinjärvi 160-230 288000 12000 64300 3810 30200 5490 3270 1450 28500000 12600 6860

Lampinjärvi 271-283 106000 5140 72400 1320 5760 5480 3530 1080 34200000 9410 6400

Lampinjärvi 300-310 181000 10300 75800 3180 17000 5010 3140 1210 29400000 14400 5920

Lampinjärvi 385-610 350000 16100 92095 4620 29100 5920 3550 1440 43200000 18580 7200

Lampinjärvi 720-730 544000 24000 112000 5780 42900 6800 3930 1730 57300000 22900 8190

Valkjärvi 20-140 149000 12500 57200 1710 30600 5630 3340 1610 39500000 8190 7500

Valkjärvi 180-290 151000 15400 76700 4160 36800 5720 3180 1450 35000000 14100 7260

Valkjärvi 310-480 148000 12900 75300 4020 34100 5170 3240 1330 40200000 14700 6410

Narvijärvi 20-210 464000 18000 54100 3020 28800 7570 4620 1380 29100000 11400 9380

Narvijärvi 250-480 782000 18000 75000 5040 30100 7040 3950 1520 36900000 14300 8200

Narvijärvi 510-630 982000 17000 70700 5210 28800 66700 3780 1420 37700000 14700 7600

Page 172: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

164

Appendix C

Table C. (cont´d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

LOQ 1.0 10.0 1.0 100 1.0 10000 1.0 100 1.0 1000 100 10.0

Suomenperänjärvi 10-60 626 68 1860 9560 0.5 3800000 63500 11700 487 2060000 340000 1120

Suomenperänjärvi 60-70 4580 36 1680 27400 1.2

21200000 63100 35600 473 10500000 535000 1830

Suomenperänjärvi 84-140 4640 11.6 1090 38800 0.8 25000000 47800 46700 337 13900000 738000 1680

Suomenperänjärvi 150-199 4920 11.4 1090 30600 0.9 24300000 44200 42000 300 12600000 741000 1570

Poosjärvi 10-190 723 107 732 8390 0.5 5160000 28500 11900 201 3070000 908000 1310

Poosjärvi 207-213 6330 39 976 2440 0.5 11800000 38800 21000 187 4190000 1270000 1970

Poosjärvi 230-240 4490 27 1120 48700 0.7 23300000 44000 20000 259 11900000 794000 1710

Poosjärvi 270-390 6340 10.1 1220 1740 0.9 27500000 51100 40700 310 14450000 760000 719

Poosjärvi 480-520 4860 16.6 1370 2000 1.3 34100000 62600 56100 380 19000000 811000 1010

Lutanjärvi 20-360 2770 44 1600 28200 1.4 14900000 60800 29300 456 7800000 500000 965

Lutanjärvi 370-408 3880 23 1360 44800 1.0 21900000 53600 33100 368 11000000 44300 2760

Lutanjärvi 420-640 4460 5.2 1130 93000 0.7 23900000 48200 34600 291 12200000 600000 2480

Kivijärvi 20-40 3000 137 1270 8280 1.3 15700000 51400 33800 372 8710000 986000 1240

Kivijärvi 60-70 2370 74 706 5890 0.7 11200000 27900 20800 184 6510000 903000 1010

Kivijärvi 90-160 1920 60 1080 7220 1.1 11900000 50200 24900 343 7370000 676000 1020

Kivijärvi 200-240 2860 21 1320 50600 1.0 16500000 50400 26700 452 9210000 897000 3390

Kivijärvi 260-270 3800 21 1060 99400 1.0 21300000 43300 31800 314 11200000 593000 2090

Kivijärvi 447-457 4160 8.2 522 7870 0.3 21600000 21300 11800 97 4670000 302000 493

Kivijärvi 457-466 5800 16.3 1150 2070 1.1 28000000 47100 41500 297 12900000 920000 721

Kivijärvi 466-474 6070 21 1250 2170 0.8 28300000 51000 43900 327 14300000 797000 661

Kivijärvi 490-650 5390 15.6 1290 3400 1.3 33000000 60400 50800 299 17200000 738000 706

Kivijärvi 680-690 4790 24 1380 1630 0.9 34700000 66000 67600 392 19000000 791000 981

Koskeljärvi 50-320 1780 69 1810 10180 0.9 8110000 60400 16700 387 4380000 378000 889

Koskeljärvi 343-360 4630 28 1530 15880 1.2 19400000 61400 31600 324 10400000 516000 795

Koskeljärvi 380-400 4790 23 1310 33000 0.8 22300000 52500 40100 334 11500000 522000 1930

Koskeljärvi 440-540 4370 15.4 1070 47200 0.9 23100000 46000 39900 276 11800000 606000 2520

Page 173: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

165

Appendix C

Table C. (cont`d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

LOQ 1.0 10.0 1.0 100 1.0 10000 1.0 100 1.0 1000 100 10.0

Lampinjärvi 20-110 2420 81 1290 13300 0.6 12800000 55200 25100 262 7880000 920000 1410

Lampinjärvi 130-140 2420 38 977 31400 0.5 14100000 38600 23600 252 7720000 853000 4250

Lampinjärvi 160-230 3670 13.4 1180 73800 0.6 20600000 45800 30700 265 10900000 667000 2310

Lampinjärvi 271-283 9880 10.0 1160 6680 0.5 19600000 48300 11800 146 6320000 631000 950

Lampinjärvi 300-310 6850 10.2 1080 7440 0.8 24800000 39400 26200 207 10600000 602000 1350

Lampinjärvi 385-610 6510 18.9 1250 2730 0.8 28200000 51900 38700 269 13600000 659000 705

Lampinjärvi 720-730 5150 15.1 1390 1360 1.2 36800000 61300 53700 342 19200000 853000 837

Valkjärvi 20-140 2340 32 1170 22000 0.7 11000000 54900 19000 209 6380000 657000 1320

Valkjärvi 180-290 4260 13.0 1140 59100 0.7 22700000 48700 36200 318 11500000 543000 2270

Valkjärvi 310-480 4200 16.6 1100 77200 0.7 21500000 44900 34200 269 11400000 615000 2460

Narvijärvi 20-210 2980 41 1560 37200 1.2 13610000 57800 29100 415 7400000 438000 1260

Narvijärvi 250-480 4410 14.2 1450 48000 1.0

21500000 57200 40200 418 11700000 475000 1160

Narvijärvi 510-630 4130 17.5 1280 48600 1.1 23300000 52700 42400 430 12310000 501000 2400

Page 174: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

166

Appendix C

Table C. (cont´d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

LOQ 5000 0.5 0.5 20 0.5 500 5.0 2.0 0.5 0.5 10.0 0.5

Suomenperänjärvi 10-60 1890000 1220 74300 24100 0.6 2060000 27900 231 18500 1.2 20000 0.7

Suomenperänjärvi 60-70 9410000 10500 64100 40800 0.6 975000 15200 258 16400 3.9 115000 1.0

Suomenperänjärvi 84-140 11200000 14700 42200 41800 1.2 695000 17400 214 11400 4.2 144000 1.1

Suomenperänjärvi 150-199 11300000 14200 38500 36500 0.9 604000 18100 175 10200 3.1 138000 0.6

Poosjärvi 10-190 2444000 1430 28100 47300 1.1 2080000 25300 110 7110 1.3 28400 0.7

Poosjärvi 207-213 9790000 8460 36100 27700 0.6 5210000 14500 114 9450 2.0 46100 0.4

Poosjärvi 230-240 11700000 12700 40000 30500 0.2 828000 16600 174 10500 2.7 121000 1.2

Poosjärvi 270-390 14400000 16400 45100 40000 0.4 898000 14600 185 11800 3.5 145000 0.5

Poosjärvi 480-520 15239069 18000 52500 5300 0.4 836000 19100 240 14200 4.4 190000 0.7

Lutanjärvi 20-360 7420000 5080 58100 30000 0.5 2130000 12400 297 15100 2.4 81400 0.6

Lutanjärvi 370-408 10500000 11500 52000 31400 0.2 1260000 13500 217 13700 3.3 114000 1.2

Lutanjärvi 420-640 1120000 13100 42800 35000 0.2 853000 13300 183 11500 2.5 128000 1.9

Kivijärvi 20-40 8200000 7160 48100 48100 0.3 1640000 29500 237 12400 2.7 78900 0.7

Kivijärvi 60-70 6120000 4150 26100 22500 0.1 1110000 21100 128 6590 2.0 58100 0.4

Kivijärvi 90-160 6220000 3530 49400 33900 0.8 992000 9790 227 12800 2.6 61200 0.6

Kivijärvi 200-240 8180000 9390 52000 30000 0.5 2540000 12900 238 13400 2.3 87700 2.0

Kivijärvi 260-270 10600000 12200 40000 36400 0.4 760000 12600 204 10400 2.4 111000 1.5

Kivijärvi 447-457 15600000 4400 19000 10200 0.1 458000 4280 75 4910 2.5 81500 0.2

Kivijärvi 457-466 13800000 15900 41900 37600 0.9 696000 15300 176 10900 4.2 136000 0.5

Kivijärvi 466-474 14100000 16400 44700 42400 0.3 750000 16100 201 12000 4.3 140000 0.6

Kivijärvi 490-650 14300000 17500 50800 50100 0.4 798000 18900 157 13600 4.5 169000 0.5

Kivijärvi 680-690 15200000 18500 55500 58600 0.3 838000 24200 196 15000 3.9 186000 0.8

Koskeljärvi 50-320 4580000 2440 69300 29600 0.3 2350000 10600 165 17300 2.0 38600 0.7

Koskeljärvi 343-360 9800000 10000 58500 42100 0.4 1050000 14700 136 15400 3.8 97200 0.7

Koskeljärvi 380-400 10300000 11400 49500 43200 0.4 787000 15400 131 12900 4.1 117000 0.7

Koskeljärvi 440-540 10900000 13300 40700 36900 0.8 850000 17000 121 10800 3.5 120000 2.0

Page 175: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

167

Appendix C

Table C. (cont`d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

LOQ 5000 0.5 0.5 20 0.5 500 5.0 2.0 0.5 0.5 10.0 0.5

Lampinjärvi 20-110 6490000 5780 54100 43800 0.4 1720000 45300 95 13800 2.5 63200 1.1

Lampinjärvi 130-140 7450000 7880 38000 27900 0.2 160000 13100 96 9760 2.7 71600 4.1

Lampinjärvi 160-230 10600000 11900 44300 33200 0.3 744000 14700 98 11300 3.1 104000 1.4

Lampinjärvi 271-283 14600000 6660 42100 11800 0.6 781000 4990 61 11300 2.7 67500 0.3

Lampinjärvi 300-310 14700000 12100 34800 24800 0.1 726000 10400 105 9360 3.2 113000 0.9

Lampinjärvi 385-610 14500000 16100 45300 38600 0.3 782000 15900 127 12000 4.2 138000 0.5

Lampinjärvi 720-730 18100000 20300 52300 52100 0.4 857000 18600 177 14200 4.0 181000 0.6

Valkjärvi 20-140 6280000 4030 50300 29900 0.1 2310000 8040 83 13200 2.4 53200 0.3

Valkjärvi 180-290 11500000 12800 45300 39100 1.3 781000 14800 143 11700 3.8 112000 2.2

Valkjärvi 310-480 11800000 11800 40800 35100 1.7 708000 13700 119 10600 2.9 114000 2.5

Narvijärvi 20-210 7140000 4810 58200 40600 1.4 2200000 15900 184 14900 2.6 71000 1.1

Narvijärvi 250-480 10600000 12500 53400 43800 0.3 1220000 13900 247 14000 3.9 116000 0.9

Narvijärvi 510-630 11500000 12800 490 50000 1.3 949000 15500 251 12800 2.9 122000 0.9

Page 176: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

168

Appendix C

Table C. (cont´d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

LOQ 5.0 5.0 10000 2.0 5.0 100 50000 1.0 20 50 1.0 1.0

Suomenperänjärvi 10-60 2.0 2.0 2990000 196 5710 1230 14100000 15000 758 46200 154 1700

Suomenperänjärvi 60-70 3.4 0.4 10200000 138 11800 623 252000000 12900 1930 120000 905 1470

Suomenperänjärvi 84-140 2.4 2.1 16100000 187 13400 910 260000000 8200 2590 133000 1140 935

Suomenperänjärvi 150-199 2.9 2.2 13000000 182 12200 419 286000000 7300 2450 137000 1100 946

Poosjärvi 10-190 3.5 1.6 2620000 280 5110 1210 202000000 5400 1060 43600 224 633

Poosjärvi 207-213 4.3 2.1 707000 88 7630 83 239000000 7000 1220 129000 484 861

Poosjärvi 230-240 3.6 2.6 11800000 184 12600 741 277000000 7720 1800 132000 981 916

Poosjärvi 270-390 3.0 2.8 2330000 196 14000 545 288000000 8530 2080 167000 1300 1050

Poosjärvi 480-520 4.1 1.0 386000 202 18900 482 264000000 9710 2400 174000 1380 1220

Lutanjärvi 20-360 4.0 1.7 3870000 126 9680 722 214000000 12000 1470 107000 585 1430

Lutanjärvi 370-408 4.5 3.0 19600000 180 12200 440 253000000 9900 1670 140000 935 1210

Lutanjärvi 420-640 3.5 1.8 17100000 174 12100 761 273000000 8230 1910 146000 1020 1020

Kivijärvi 20-40 4.6 2.3 3160000 387 11800 803 219000000 9030 2380 104000 671 1100

Kivijärvi 60-70 3.3 2.0 1540000 204 7640 452 207000000 4910 1470 83800 469 570

Kivijärvi 90-160 4.9 2.4 2440000 127 8920 800 183000000 9490 1560 99300 473 994

Kivijärvi 200-240 4.3 2.8 36400000 301 11100 939 218000000 10300 1580 118000 718 1170

Kivijärvi 260-270 3.7 1.1 18600000 187 11800 408 273000000 8070 1790 136000 921 932

Kivijärvi 447-457 2.0 1.7 2790000 50 4760 213 341000000 3600 918 186000 371 451

Kivijärvi 457-466 4.3 1.3 9680000 219 15000 399 291200000 8020 2370 161000 1220 976

Kivijärvi 466-474 3.7 2.3 6180000 233 14800 171 290500000 8410 2330 162000 1300 1050

Kivijärvi 490-650 1.8 0.6 452000 148 17000 451 288000000 9450 2570 160000 1350 1140

Kivijärvi 680-690 2.6 0.2 269000 102 18800 224 260000000 10200 2400 156000 1410 1210

Koskeljärvi 50-320 2.3 0.2 2240000 97 8400 525 203000000 13600 843 75200 322 1670

Koskeljärvi 343-360 3.0 0.3 3060000 108 12400 374 254000000 11000 1910 118000 827 1360

Koskeljärvi 380-400 3.7 0.2 20000000 158 13100 1170 242000000 9660 2470 127000 965 1160

Koskeljärvi 440-540 2.7 1.5 14100000 162 13200 524 250000000 7730 2560 132000 1270 941

Page 177: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

169

Appendix C

Table C. (cont`d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

LOQ 5.0 5.0 10000 2.0 5.0 100 50000 1.0 20 50 1.0 1.0

Lampinjärvi 20-110 3.1 1.3 34500000 274 9100 928 218000000 10600 2010 94100 557 1190

Lampinjärvi 130-140 4.1 0.7 39900000 233 7910 861 201000000 7320 1640 114000 607 852

Lampinjärvi 160-230 1.9 1.8 23700000 206 11300 877 251000000 8360 1990 132000 894 957

Lampinjärvi 271-283 2.8 0.0 4250000 76 8260 106 342000000 7950 824 168000 527 994

Lampinjärvi 300-310 2.1 1.7 6030000 114 12200 907 315000000 6820 1570 167000 916 908

Lampinjärvi 385-610 3.7 0.9 3830000 155 13800 378 288000000 8860 2420 160000 1250 1070

Lampinjärvi 720-730 3.2 0.5 285000 144 17500 215 269000000 9650 2370 187000 1570 1200

Valkjärvi 20-140 3.6 0.3 3610000 119 9520 708 188000000 8940 888 98300 463 1000

Valkjärvi 180-290 2.9 1.0 11400000 177 12200 751 249000000 8630 2360 137000 1000 1020

Valkjärvi 310-480 3.6 0.6 17500000 203 11700 531 251000000 8010 2160 148000 945 932

Narvijärvi 20-210 4.6 1.3 4070000 169 9310 1220 204000000 11000 1530 98600 551 1360

Narvijärvi 250-480 2.2 0.8 4640000 142 10500 1190 257000000 10100 2200 124000 1000 1240

Narvijärvi 510-630 4.1 2.2 21100000 178 101000 470 259000000 9540 2190 132000 995 1130

Page 178: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

170

Appendix C

Table C. (cont´d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

LOQ 5.0 1.0 200 1.0 1.0 1.0 50 5.0 1.0 1.0 500 10.0

Suomenperänjärvi 10-60 16.1 4290 809000 376 714 3130 2600 2110 52900 4360 157000 21400

Suomenperänjärvi 60-70 26 15400 3650000 766 683 5780 1630 1600 45900 4410 124000 148000

Suomenperänjärvi 84-140 30 16000 4380000 805 448 4110 1840 788 28400 3100 122000 157000

Suomenperänjärvi 150-199 24 14700 4170000 800 445 3810 1710 850 28520 3050 98700 165000

Poosjärvi 10-190 28 4190 1140000 466 275 2340 1070 1450 19000 1640 163000 34000

Poosjärvi 207-213 14.6 12900 2040000 272 389 2990 1810 464 25100 2630 341000 234000

Poosjärvi 230-240 27 13700 3970000 608 455 3660 1770 280 27800 3000 87050 147000

Poosjärvi 270-390 33 15800 4870000 686 532 3960 1700 207 32600 3320 93800 213000

Poosjärvi 480-520 46 19400 5250000 940 561 5820 1920 508 35300 3710 141000 158000

Lutanjärvi 20-360 18 10700 2620000 678 584 4080 1010 2530 42900 4160 188000 94300

Lutanjärvi 370-408 23 14300 3690000 646 567 5770 1420 1740 36700 3860 114000 133000

Lutanjärvi 420-640 15.2 14000 3910000 678 480 4210 1400 1050 31000 3120 95300 150000

Kivijärvi 20-40 81 9800 2900000 796 522 4210 1860 1600 34200 3300 232000 105000

Kivijärvi 60-70 16.0 6440 2190000 530 291 2600 1180 1390 18000 1840 104000 82500

Kivijärvi 90-160 21 7000 2230000 670 412 3540 1080 2540 29700 2720 164000 67600

Kivijärvi 200-240 38 12000 2650000 604 581 6450 1210 1580 35200 3850 88400 96400

Kivijärvi 260-270 26 12600 3480000 648 440 4060 1580 1610 28300 2890 88000 131000

Kivijärvi 447-457 6.6 6560 1430000 381 225 1790 1640 419 14800 1650 24800 150000

Kivijärvi 457-466 40 16300 4730000 767 510 3630 1760 162 30200 3270 98300 202000

Kivijärvi 466-474 27 16300 4950000 770 526 3880 1690 127 32300 3440 110000 205000

Kivijärvi 490-650 37 19100 5140000 936 521 4700 1590 427 35300 3660 132000 184000

Kivijärvi 680-690 53 21700 5330000 1160 549 6300 1710 545 35700 3510 168000 156000

Koskeljärvi 50-320 23 8240 1590000 474 696 3580 686 2140 49500 4350 183000 63000

Koskeljärvi 343-360 24 15400 3560000 745 594 4520 1080 1650 40800 4010 165000 156000

Koskeljärvi 380-400 21 15900 3780000 798 566 4270 1430 1530 34700 3540 118000 158000

Koskeljärvi 440-540 26 14700 3990000 827 476 3920 1420 1570 30100 3140 95000 154000

Page 179: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

171

Appendix C

Table C. (cont`d). Pseudo-total element concentrations (µg/kgDW) of the deep lake sediments, extracted by HNO3-HF(trace) or LiBO2 fusion

(-=no result). Under LOQ values are marked in grey and italics. LOQ of the element is given in the second line.

Reference lake Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

LOQ 5.0 1.0 200 1.0 1.0 1.0 50 5.0 1.0 1.0 500 10.0

Lampinjärvi 20-110 46 9070 2370000 773 478 3790 1240 1630 34500 3280 226000 83500

Lampinjärvi 130-140 48 9720 2360000 639 368 4840 1020 8370 25000 2410 88300 80500

Lampinjärvi 160-230 33 13000 3410000 731 455 4430 1630 2780 29400 3060 88100 123000

Lampinjärvi 271-283 8.1 17900 2400000 335 502 3530 761 1130 31000 3360 27000 370000

Lampinjärvi 300-310 22 12900 3710000 525 437 3190 1190 662 28900 2900 61100 249000

Lampinjärvi 385-610 39 16300 4620000 820 540 4040 1570 373 32600 3280 93900 232000

Lampinjärvi 720-730 33 17900 5440000 1040 572 6020 1890 1050 37200 3910 149000 172000

Valkjärvi 20-140 28 8500 2060000 481 483 3430 929 1620 31100 3110 99600 83500

Valkjärvi 180-290 25 13300 3580000 807 491 4350 1310 946 31300 3220 109000 144000

Valkjärvi 310-480 28 12800 3790000 779 455 4020 1330 1580 28200 2960 88800 142000

Narvijärvi 20-210 23 11400 2330000 671 630 4040 1120 1390 41300 4230 167000 102000

Narvijärvi 250-480 26 15400 3720000 747 573 4710 1260 1250 38300 3890 131000 153000

Narvijärvi 510-630 26 15000 3590000 780 557 4790 1330 1330 35600 3610 130000 142000

Page 180: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

172

Appendix D

Table D. Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result, NA=not

analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

Suomenperänjärvi Gyttja 10-60 3.7E+2 9.4E+3 4.3E+2 1.0E+2 6.2E+0 1.8E+2 5.8E+3 1.5E+4 4.7E+1 5.3E+01 9.6E+2 6.5E+3

Suomenperänjärvi Clayey gyttja 60-70 2.1E+2 1.7E+0 1.8E+2 8.3E+1 2.0E+0 4.6E+1 2.3E+0 1.2E+4 3.1E+0 3.5E+0 2.3E+0 3.4E+0

Suomenperänjärvi Gyttja clay 40-140 1.1E+2 6.0E-1 9.3E+1 7.7E+1 1.5E-1 4.3E+1 8.8E-1 2.1E+3 1.1E+0 3.4E+0 9.4E-1 1.7E+0

Suomenperänjärvi Clayey gyttja 540-199 1.5E+2 4.6E-1 1.7E+2 - 9.2E-1 3.5E+1 6.5E-1 1.4E+3 7.9E-1 2.9E+0 5.9E-1 1.4E+0

Poosjärvi Gyttja 10-190 - 2.2E+3 9.2E+2 1.8E+2 5.3E+0 1.2E+2 6.5E+2 7.2E+4 1.7E+1 1.4E+1 8.7E+1 1.2E+3

Poosjärvi Sand 207-213 5.4E+2 2.0E+3 4.9E+2 2.3E+2 3.2E+0 2.1E+2 1.7E+3 - 2.7E+1 2.7E+1 4.6E+2 7.5E+2

Poosjärvi Gyttja clay 230-240 1.1E+3 5.3E-1 2.6E+1 2.0E+1 5.6E-1 2.6E+1 8.8E-1 6.2E+3 9.1E-1 2.1E+0 9.0E-1 1.2E+0

Poosjärvi Clay 270-390 1.6E+2 1.4E+1 9.5E+1 8.6E+1 1.4E-1 1.7E+2 7.8E+0 2.6E+5 2.9E-1 1.2E+0 2.5E+0 1.3E+1

Poosjärvi Clay 480-520 9.5E+1 9.2E+2 3.2E+2 2.2E+2 2.5E+0 5.6E+2 6.3E+3 1.7E+5 7.3E-1 3.4E+1 5.1E+2 1.2E+4

Lutanjärvi Gyttja 20-360 5.5E+2 7.9E+2 5.2E+2 6.5E+1 2.1E+0 1.5E+2 4.0E+2 2.4E+4 2.0E+0 1.0E+1 7.9E+1 8.4E+2

Lutanjärvi Clayey gyttja 370-408 - 6.0E-1 4.7E+1 6.1E+0 1.2E+0 2.7E+1 1.3E+0 3.7E+3 1.2E+0 4.7E+0 1.5E+0 2.0E+0

Lutanjärvi Gyttja clay 420-640 4.8E+2 4.3E+0 7.2E+1 6.5E+2 5.9E-1 8.0E+1 4.3E+0 9.3E+3 8.9E-1 5.3E+0 2.2E+0 9.5E+0

Kivijärvi Gyttja 20-40 - 4.6E+2 2.4E+2 1.0E+2 4.9E+0 1.2E+2 1.7E+2 4.3E+4 5.7E+0 5.9E+00 2.4E+1 2.6E+2

Kivijärvi Gyttja 60-70 4.2E+2 4.3E+3 1.1E+3 1.4E+2 3.1E+0 1.9E+2 1.1E+3 4.6E+4 2.1E+1 2.7E+01 2.3E+2 5.0E+3

Kivijärvi Gyttja 90-160 - 6.7E+3 1.4E+3 - 2.9E+0 2.6E+2 2.7E+3 2.8E+4 5.8E+0 5.4E+01 6.8E+2 8.5E+3

Kivijärvi Gyttja 200-240 1.3E+3 2.9E-1 5.0E+1 - 1.7E+0 9.9E+0 1.0E+0 3.5E+3 2.0E+0 5.4E+00 1.5E+0 1.5E+0

Kivijärvi Gyttja clay 260-270 4.4E+2 6.4E-1 8.9E+1 2.6E+0 9.0E-1 4.4E+1 1.3E+0 6.5E+3 1.2E+0 4.2E+00 1.2E+0 2.1E+0

Kivijärvi Sand 447-457 4.8E+2 3.4E-2 3.5E+1 - 3.6E-1 8.0E+1 1.0E-1 2.2E+3 7.7E-2 5.0E-01 5.1E-2 1.5E-1

Kivijärvi Clay 457-466 4.0E+2 2.9E-1 5.1E+1 1.1E+2 - 4.3E+1 4.1E-1 4.9E+3 1.0E-1 1.6E+00 2.0E-1 6.6E-1

Kivijärvi Clay 466-474 1.6E+2 9.2E+2 5.4E+1 1.9E+2 9.3E-1 2.0E+2 2.6E+2 1.0E+5 2.4E-2 1.6E+00 2.6E+1 1.3E+2

Kivijärvi Clay 490-650 2.1E+2 1.5E+3 5.4E+2 3.5E+2 1.2E+0 4.8E+2 8.9E+3 1.5E+5 3.5E-1 9.2E+00 2.0E+2 1.3E+4

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 1.7E+2 8.6E+3 3.5E+2 1.5E+2 3.1E+0 4.7E+2 7.7E+3 1.5E+4 1.7E+1 9.9E+1 2.3E+3 3.1E+3

Koskeljärvi Clayey gyttja 343-360 1.8E+3 3.6E+3 4.7E+2 - 1.5E+0 1.4E+2 1.7E+3 5.3E+4 3.7E+0 1.0E+1 2.1E+2 2.4E+3

Koskeljärvi Gyttja clay 380-400 2.7E+2 9.6E-1 1.6E+2 2.2E+2 8.7E-1 5.0E+1 1.3E+0 1.2E+3 8.3E-1 3.6E+0 1.4E+0 2.7E+0

Koskeljärvi Gyttja clay 440-540 2.3E+2 4.2E-1 1.2E+2 5.7E+1 7.0E-1 2.7E+1 8.5E-1 2.9E+2 7.5E-1 6.1E+0 9.6E-1 1.4E+0

Page 181: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

173

Appendix D

Table D. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

Lampinjärvi Gyttja 20-110 - 2.9E+3 1.1E+3 7.0E+1 3.4E+0 1.1E+2 6.8E+2 3.4E+4 5.4E+0 1.5E+1 1.0E+2 1.8E+3

Lampinjärvi Gyttja 130-140 1.5E+2 2.3E-1 2.2E+0 - 1.5E+0 3.1E+0 9.4E-1 5.2E+2 2.7E+0 4.6E+0 1.4E+0 9.0E-1

Lampinjärvi Gyttja clay 160-230 - 5.6E-1 3.0E+1 4.2E+1 1.7E+0 1.4E+1 1.2E+0 2.5E+3 1.4E+0 5.7E+0 1.3E+0 1.3E+0

Lampinjärvi Sand 271-283 1.7E+2 1.0E-1 2.6E+1 4.1E+1 1.1E+0 4.2E+1 2.1E-1 5.0E+2 2.2E-1 5.8E-1 1.1E-1 2.0E-1

Lampinjärvi Clay 300-310 1.0E+2 7.8E-1 3.8E+1 4.9E+1 3.6E-1 1.5E+2 8.0E-1 4.7E+3 3.5E-1 1.1E+0 3.8E-1 1.6E+0

Lampinjärvi Clay 385-610 1.2E+3 4.9E+1 1.4E+2 4.6E+1 4.7E-1 2.4E+2 2.4E+1 5.9E+4 4.6E-2 1.3E+0 1.9E+0 2.4E+1

Lampinjärvi Clay 720-730 2.3E+2 4.3E+3 2.5E+2 1.3E+2 1.4E+0 4.1E+2 7.0E+3 2.1E+5 8.2E-2 7.5E+0 1.8E+2 5.2E+3

Valkjärvi Gyttja 20-140 4.4E+3 1.4E+3 3.9E+2 3.6E+1 3.7E+0 1.3E+2 5.2E+2 1.3E+4 4.0E+0 1.0E+1 9.8E+1 5.6E+2

Valkjärvi Gyttja clay 180-290 9.8E+2 2.4E+0 5.3E+1 2.8E+2 1.0E+0 7.9E+1 2.4E+0 1.4E+4 1.1E+0 2.7E+0 1.9E+0 4.9E+0

Valkjärvi Gyttja clay 310-480 1.8E+2 5.7E-1 7.3E+1 1.6E+1 6.4E-1 4.3E+1 1.0E+0 3.9E+3 1.1E+0 4.8E+0 8.5E-1 1.7E+0

Narvijärvi Gyttja 20-210 9.3E+2 2.4E+3 5.1E+2 - 2.8E+0 1.4E+2 1.1E+3 3.5E+4 2.0E+0 1.3E+1 1.7E+2 1.6E+3

Narvijärvi Gyttja clay 250-480 - 7.7E+2 3.6E+2 3.0E+1 1.1E+0 1.0E+2 5.1E+2 3.6E+4 4.5E-1 3.8E+0 4.3E+1 6.5E+2

Narvijärvi Gyttja clay 510-630 4.3E+2 1.6E+0 1.9E+2 2.4E+1 1.0E+0 6.8E+1 2.1E+0 4.1E+3 7.5E-1 3.3E+0 1.4E+0 3.4E+0

Page 182: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

174

Appendix D

Table D. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result,

NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

Suomenperänjärvi Gyttja 10‒60 2.8E+0 4.8E+2 4.4E+3 1.8E+2 2.5E+2 9.6E+3 6.1E+3 1.3E+4 5.6E+4 ‒ 1.1E+4

Suomenperänjärvi Clayey gyttja 60‒70 1.8E+0 9.9E‒1 1.0E+2 1.0E+2 5.2E+0 5.1E+0 5.0E+0 7.8E+0 1.3E+1 3.6E+1 6.7E+0

Suomenperänjärvi Gyttja clay 80‒140 1.3E+0 5.6E‒1 8.8E+0 5.7E+1 4.2E+0 1.8E+0 1.9E+0 2.5E+0 2.2E+0 2.9E+0 2.2E+0

Suomenperänjärvi Clayey gyttja 140‒200 6.4E‒1 4.8E‒1 4.7E+0 5.8E+1 1.1E+0 1.3E+0 1.2E+0 1.6E+0 1.9E+0 1.6E+0 1.6E+0

Poosjärvi Gyttja 10‒190 3.2E+0 4.0E+1 6.6E+3 1.1E+2 6.4E+2 2.4E+3 2.1E+3 3.4E+3 2.5E+4 2.2E+3 2.7E+3

Poosjärvi Sand 207‒213 7.3E‒1 2.9E+2 3.5E+3 1.7E+2 1.2E+2 1.1E+3 1.1E+3 2.3E+3 5.5E+3 1.3E+3 1.4E+3

Poosjärvi Gyttja clay 230‒240 5.3E‒1 6.9E‒1 1.6E+1 2.2E+1 1.9E+0 1.5E+0 1.5E+0 2.0E+0 8.1E+0 4.2E+0 1.7E+0

Poosjärvi Clay 270‒390 6.0E‒2 9.1E‒1 2.8E+2 7.1E+1 5.1E+1 1.1E+1 1.1E+1 1.4E+1 2.0E+1 5.1E+2 1.2E+1

Poosjärvi Clay 420‒520 3.2E‒1 6.0E+2 3.4E+3 3.9E+2 3.8E+2 2.8E+4 2.4E+4 - 3.3E+4 1.3E+2 2.0E+4

Lutanjärvi Gyttja 20‒360 1.3E+0 2.1E+1 2.9E+3 4.0E+2 3.7E+2 1.7E+3 1.6E+3 2.4E+3 5.4E+3 2.1E+3 1.9E+3

Lutanjärvi Clayey gyttja 370‒410 8.0E‒1 8.8E‒1 3.1E+1 1.8E+1 1.1E+1 3.0E+0 3.2E+0 4.2E+0 4.9E+0 1.2E+1 3.5E+0

Lutanjärvi Gyttja clay 420‒640 2.0E‒1 1.0E+0 1.1E+2 2.0E+1 9.6E+1 1.6E+1 1.5E+1 2.1E+1 3.4E+0 1.0E+2 1.7E+1

Kivijärvi Gyttja 20‒40 2.0E+0 1.1E+1 4.1E+3 1.8E+2 3.9E+2 5.2E+2 4.7E+2 7.1E+2 2.9E+4 7.0E+2 6.0E+2

Kivijärvi Gyttja 60‒70 2.0E+0 5.1E+2 4.3E+3 4.7E+2 3.7E+2 6.9E+3 6.2E+3 9.1E+3 6.0E+4 9.9E+3 9.7E+3

Kivijärvi Gyttja 90‒160 1.6E+0 2.5E+2 2.7E+3 3.3E+2 3.1E+2 1.1E+4 8.0E+3 2.0E+4 5.6E+4 2.8E+3 1.1E+4

Kivijärvi Gyttja 200‒240 1.3E+0 1.0E+0 1.4E+1 4.1E+1 1.5E+1 2.1E+0 2.1E+0 2.6E+0 4.5E+0 2.7E+0 2.6E+0

Kivijärvi Gyttja clay 260‒270 6.4E‒1 7.5E‒1 1.5E+1 2.6E+1 4.7E+0 2.7E+0 2.9E+0 3.8E+0 2.6E+0 1.0E+1 3.1E+0

Kivijärvi Sand 447‒457 ‒ 2.9E‒2 9.8E‒1 1.2E+1 1.5E+0 1.5E‒1 1.7E‒1 2.1E‒1 3.2E‒1 1.4E+0 1.6E‒1

Kivijärvi Clay 457‒466 ‒ 1.9E‒1 5.4E+0 3.9E+1 1.4E+2 5.8E‒1 5.7E‒1 7.4E‒1 1.1E+0 3.2E+0 6.5E‒1

Kivijärvi Clay 466‒474 ‒ 5.7E+0 1.4E+3 5.1E+1 1.0E+3 2.1E+2 2.1E+2 2.4E+2 3.6E+1 4.6E+2 2.0E+2

Kivijärvi Clay 490‒650 1.8E‒1 1.3E+2 2.9E+3 9.3E+1 3.2E+2 1.6E+4 1.5E+4 2.3E+4 7.9E+4 1.2E+2 1.3E+4

Koskeljärvi Gyttja 50‒320 1.4E+0 8.3E+2 1.6E+3 3.0E+2 1.9E+2 3.6E+3 2.4E+3 5.2E+3 1.8E+4 2.0E+3 5.1E+3

Koskeljärvi Clayey gyttja 340‒360 3.3E‒1 9.7E+1 9.0E+2 8.9E+1 1.6E+2 3.6E+3 2.7E+3 5.4E+3 1.6E+4 2.9E+2 3.8E+3

Koskeljärvi Gyttja clay 380‒400 4.7E‒1 6.3E‒1 2.0E+1 3.5E+1 5.1E+0 3.5E+0 3.5E+0 5.0E+0 2.9E+0 6.1E+0 4.0E+0

Koskeljärvi Gyttja clay 440‒540 3.6E‒1 6.3E‒1 7.6E+0 2.6E+1 7.6E‒1 1.5E+0 1.7E+0 2.2E+0 3.9E+0 2.3E+0 1.9E+0

Page 183: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

175

Appendix D

Table D. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result,

NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment

type

Sampling

depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

Lampinjärvi Gyttja 20‒110 1.9E+0 3.7E+1 6.6E+3 2.3E+2 2.3E+2 3.6E+3 3.4E+3 4.9E+3 5.8E+4 - 3.8E+3

Lampinjärvi Gyttja 130‒140 1.3E+0 1.2E+0 2.9E+0 1.1E+2 ‒ 7.7E‒1 7.9E‒1 1.1E+0 2.9E+0 - 9.7E‒1

Lampinjärvi Gyttja clay 160‒230 6.7E‒1 1.2E+0 6.4E+0 4.2E+1 5.7E‒1 1.6E+0 1.7E+0 2.1E+0 3.8E+0 1.1E+0 2.0E+0

Lampinjärvi Sand 271‒283 4.2E‒2 1.1E‒1 7.4E‒1 1.7E+1 2.9E+0 2.3E‒1 2.3E‒1 2.9E‒1 2.1E‒1 1.0E+0 2.6E‒1

Lampinjärvi Gyttja 20-110 1.9E+0 3.7E+1 6.6E+3 2.3E+2 2.3E+2 3.6E+3 3.4E+3 4.9E+3 5.8E+4 4.8E+3 3.8E+3

Lampinjärvi Gyttja 130-140 1.3E+0 1.2E+0 2.9E+0 1.1E+2 - 7.7E-1 7.9E-1 1.1E+0 2.9E+0 - 9.7E-1

Lampinjärvi Gyttja clay 160-230 6.7E-1 1.2E+0 6.4E+0 4.2E+1 5.7E-1 1.6E+0 1.7E+0 2.1E+0 3.8E+0 1.1E+0 2.0E+0

Lampinjärvi Sand 271-283 4.2E-2 1.1E-1 7.4E-1 1.7E+1 2.9E+0 2.3E-1 2.3E-1 2.9E-1 2.1E-1 1.0E+0 2.6E-1

Lampinjärvi Clay 385-610 - 1.1E+0 3.9E+2 6.3E+1 7.9E+1 2.9E+1 3.0E+1 3.7E+1 3.2E+1 4.7E+2 3.1E+1

Lampinjärvi Clay 720-730 1.1E-1 1.5E+2 3.7E+3 1.3E+2 4.4E+2 1.0E+4 1.2E+4 - 7.6E+3 3.2E+2 1.1E+4

Valkjärvi Gyttja 20-140 1.8E+0 4.8E+1 2.7E+3 1.4E+2 3.9E+2 1.4E+3 1.2E+3 1.6E+3 2.2E+4 - 1.6E+3

Valkjärvi Gyttja clay 180-290 5.2E-1 1.0E+0 6.2E+1 2.8E+1 8.3E+0 6.5E+0 6.2E+0 8.8E+0 7.1E+0 1.8E+1 7.6E+0

Valkjärvi Gyttja clay 310-480 3.7E-1 5.4E-1 1.2E+1 2.1E+1 4.4E+0 2.2E+0 2.2E+0 3.1E+0 2.3E+0 4.1E+0 2.7E+0

Narvijärvi Gyttja 20-210 1.3E+0 6.4E+1 3.0E+3 1.4E+2 3.5E+2 3.1E+3 2.7E+3 4.3E+3 1.4E+4 - 3.4E+3

Narvijärvi Gyttja clay 250-480 3.4E-1 1.2E+1 7.1E+2 4.8E+1 1.3E+2 1.1E+3 1.0E+3 1.7E+3 3.2E+2 9.7E+2 1.3E+3

Narvijärvi Gyttja clay 510-630 5.6E-1 9.1E-1 4.2E+1 2.0E+1 3.5E+1 4.9E+0 5.2E+0 6.5E+0 3.8E+0 6.5E+0 5.4E+0

Page 184: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

176

Appendix D

Table D. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result,

NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

Suomenperänjärvi Gyttja 10-60 2.3E+3 3.8E+2 6.7E+3 7.6E+1 3.0E+1 1.6E+1 5.2E+3 7.0E+0 3.6E+3 2.4E+1 2.4E+2 3.3E+1

Suomenperänjärvi Clayey gyttja 60-70 - 4.4E+2 5.1E+0 1.7E+1 - 9.7E+0 2.3E+0 1.2E+0 6.1E+0 1.4E+0 1.5E+0 5.4E+1

Suomenperänjärvi Gyttja clay 84-140 - - 1.8E+0 6.9E+0 - 5.1E+1 1.4E+0 4.5E-1 2.4E+0 6.9E-1 6.3E-1 2.1E+1

Suomenperänjärvi Clayey gyttja 150-199 - 3.3E+2 1.2E+0 5.2E+0 - 9.0E+1 1.1E+0 4.2E-1 1.7E+0 5.7E-1 5.0E-1 1.9E+1

Poosjärvi Gyttja 10-190 - 9.1E+3 2.2E+3 2.3E+2 1.0E+2 1.2E+1 7.5E+2 3.6E+0 2.0E+3 7.6E+0 2.4E+1 3.2E+2

Poosjärvi Sand 207-213 - 4.2E+2 1.1E+3 1.3E+2 3.0E+2 1.0E+1 6.7E+2 9.5E+0 1.1E+3 1.1E+1 1.1E+2 2.5E+3

Poosjärvi Gyttja clay 230-240 - 9.1E+1 1.5E+0 1.1E+1 - 5.3E+1 9.8E-1 5.2E-1 1.8E+0 8.6E-1 8.3E-1 5.4E+0

Poosjärvi Clay 270-390 - 4.5E+1 1.1E+1 3.3E+0 - 3.1E+0 1.0E+1 2.2E-1 1.4E+1 8.5E-1 8.2E-1 2.3E+1

Poosjärvi Clay 480-520 6.5E+2 9.8E+2 2.2E+4 1.4E+0 - 1.5E+1 1.0E+4 2.3E+1 - 2.5E+1 1.1E+2 3.8E-1

Lutanjärvi Gyttja 20-360 3.6E+3 2.1E+2 1.5E+3 2.1E+1 5.1E+2 2.2E+1 5.3E+2 4.6E+0 1.3E+3 5.4E+0 1.1E+1 1.4E+2

Lutanjärvi Clayey gyttja 370-408 - 4.6E+2 3.1E+0 4.3E+0 - 4.6E+0 1.4E+0 9.3E-1 4.5E+0 9.1E-1 1.0E+0 4.4E+1

Lutanjärvi Gyttja clay 420-640 - - 1.5E+1 2.2E+0 - 3.4E+0 6.3E+0 3.7E-1 2.3E+1 7.0E-1 8.7E-1 5.0E+1

Kivijärvi Gyttja 20-40 - 2.4E+2 5.0E+2 1.2E+2 - 8.3E+0 1.7E+2 4.2E+0 5.1E+2 3.9E+0 7.8E+0 2.7E+2

Kivijärvi Gyttja 60-70 6.7E+3 7.4E+2 5.8E+3 1.1E+2 6.5E+1 2.2E+1 3.9E+3 3.7E+0 3.3E+3 1.3E+1 1.3E+2 2.0E+2

Kivijärvi Gyttja 90-160 2.4E+3 1.7E+2 9.0E+3 5.9E+1 2.2E+2 2.6E+1 8.1E+3 7.7E+0 4.8E+3 2.7E+1 1.7E+2 5.3E+1

Kivijärvi Gyttja 200-240 - 6.5E+1 2.1E+0 9.3E+0 - 2.4E+1 1.1E+0 1.5E+0 3.0E+0 1.5E+0 1.4E+0 3.5E+1

Kivijärvi Gyttja clay 260-270 - 1.7E+2 2.7E+0 5.0E+0 - 2.8E+0 1.6E+0 9.4E-1 4.2E+0 8.8E-1 8.4E-1 2.7E+1

Kivijärvi Sand 447-457 - 9.8E+2 1.5E-1 5.9E-1 - 7.8E+0 1.2E-1 5.2E-2 2.1E-1 4.4E-2 2.3E-2 1.5E+1

Kivijärvi Clay 457-466 - 7.9E+1 5.4E-1 1.4E+0 - 4.8E+1 4.5E-1 7.3E-2 7.4E-1 1.7E-1 1.1E-1 8.3E+0

Kivijärvi Clay 466-474 - 5.2E+1 1.9E+2 3.4E-1 - 2.8E+0 7.5E+1 1.5E+0 2.7E+2 1.1E+0 1.2E+0 5.1E+1

Kivijärvi Clay 490-650 1.7E+3 4.1E+1 1.4E+4 1.9E+0 3.2E+0 6.9E+0 8.3E+3 8.5E+0 9.6E+3 6.6E+0 1.9E+1 3.5E+0

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 1.3E+3 9.9E+1 3.2E+3 4.0E+1 1.5E+2 2.0E+1 3.3E+3 1.9E+1 1.6E+3 4.3E+1 4.3E+2 9.9E+0

Koskeljärvi Clayey gyttja 343-360 8.6E+2 8.0E+1 3.2E+3 4.9E+0 6.8E+1 7.0E+0 1.7E+3 9.2E+0 1.7E+3 5.2E+0 3.3E+1 1.2E+1

Koskeljärvi Gyttja clay 380-400 - 1.9E+2 3.3E+0 3.7E+0 - 2.4E+1 2.0E+0 9.0E-1 4.6E+0 9.0E-1 7.4E-1 3.3E+1

Koskeljärvi Gyttja clay 440-540 - - 1.5E+0 3.7E+0 - 7.4E+0 1.0E+0 6.4E-1 2.0E+0 8.6E-1 8.3E-1 1.9E+1

Page 185: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

177

Appendix D

Table D. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

Lampinjärvi Gyttja 20-110 6.4E+3 2.0E+2 3.6E+3 1.8E+2 8.8E+1 1.8E+1 1.1E+3 4.5E+0 3.4E+3 9.0E+0 2.2E+1 1.9E+2

Lampinjärvi Gyttja 130-140 - 3.5E+1 8.0E-1 2.7E+1 - 3.0E+1 4.8E-1 1.9E+0 7.7E-1 1.7E+0 1.4E+0 2.5E+0

Lampinjärvi Gyttja clay 160-230 - 5.8E+1 1.6E+0 8.9E+0 - 4.6E+1 1.1E+0 1.5E+0 2.3E+0 1.4E+0 1.4E+0 2.0E+1

Lampinjärvi Sand 271-283 - 2.9E+2 2.3E-1 1.1E+0 - 1.0E+1 1.7E-1 1.9E-1 2.9E-1 1.6E-1 1.4E-1 1.2E+1

Lampinjärvi Clay 300-310 - 1.5E+2 1.7E+0 1.8E+0 - 3.6E+0 1.3E+0 2.4E-1 2.6E+0 3.0E-1 2.7E-1 2.9E+1

Lampinjärvi Clay 385-610 - 1.2E+1 2.8E+1 1.1E+0 - 2.1E+0 1.7E+1 6.0E-1 3.7E+1 9.9E-1 1.1E+0 6.2E+1

Lampinjärvi Clay 720-730 - 9.0E+1 1.1E+4 1.9E+0 7.8E+2 4.5E+0 4.1E+3 8.7E+0 - 5.3E+0 3.5E+1 1.3E-1

Valkjärvi Gyttja 20-140 2.6E+3 1.2E+2 1.4E+3 3.3E+1 4.5E+2 9.4E+0 3.5E+2 6.0E+0 1.2E+3 6.1E+0 2.1E+1 4.9E+1

Valkjärvi Gyttja clay 180-290 - 3.4E+2 6.3E+0 4.3E+0 - 3.0E+0 3.5E+0 9.1E-1 9.3E+0 1.2E+0 1.3E+0 4.8E+1

Valkjärvi Gyttja clay 310-480 - 5.3E+1 2.1E+0 3.9E+0 - 3.1E+0 1.3E+0 6.2E-1 3.0E+0 7.2E-1 7.2E-1 2.6E+1

Narvijärvi Gyttja 20-210 5.2E+3 3.2E+1 3.1E+3 2.4E+1 - 1.0E+1 9.8E+2 9.8E+0 1.8E+3 7.1E+0 2.4E+1 5.4E+1

Narvijärvi Gyttja clay 250-480 7.4E+2 2.1E+1 1.1E+3 1.7E+0 - 4.2E+0 4.1E+2 2.2E+0 8.4E+2 1.9E+0 4.7E+0 9.5E+0

Narvijärvi Gyttja clay 510-630 - 4.6E+1 5.0E+0 1.6E+0 - 2.7E+0 2.4E+0 9.5E-1 7.0E+0 1.1E+0 1.0E+0 4.1E+1

Page 186: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

178

Appendix D

Table D. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

Suomenperänjärvi Gyttja 10‒60 6.2E+0 1.3E+3 7.9E+3 4.8E+2 ‒ 2.2E+3 4.4E+4 - 7.4E+3 2.9E+2 3.8E+1 1.2E+1

Suomenperänjärvi Clayey gyttja 60‒70 1.7E+0 4.9E+2 5.7E+0 6.8E‒1 ‒ 9.1E+2 2.0E+2 2.4E+01 4.5E+0 ‒ 2.2E+1 8.8E+0

Suomenperänjärvi Gyttja clay 80‒140 6.9E‒1 8.2E+1 2.4E+0 4.0E‒1 ‒ 9.1E+1 2.1E+2 3.2E+01 2.0E+0 ‒ 2.0E+1 ‒

Suomenperänjärvi Clayey gyttja 140‒200 6.3E‒1 3.9E+1 1.7E+0 4.0E‒1 ‒ 7.1E+1 2.2E+2 1.8E+01 1.6E+0 ‒ 2.4E+1 ‒

Poosjärvi Gyttja 10‒190 4.4E+0 - 2.0E+3 4.4E+1 ‒ 4.1E+3 1.2E+4 1.9E+02 1.7E+3 9.8E+0 3.2E+1 1.1E+1

Poosjärvi Sand 207‒213 2.2E+0 - 1.1E+3 1.5E+2 3.2E+1 2.7E+3 4.0E+4 - 8.7E+2 ‒ 3.0E+1 ‒

Poosjärvi Gyttja clay 230‒240 8.9E‒1 5.8E+1 1.7E+0 5.5E‒1 ‒ 1.3E+2 4.9E+2 2.0E+01 1.4E+0 ‒ 1.2E+1 3.6E+0

Poosjärvi Clay 270‒390 1.6E+0 3.4E+2 1.6E+1 9.2E‒1 ‒ 6.3E+2 4.5E+2 4.7E+01 1.5E+1 ‒ 1.1E+1 ‒

Poosjärvi Clay 420‒520 1.8E+0 1.8E+2 1.3E+4 4.7E+2 ‒ 2.6E+2 4.5E+4 5.0E+02 1.2E+4 7.1E+0 5.4E+1 3.7E+1

Lutanjärvi Gyttja 20‒360 3.0E+0 1.0E+3 1.4E+3 3.7E+1 1.4E+2 2.7E+3 7.2E+3 5.0E+02 1.2E+3 ‒ 8.6E+1 ‒

Lutanjärvi Clayey gyttja 370‒410 9.6E‒1 1.3E+2 3.2E+0 4.9E‒1 ‒ 1.3E+2 3.6E+2 2.0E+01 2.5E+0 ‒ 8.8E+0 3.7E+0

Lutanjärvi Gyttja clay 420‒640 6.5E‒1 9.2E+1 1.7E+1 9.5E‒1 ‒ 9.6E+1 1.7E+2 2.6E+01 1.3E+1 ‒ 8.0E+0 ‒

Kivijärvi Gyttja 20‒40 4.0E+0 - - 1.7E+1 4.3E+2 3.7E+3 4.4E+3 4.2E+01 3.7E+2 1.2E+2 2.5E+1 ‒

Kivijärvi Gyttja 60‒70 5.0E+0 - - 1.5E+2 ‒ 3.1E+3 3.0E+4 5.0E+02 5.5E+3 ‒ 6.5E+1 ‒

Kivijärvi Gyttja 90‒160 5.1E+0 1.0E+3 9.1E+3 2.8E+2 ‒ 1.7E+3 6.9E+4 - 9.4E+3 4.6E+1 8.0E+1 ‒

Kivijärvi Gyttja 200‒240 1.8E+0 1.4E+2 2.2E+0 6.2E‒1 ‒ 1.8E+2 1.3E+3 3.1E+01 1.9E+0 ‒ 2.0E+1 ‒

Kivijärvi Gyttja clay 260‒270 1.0E+0 8.9E+1 3.0E+0 5.3E‒1 ‒ 9.5E+1 4.6E+1 1.2E+01 2.5E+0 ‒ 1.2E+1 ‒

Kivijärvi Sand 447‒457 6.4E‒2 1.7E+1 2.0E‒1 2.7E‒2 ‒ 3.2E+1 5.5E+2 8.0E+00 1.7E‒1 ‒ 2.7E+0 6.4E‒1

Kivijärvi Clay 457‒466 ‒ 2.6E+1 8.3E‒1 1.8E‒1 ‒ 1.1E+2 8.3E+2 9.9E+00 7.7E‒1 ‒ 1.6E+1 ‒

Kivijärvi Clay 466‒474 3.2E‒1 3.5E+2 2.1E+2 5.4E+0 ‒ 2.5E+2 1.0E+4 5.0E+02 1.7E+2 5.5E+0 9.4E+0 ‒

Kivijärvi Clay 490‒650 9.0E‒1 1.8E+2 1.5E+4 8.9E+1 1.7E+1 2.5E+2 1.1E+5 - 1.5E+4 1.2E+0 2.2E+1 ‒

Koskeljärvi Gyttja 50‒320 5.1E+0 4.2E+2 3.3E+3 5.8E+2 3.5E+2 9.6E+2 - - 3.3E+3 9.7E+1 6.6E+1 ‒

Koskeljärvi Clayey gyttja 340‒360 1.4E+0 2.6E+2 3.2E+3 1.2E+2 1.1E+2 6.5E+2 1.8E+4 5.0E+02 2.8E+3 ‒ 2.4E+1 1.5E+0

Koskeljärvi Gyttja clay 380‒400 7.5E‒1 1.5E+2 4.0E+0 3.9E‒1 ‒ 1.1E+2 1.2E+2 2.6E+01 3.3E+0 ‒ 1.3E+1 3.2E+0

Koskeljärvi Gyttja clay 440‒540 7.8E‒1 7.2E+1 2.0E+0 3.3E‒1 ‒ 1.2E+2 2.4E+2 2.7E+01 1.6E+0 ‒ 9.9E+0 3.1E+0

Lampinjärvi Gyttja 20‒110 4.1E+0 2.1E+3 3.1E+3 5.4E+1 ‒ 2.0E+3 1.2E+4 2.1E+02 2.4E+3 ‒ 5.1E+1 9.0E+0

Page 187: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

179

Appendix D

Table D. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics.

Reference lake Sediment

type

Sampling

depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

Lampinjärvi Gyttja 130‒140 5.4E‒1 - 8.7E‒1 6.4E‒1 9.7E+0 2.1E+0 2.8E+3 1.5E+01 7.6E‒1 ‒ 8.3E+1 1.3E+1

Lampinjärvi Gyttja clay 160‒230 1.5E+0 3.4E+1 1.8E+0 7.3E‒1 ‒ 2.8E+1 3.8E+2 1.3E+01 1.5E+0 ‒ 2.5E+1 ‒

Lampinjärvi Sand 271‒283 1.3E‒1 6.5E+0 2.5E‒1 1.1E‒1 ‒ 1.4E+1 1.1E+3 1.0E+01 2.4E‒1 ‒ 3.8E+0 1.1E‒1

Lampinjärvi Clay 300‒310 1.8E‒1 3.0E+1 2.2E+0 2.8E‒1 ‒ 6.0E+1 1.9E+2 2.3E+01 2.0E+0 ‒ 9.6E+0 2.3E+0

Lampinjärvi Clay 370‒610 1.9E‒1 2.8E+2 3.3E+1 1.3E+0 4.7E+2 2.9E+2 1.0E+3 3.2E+01 2.8E+1 ‒ 9.9E+0 4.2E+0

Lampinjärvi Gyttja 20-110 4.1E+0 2.1E+3 3.1E+3 5.4E+1 - 2.0E+3 1.2E+4 2.1E+2 2.4E+3 - 5.1E+1 9.0E+0

Lampinjärvi Gyttja 130-140 5.4E-1 3.0E+0 8.7E-1 6.4E-1 9.7E+0 2.1E+0 2.8E+3 1.5E+1 7.6E-1 - 8.3E+1 1.3E+1

Lampinjärvi Gyttja clay 160-230 1.5E+0 3.4E+1 1.8E+0 7.3E-1 - 2.8E+1 3.8E+2 1.3E+1 1.5E+0 - 2.5E+1 -

Lampinjärvi Sand 271-283 1.3E-1 6.5E+0 2.5E-1 1.1E-1 - 1.4E+1 1.1E+3 1.0E+1 2.4E-1 - 3.8E+0 1.1E-1

Lampinjärvi Clay 300-310 1.8E-1 3.0E+1 2.2E+0 2.8E-1 - 6.0E+1 1.9E+2 2.3E+1 2.0E+0 - 9.6E+0 2.3E+0

Lampinjärvi Clay 385-610 1.9E-1 2.8E+2 3.3E+1 1.3E+0 4.7E+2 2.9E+2 1.0E+3 3.2E+1 2.8E+1 - 9.9E+0 4.2E+0

Lampinjärvi Clay 720-730 5.4E-1 1.1E+2 6.9E+3 2.0E+2 - 4.2E+2 1.4E+5 5.0E+2 6.3E+3 2.5E+1 2.0E+1 -

Valkjärvi Gyttja 20-140 3.1E+0 5.6E+2 1.1E+3 5.1E+1 - 1.7E+3 7.7E+3 5.0E+2 8.0E+2 - 3.0E+1 1.6E+1

Valkjärvi Gyttja clay 180-290 1.0E+0 1.7E+2 8.1E+0 6.5E-1 - 3.0E+2 7.2E+1 2.8E+1 6.2E+0 - 1.1E+1 6.1E+0

Valkjärvi Gyttja clay 310-480 8.2E-1 7.7E+1 2.7E+0 3.6E-1 - 6.1E+1 3.8E+1 1.6E+1 2.1E+0 - 1.0E+1 1.2E+0

Narvijärvi Clay 20-210 2.9E+0 3.4E+2 2.7E+3 1.0E+2 - 1.6E+3 1.3E+4 5.0E+2 2.0E+3 - 3.1E+1 1.3E+1

Narvijärvi Gyttja clay 250-480 6.7E-1 8.6E+1 1.1E+3 2.9E+1 1.2E+2 7.2E+2 8.4E+3 5.0E+2 8.9E+2 2.0E+0 1.4E+1 -

Narvijärvi Gyttja clay 510-630 1.1E+0 1.2E+2 5.6E+0 7.0E-1 - 1.8E+2 1.9E+2 2.3E+1 4.3E+0 - 9.3E+0 1.9E+0

Page 188: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

180

Appendix D

Table D. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result,

NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

Suomenperänjärvi Gyttja 10-60 1.8E+2 - 3.1E+0 6.0E+1 6.8E+3 2.9E+2 8.8E+0 9.6E+3 - 5.9E+1 - 9.5E+3

Suomenperänjärvi Clayey gyttja 60-70 - - 2.4E+0 9.0E+1 4.4E+1 1.1E+2 2.0E+0 7.8E+0 2.9E+2 2.6E+0 - 5.7E+0

Suomenperänjärvi Gyttja clay 84-140 - - 1.0E+0 3.0E+1 1.3E+1 1.2E+1 1.2E+0 2.7E+0 3.9E+2 1.6E+0 - 2.0E+0

Suomenperänjärvi Clayey gyttja 150-199 - - 8.3E-1 1.3E+1 5.5E+0 - 7.9E-1 1.8E+0 8.4E+1 1.4E+0 - 1.4E+0

Poosjärvi Gyttja 10-190 1.8E+3 3.7E+2 4.1E+0 3.2E+2 9.0E+3 - 7.5E+0 3.3E+3 2.1E+2 1.8E+1 - 2.5E+3

Poosjärvi Sand 207-213 1.6E+2 1.5E+3 4.5E+0 1.9E+1 3.8E+3 - 8.2E+0 1.4E+3 - 3.0E+1 - 1.1E+3

Poosjärvi Gyttja clay 230-240 - - 1.5E+0 5.1E+1 1.1E+1 - 1.7E+0 2.0E+0 . 1.4E+0 - 1.4E+0

Poosjärvi Clay 270-390 - 4.9E+1 2.9E-1 1.6E+2 3.5E+2 1.4E+1 1.7E+0 1.6E+1 1.1E+2 1.5E+0 - 1.1E+1

Poosjärvi Clay 480-520 2.1E+2 9.5E+1 4.5E-1 1.3E+1 6.9E+4 1.8E+0 3.7E+1 2.0E+4 - 4.6E+1 - 2.0E+4

Lutanjärvi Gyttja 20-360 - - 2.0E+0 7.2E+1 4.2E+3 - 4.8E+0 2.1E+3 3.6E+2 1.5E+1 - 1.7E+3

Lutanjärvi Clayey gyttja 370-408 - - 1.4E+0 2.6E+1 2.6E+1 - 1.5E+0 4.3E+0 1.6E+2 2.0E+0 - 3.4E+0

Lutanjärvi Gyttja clay 420-640 - - 1.3E+0 1.7E+1 1.5E+2 5.8E+1 1.7E+0 2.2E+1 9.0E+1 2.3E+0 - 1.6E+1

Kivijärvi Gyttja 20-40 - 1.0E+2 3.4E+0 4.5E+2 6.0E+3 - 7.8E+0 7.0E+2 - 7.0E+0 - 5.3E+2

Kivijärvi Gyttja 60-70 1.3E+2 4.8E+2 2.9E+0 1.8E+2 1.7E+4 - 5.0E+0 7.0E+3 2.7E+2 3.3E+1 - 8.1E+3

Kivijärvi Gyttja 90-160 1.6E+2 1.3E+2 2.1E+0 1.0E+2 5.4E+3 - 6.5E+0 1.1E+4 5.6E+2 6.8E+1 - 1.1E+4

Kivijärvi Gyttja 200-240 - - 2.5E+0 1.4E+1 9.5E+0 - 2.8E+0 2.8E+0 1.9E+1 2.4E+0 - 2.4E+0

Kivijärvi Gyttja clay 260-270 - - 1.4E+0 1.5E+1 2.2E+1 9.7E+1 1.7E+0 4.1E+0 7.0E+1 1.9E+0 - 2.8E+0

Kivijärvi Sand 447-457 - - 1.2E-1 2.6E+1 1.5E+0 - 1.5E-1 2.1E-1 9.5E+1 3.3E-1 - 1.7E-1

Kivijärvi Clay 457-466 - - 3.0E-1 7.7E+1 6.8E+0 2.2E+1 6.3E-1 8.7E-1 8.2E+1 6.5E-1 - 5.9E-1

Kivijärvi Clay 466-474 - - 4.3E-1 1.1E+2 1.3E+4 - 9.3E+0 2.6E+2 - 2.3E+0 - 2.2E+2

Kivijärvi Clay 490-650 - - 2.2E-1 5.8E+1 2.3E+4 2.2E+0 2.2E+1 1.6E+4 2.2E+2 1.3E+1 1.6E+4

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 2.1E+2 1.4E+2 2.3E+0 3.8E+1 4.1E+3 - 1.1E+1 3.8E+3 5.5E+2 1.1E+2 - 4.1E+3

Koskeljärvi Clayey gyttja 343-360 - 2.5E+2 6.9E-1 3.9E+1 2.5E+3 1.9E+1 5.9E+0 3.9E+3 2.3E+2 1.3E+1 - 3.7E+3

Koskeljärvi Gyttja clay 380-400 - - 1.3E+0 1.2E+1 1.9E+1 - 1.1E+0 5.1E+0 6.3E+1 1.8E+0 - 3.7E+0

Koskeljärvi Gyttja clay 440-540 - - 1.6E+0 1.7E+1 8.5E+ - 1.2E+0 2.3E+0 4.1E+2 1.5E+0 - 1.7E+0

Page 189: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

181

Appendix D

Table D. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

Lampinjärvi Gyttja 20-110 - 1.0E+2 3.6E+0 1.7E+2 1.8E+4 - 8.7E+0 4.3E+3 2.7E+2 1.8E+1 - 3.5E+3

Lampinjärvi Gyttja 130-140 - - 2.4E+0 1.5E+1 1.2E+0 1.3E+1 2.5E+0 1.1E+0 1.2E+1 6.8E+0 - 8.7E-1

Lampinjärvi Gyttja clay 160-230 - - 1.9E+0 1.4E+1 8.9E+0 - 2.0E+0 2.2E+0 1.4E+2 2.5E+0 - 1.9E+0

Lampinjärvi Sand 271-283 - - 1.9E-1 8.9E+0 1.2E+0 - 1.5E-1 2.7E-1 6.0E+1 3.8E-1 - 2.4E-1

Lampinjärvi Clay 300-310 - - 2.7E-1 1.5E+1 1.7E+1 5.1E+0 6.6E-1 2.4E+0 2.0E+1 7.5E-1 - 1.7E+0

Lampinjärvi Clay 385-610 - 1.4E+2 2.6E-1 7.5E+1 8.4E+2 - 3.4E+0 4.0E+1 - 1.9E+0 - 2.9E+1

Lampinjärvi Clay 720-730 - 1.6E+2 2.7E-1 2.6E+1 2.6E+4 1.1E+0 4.1E+1 9.7E+3 2.1E+3 1.1E+1 - 8.0E+3

Valkjärvi Gyttja 20-140 - 1.9E+2 2.3E+0 1.2E+2 4.6E+3 - 4.2E+0 1.8E+3 6.3E+2 1.2E+1 - 1.5E+3

Valkjärvi Gyttja clay 180-290 - - 1.6E+0 6.7E+1 6.9E+1 - 1.6E+0 9.4E+0 2.0E+2 2.1E+0 - 7.0E+0

Valkjärvi Gyttja clay 310-480 - - 1.3E+0 1.5E+1 1.6E+1 1.2E+1 1.5E+0 3.3E+0 3.1E+1 1.6E+0 - 2.3E+0

Narvijärvi Gyttja 20-210 - 3.7E+2 2.2E+0 8.0E+1 1.6E+4 - 7.3E+0 3.3E+3 4.4E+2 1.5E+1 - 3.0E+3

Narvijärvi Gyttja clay 250-480 - - 3.8E-1 2.3E+1 2.0E+3 2.6E+1 4.2E+0 1.4E+3 - 5.2E+0 - 1.3E+3

Narvijärvi Gyttja clay 510-630 - - 1.2E+0 1.0E+1 4.3E+1 7.5E+1 1.7E+0 6.9E+0 9.0E+1 1.9E+0 - 5.2E+0

Page 190: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

182

Appendix D

Table D. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result,

NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

Suomenperänjärvi Gyttja 10-60 2.1E+2 3.1E+3 1.7E+2 4.8E+3 - 2.1E+3 1.5E+3 6.6E+3 4.5E+3 4.3E+2 2.8E+3

Suomenperänjärvi Clayey gyttja 60-70 6.4E+1 2.5E+2 7.4E+1 2.7E+1 5.1E+0 1.0E+2 2.3E+1 6.1E+1 3.5E+0 5.6E+0 1.3E+0 3.5E+2

Suomenperänjärvi Gyttja clay 84-140 9.3E+0 6.3E+1 2.6E+1 2.2E+1 2.1E+0 1.5E+1 2.9E+2 1.1E+0 1.4E+0 2.0E+0 4.9E-1 6.5E+1

Suomenperänjärvi Clayey gyttja 150-199 5.0E+0 2.3E+1 1.8E+1 2.4E+1 1.3E+0 5.5E+0 4.5E+1 8.1E-1 1.1E+0 1.6E+0 3.5E-1 3.7E+1

Poosjärvi Gyttja 10-190 1.9E+2 9.9E+3 1.5E+2 2.2E+3 - 3.3E+3 2.2E+4 1.5E+3 2.1E+3 4.0E+1 1.3E+4

Poosjärvi Sand 207-213 5.7E+2 2.8E+3 2.1E+2 9.8E+2 4.0E+3 1.8E+2 9.2E+2 1.0E+3 1.0E+3 4.4E+2 7.3E+3

Poosjärvi Gyttja clay 230-240 1.3E+0 3.4E+1 2.2E+1 1.7E+1 1.4E+0 1.4E+1 4.7E+2 2.3E+0 1.1E+0 1.6E+0 6.1E-1 8.7E+1

Poosjärvi Clay 270-390 1.6E+2 4.3E+3 5.5E+2 2.7E+1 1.3E+1 9.0E+1 1.2E+2 4.2E+2 9.0E+0 1.4E+1 1.1E+0 1.1E+3

Poosjärvi Clay 480-520 1.3E+3 1.6E+4 1.8E+2 9.6E+1 3.4E+4 7.3E+3 1.7E+1 1.7E+2 2.4E+4 1.6E+4 1.7E+2 1.8E+3

Lutanjärvi Gyttja 20-360 8.4E+2 - 4.5E+3 2.1E+2 1.4E+3 - 9.7E+1 2.9E+3 1.0E+3 1.4E+3 3.3E+1 6.4E+3

Lutanjärvi Clayey gyttja 370-408 1.6E+1 1.3E+2 5.3E+1 1.4E+1 3.2E+0 3.8E+1 4.9E+2 3.3E+0 2.1E+0 4.0E+0 7.6E-1 1.3E+2

Lutanjärvi Gyttja clay 420-640 6.6E+1 1.4E+3 1.4E+2 2.6E+1 1.7E+1 3.2E+2 1.3E+2 1.7E+1 9.8E+0 2.0E+1 9.0E-1 1.9E+2

Kivijärvi Gyttja 20-40 1.2E+2 - 1.7E+4 6.9E+1 4.6E+2 1.4E+4 1.7E+3 2.0E+4 3.1E+2 4.9E+2 1.3E+1 9.3E+3

Kivijärvi Gyttja 60-70 4.3E+2 - 3.1E+3 2.6E+2 5.2E+3 - 1.7E+2 2.6E+3 5.4E+3 4.8E+3 1.1E+2 3.7E+3

Kivijärvi Gyttja 90-160 - - 3.9E+3 3.2E+2 5.2E+3 - 2.0E+2 2.1E+3 8.3E+3 4.8E+3 2.8E+2 2.5E+3

Kivijärvi Gyttja 200-240 3.8E+1 3.2E+1 2.7E+1 2.5E+1 2.2E+0 1.8E+1 1.3E+1 6.5E-1 2.3E+0 2.6E+0 9.6E-1 6.4E+2

Kivijärvi Gyttja clay 260-270 3.0E+1 1.1E+2 3.9E+1 1.4E+1 3.0E+0 2.9E+1 3.0E+1 2.1E+0 2.0E+0 3.5E+0 7.6E-1 1.2E+2

Kivijärvi Sand 447-457 2.7E+0 4.4E+0 1.4E+1 3.5E+0 1.6E-1 1.0E+0 7.5E+1 2.3E-1 1.3E-1 2.0E-1 1.7E-3 2.6E+1

Kivijärvi Clay 457-466 4.6E+0 2.7E+1 3.6E+1 3.3E+1 6.7E-1 3.0E+0 1.5E+1 2.5E-2 7.3E-1 7.1E-1 6.1E-2 2.9E+1

Kivijärvi Clay 466-474 1.6E+2 - 6.3E+2 3.4E+2 2.5E+2 3.0E+3 2.3E+2 2.4E+3 1.2E+2 2.6E+2 9.9E+0 2.0E+4

Kivijärvi Clay 490-650 1.7E+3 - 3.4E+2 4.4E+1 1.0E+4 1.1E+4 9.7E+1 3.3E+2 1.1E+4 1.1E+4 2.8E+2 2.1E+3

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 1.8E+2 6.5E+3 7.0E+2 2.7E+2 2.3E+3 1.7E+4 3.1E+2 7.9E+2 3.2E+3 1.7E+3 1.5E+3 1.1E+3

Koskeljärvi Clayey gyttja 343-360 8.7E+1 - 1.3E+3 6.2E+1 2.1E+3 2.0E+4 1.3E+3 6.4E+2 2.4E+3 1.9E+3 1.1E+2 1.1E+3

Koskeljärvi Gyttja clay 380-400 2.6E+1 1.1E+2 3.8E+1 1.2E+1 3.6E+0 4.0E+1 7.9E+1 2.7E+0 2.6E+0 4.2E+0 6.6E-1 1.2E+2

Koskeljärvi Gyttja clay 440-540 - 3.1E+1 1.8E+1 1.0E+1 1.9E+0 1.2E+1 5.7E+1 2.2E+0 1.3E+0 2.0E+0 6.0E-1 6.7E+1

Page 191: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

183

Appendix D

Table D. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by NH4Ac (pH 4.5) (-=no result).

Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

Lampinjärvi Gyttja 20-110 2.4E+2 - 3.5E+3 1.7E+2 3.2E+3 - 6.3E+2 9.5E+3 2.1E+3 2.9E+3 5.2E+1 1.0E+4

Lampinjärvi Gyttja 130-140 8.0E+0 1.1E+0 1.9E+0 7.6E+1 7.1E-1 2.5E+0 2.4E+1 1.6E+0 1.2E+0 8.1E-1 1.1E+0 1.6E+1

Lampinjärvi Gyttja clay 160-230 1.4E+1 1.5E+1 1.6E+1 2.5E+1 1.7E+0 8.2E+0 3.7E+1 1.2E+0 1.9E+0 1.9E+0 1.0E+0 5.5E+1

Lampinjärvi Sand 271-283 3.6E-2 2.2E+0 7.2E+0 3.6E+0 2.5E-1 9.0E-1 1.7E+1 1.1E-1 2.3E-1 2.7E-1 1.0E-1 1.0E+1

Lampinjärvi Clay 300-310 4.5E+0 8.2E+1 3.8E+1 1.5E+1 2.0E+0 9.3E+0 8.6E+0 1.1E+0 1.3E+0 2.4E+0 2.7E-1 4.4E+1

Lampinjärvi Clay 385-610 1.3E+2 1.4E+4 4.2E+2 2.2E+1 3.4E+1 3.6E+2 2.9E+2 8.3E+2 2.0E+1 3.7E+1 2.0E+0 1.6E+3

Lampinjärvi Clay 720-730 7.1E+3 - 4.8E+2 4.8E+1 1.1E+4 1.4E+3 3.6E+1 2.7E+2 8.9E+3 1.1E+4 1.5E+2 4.7E+3

Valkjärvi Gyttja 20-140 8.4E+1 3.3E+4 2.2E+3 7.4E+1 1.2E+3 3.3E+4 8.3E+1 1.6E+3 8.3E+2 1.1E+3 5.3E+1 4.3E+3

Valkjärvi Gyttja clay 180-290 4.4E+1 3.8E+2 8.2E+1 1.4E+1 6.6E+0 1.3E+2 1.6E+2 1.4E+1 4.7E+0 7.5E+0 1.2E+0 2.6E+2

Valkjärvi Gyttja clay 310-480 1.1E+1 7.6E+1 3.1E+1 1.2E+1 2.4E+0 2.4E+1 3.2E+1 1.8E+0 1.6E+0 2.8E+0 5.5E-1 7.3E+1

Narvijärvi Gyttja 20-210 9.0E+2 - 2.2E+3 7.6E+1 2.2E+3 - 8.4E+2 2.0E+3 1.9E+3 2.1E+3 1.1E+2 4.8E+3

Narvijärvi Gyttja clay 250-480 3.1E+1 - 8.3E+2 3.7E+1 1.0E+3 1.4E+4 9.6E+1 8.9E+2 7.6E+2 9.9E+2 2.3E+1 1.2E+3

Narvijärvi Gyttja clay 510-630 1.6E+1 3.1E+2 8.4E+1 1.2E+1 5.3E+0 7.7E+1 5.2E+0 4.8E+0 3.4E+0 6.6E+0 1.0E+0 1.9E+2

Page 192: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

184

Appendix E

Table E. Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2 fusion (-=no

result, NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

Suomenperänjärvi Gyttja 10-60 1.2E+4 1.8E+5 7.2E+3 9.8E+2 6.7E+1 1.5E+3 4.6E+4 8.4E+4 2.0E+3 7.8E+1 1.7E+3 1.6E+5

Suomenperänjärvi Clayey gyttja 60-70 1.0E+4 1.7E+2 3.2E+3 2.9E+3 7.9E+1 1.2E+4 3.7E+1 4.5E+4 1.7E+2 1.5E+1 3.5E+0 2.8E+1

Suomenperänjärvi Gyttja clay 84-140 4.8E+4 1.5E+2 2.0E+3 1.3E+3 6.3E+1 1.2E+4 2.8E+1 9.1E+3 5.6E+1 1.8E+1 2.2E+0 1.2E+1

Suomenperänjärvi Clayey gyttja 150-199 1.1E+4 1.2E+2 2.1E+3 - 6.8E+1 9.8E+3 1.5E+1 5.4E+3 3.1E+1 1.8E+1 1.2E+0 8.4E+0

Poosjärvi Gyttja 10-190 - 5.3E+4 2.4E+4 1.7E+3 4.9E+1 5.6E+3 4.4E+3 4.5E+5 4.3E+2 2.8E+1 1.3E+2 1.2E+4

Poosjärvi Sand 207-213 3.5E+4 1.5E+5 3.1E+4 - 2.1E+1 3.2E+3 2.6E+4 - 3.3E+2 1.6E+2 1.0E+3 1.4E+4

Poosjärvi Gyttja clay 230-240 7.2E+4 6.9E+1 1.2E+3 3.0E+2 5.1E+1 1.1E+4 2.2E+1 2.2E+4 2.5E+1 1.8E+1 1.3E+0 9.0E+0

Poosjärvi Clay 270-390 5.6E+3 5.4E+3 2.2E+3 6.1E+2 5.0E+1 1.5E+4 3.1E+2 7.6E+5 5.9E+0 2.7E+1 5.5E+0 1.1E+2

Poosjärvi Clay 480-520 6.1E+4 4.1E+5 3.9E+3 - 1.0E+2 1.1E+4 2.6E+5 3.8E+5 5.0E+0 3.2E+2 9.3E+2 2.2E+5

Lutanjärvi Gyttja 20-360 5.8E+4 4.3E+4 9.7E+3 1.6E+3 1.4E+1 6.0E+3 5.6E+3 1.5E+5 4.2E+1 3.2E+1 1.2E+2 1.2E+4

Lutanjärvi Clayey gyttja 370-408 - 5.6E+1 1.0E+3 2.6E+2 9.8E+0 9.0E+3 2.8E+1 1.6E+4 2.0E+1 1.9E+1 2.0E+0 1.2E+1

Lutanjärvi Gyttja clay 420-640 2.5E+4 8.4E+2 1.3E+3 - 4.9E+0 1.4E+4 4.3E+1 3.3E+4 4.3E+1 2.1E+1 3.7E+0 7.4E+1

Kivijärvi Gyttja 20-40 - 1.6E+4 7.2E+3 4.4E+3 1.1E+2 1.0E+4 1.3E+3 2.3E+5 1.3E+2 3.1E+1 3.1E+1 2.1E+3

Kivijärvi Gyttja 60-70 2.2E+4 2.3E+5 1.2E+4 4.5E+3 3.3E+1 4.0E+3 8.6E+3 1.8E+5 4.8E+2 8.9E+1 3.1E+2 6.0E+4

Kivijärvi Gyttja 90-160 - 5.5E+5 1.7E+4 - 1.8E+1 3.8E+3 3.4E+4 1.5E+5 1.2E+2 1.5E+2 1.1E+3 1.1E+5

Kivijärvi Gyttja 200-240 5.9E+4 5.7E+1 1.6E+3 - 1.4E+1 6.9E+3 2.0E+1 1.9E+4 5.7E+1 1.6E+1 2.4E+0 8.6E+0

Kivijärvi Gyttja clay 260-270 2.3E+4 1.3E+2 1.3E+3 9.3E+2 8.9E+0 1.2E+4 3.0E+1 2.7E+4 4.4E+1 1.9E+1 1.6E+0 1.3E+1

Kivijärvi Sand 447-457 6.7E+3 1.1E+2 1.2E+2 - 8.7E+0 1.0E+4 2.6E+1 1.2E+4 7.3E+0 1.9E+1 3.1E-1 3.8E+0

Kivijärvi Clay 457-466 1.7E+4 1.2E+2 9.5E+2 1.5E+3 4.1E+1 9.7E+3 1.7E+1 2.5E+4 1.5E+0 2.2E+1 6.7E-1 7.0E+0

Kivijärvi Clay 466-474 - 4.9E+5 4.7E+3 2.6E+3 3.1E+1 1.4E+4 8.9E+3 4.1E+5 1.1E+0 2.3E+1 4.7E+1 1.0E+3

Kivijärvi Clay 490-650 1.8E+4 7.4E+5 6.7E+3 3.1E+3 5.0E+1 1.6E+4 2.4E+5 3.4E+5 1.7E+0 9.7E+1 2.8E+2 1.8E+5

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 5.0E+04 3.1E+05 8.0E+3 6.6E+2 2.2E+1 5.3E+3 5.5E+4 8.7E+4 2.9E+2 1.9E+2 4.1E+3 8.4E+4

Koskeljärvi Clayey gyttja 343-360 5.2E+04 7.1E+05 5.6E+3 3.0E+3 1.4E+1 6.5E+3 3.4E+4 2.3E+5 1.4E+2 3.8E+1 3.0E+2 5.7E+4

Koskeljärvi Gyttja clay 380-400 9.7E+03 2.4E+02 2.0E+3 2.4E+3 1.6E+1 1.2E+4 6.0E+0 4.9E+3 3.2E+1 1.7E+1 2.8E+0 1.8E+1

Koskeljärvi Gyttja clay 440-540 1.6E+04 1.2E+02 1.3E+3 6.5E+2 1.1E+1 1.0E+4 1.5E+1 1.4E+3 2.8E+1 2.0E+1 2.1E+0 9.8E+0

Page 193: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

185

Appendix E

Table E. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Ag Al As Au B Ba Be Bi Br Ca Cd Ce

Lampinjärvi Gyttja 20-110 4.4E+5 1.6E+5 3.2E+4 1.7E+3 3.0E+1 6.0E+3 3.0E+3 2.1E+5 1.7E+2 3.8E+1 1.5E+2 2.0E+4

Lampinjärvi Gyttja 130-140 1.6E+4 2.7E+1 2.1E+1 - 2.8E+1 5.1E+3 1.1E+1 7.6E+3 5.9E+1 1.2E+1 2.1E+0 5.0E+0

Lampinjärvi Gyttja clay 160-230 - 4.8E+1 4.7E+2 3.7E+2 1.7E+1 6.7E+3 1.3E+1 1.1E+4 3.7E+1 1.7E+1 1.1E+0 6.3E+0

Lampinjärvi Sand 271-283 3.2E+3 6.9E+1 7.6E+1 - 1.7E+1 7.0E+3 5.9E+0 2.5E+3 6.0E+0 2.3E+1 4.7E-1 6.8E+0

Lampinjärvi Clay 300-310 3.3E+3 2.8E+2 3.7E+2 3.5E+3 1.6E+1 1.5E+4 1.4E+1 1.5E+4 7.0E+0 2.1E+1 1.0E+0 1.6E+1

Lampinjärvi Clay 385-610 7.4E+4 2.0E+4 2.3E+3 1.7E+3 1.7E+1 1.4E+4 5.6E+2 1.4E+5 1.5E+0 2.0E+1 3.3E+0 2.0E+2

Lampinjärvi Clay 720-730 8.6E+3 2.4E+6 3.6E+3 2.4E+3 2.7E+1 1.3E+4 1.7E+5 4.8E+5 5.5E-1 1.2E+2 3.4E+2 1.3E+5

Valkjärvi Gyttja 20-140 1.3E+5 8.2E+4 9.8E+3 1.9E+3 3.3E+1 5.9E+3 6.6E+3 6.9E+4 1.0E+2 3.6E+1 1.5E+2 1.5E+4

Valkjärvi Gyttja clay 180-290 5.7E+4 5.1E+2 1.5E+3 4.3E+3 2.0E+1 1.5E+4 3.8E+1 5.8E+4 6.2E+1 1.6E+1 3.7E+0 3.5E+1

Valkjärvi Gyttja clay 310-480 1.6E+4 1.5E+2 1.2E+3 9.6E+2 1.0E+1 1.2E+4 1.2E+1 1.7E+4 4.5E+1 2.0E+1 1.3E+0 1.3E+1

Narvijärvi Gyttja 20-210 8.1E+4 1.4E+5 1.1E+4 3.0E+3 2.1E+1 5.1E+3 1.2E+4 1.9E+5 2.4E+1 4.3E+1 2.6E+2 3.1E+4

Narvijärvi Gyttja clay 250-480 - 3.4E+5 5.4E+3 1.4E+3 8.2E+0 7.5E+3 1.3E+4 1.7E+5 1.2E+1 2.5E+1 7.6E+1 1.3E+4

Narvijärvi Gyttja clay 510-630 2.7E+4 3.0E+2 2.2E+3 5.5E+2 5.7E+0 1.3E+4 1.8E+1 1.3E+4 6.9E+0 1.6E+1 2.3E+0 2.3E+1

Page 194: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

186

Appendix E

Table E. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result, NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

Suomenperänjärvi Gyttja 10-60 2.0E+1 3.2E+3 8.4E+4 3.8E+3 2.1E+4 1.8E+5 1.4E+5 2.4E+5 4.7E+5 - 2.1E+5

Suomenperänjärvi Clayey gyttja 60-70 1.8E+1 5.0E+0 4.2E+3 8.0E+3 2.0E+2 3.5E+1 3.8E+1 5.4E+1 1.4E+2 8.2E+4 4.0E+1

Suomenperänjärvi Gyttja clay 84-140 9.9E+0 6.7E+0 5.1E+2 1.2E+4 1.3E+2 1.1E+1 1.3E+1 1.5E+1 2.4E+1 2.1E+4 1.2E+1

Suomenperänjärvi Clayey gyttja 150-199 6.1E+0 5.4E+0 2.9E+2 9.9E+3 1.8E+1 7.8E+0 9.2E+0 1.0E+1 3.6E+1 1.6E+4 8.2E+0

Poosjärvi Gyttja 10-190 9.7E+0 1.3E+2 1.3E+5 1.7E+3 2.6E+4 1.7E+4 1.7E+4 2.2E+4 1.6E+5 8.0E+5 1.8E+4

Poosjärvi Sand 207-213 3.6E+0 6.6E+3 2.5E+5 8.4E+3 5.6E+3 1.4E+4 1.5E+4 2.1E+4 1.9E+5 1.9E+6 1.6E+4

Poosjärvi Gyttja clay 230-240 5.7E+0 3.4E+0 5.8E+2 2.3E+3 5.4E+1 8.4E+0 9.5E+0 1.0E+1 6.6E+1 8.9E+3 9.0E+0

Poosjärvi Clay 270-390 3.2E+0 1.7E+1 4.7E+4 1.4E+4 3.0E+2 9.2E+1 1.1E+2 1.4E+2 6.7E+2 1.6E+6 1.0E+2

Poosjärvi Clay 480-520 4.3E+0 2.9E+4 8.0E+5 9.1E+4 1.8E+3 2.3E+5 2.0E+5 6.1E+5 1.6E+6 4.9E+5 1.9E+5

Lutanjärvi Gyttja 20-360 2.3E+0 8.5E+1 1.2E+5 1.7E+4 2.3E+4 1.4E+4 1.4E+4 2.1E+4 5.6E+4 1.2E+6 1.5E+4

Lutanjärvi Clayey gyttja 370-408 1.2E+0 4.3E+0 1.1E+3 3.1E+3 5.3E+2 1.4E+1 1.8E+1 2.0E+1 4.9E+1 1.1E+4 1.6E+1

Lutanjärvi Gyttja clay 420-640 1.1E+0 8.3E+0 7.0E+3 9.4E+3 3.1E+3 9.1E+1 1.0E+2 1.3E+2 6.0E+1 1.6E+5 9.2E+1

Kivijärvi Gyttja 20-40 6.5E+0 3.7E+1 1.4E+5 4.8E+3 7.8E+3 2.9E+3 3.0E+3 3.8E+3 2.5E+5 4.7E+5 2.9E+3

Kivijärvi Gyttja 60-70 8.4E+0 4.8E+3 2.5E+5 1.0E+4 2.1E+4 6.7E+4 6.9E+4 8.5E+4 1.0E+6 5.6E+6 7.8E+4

Kivijärvi Gyttja 90-160 5.8E+0 1.6E+3 9.6E+4 1.2E+4 2.5E+4 7.6E+4 5.9E+4 1.5E+5 4.4E+5 1.8E+6 7.2E+4

Kivijärvi Gyttja 200-240 3.8E+0 4.8E+0 3.3E+2 4.1E+3 9.6E+2 8.6E+0 9.3E+0 9.7E+0 2.0E+1 1.2E+4 8.9E+0

Kivijärvi Gyttja clay 260-270 2.7E+0 5.3E+0 5.0E+2 9.5E+3 1.6E+2 1.4E+1 1.5E+1 1.8E+1 2.3E+1 2.1E+4 1.4E+1

Kivijärvi Sand 447-457 3.8E-1 7.0E-1 1.5E+2 1.9E+3 2.6E+1 6.2E+0 7.9E+0 8.2E+0 1.2E+1 7.8E+3 4.9E+0

Kivijärvi Clay 457-466 1.1E+0 2.8E+0 4.6E+2 8.8E+3 7.8E+2 6.6E+0 7.4E+0 8.2E+0 2.1E+1 2.9E+4 6.8E+0

Kivijärvi Clay 466-474 1.3E+0 6.8E+1 3.1E+5 1.9E+4 5.5E+3 1.5E+3 1.7E+3 2.1E+3 8.7E+2 1.2E+6 1.4E+3

Kivijärvi Clay 490-650 2.1E+0 4.1E+3 6.0E+5 3.0E+4 1.8E+3 1.3E+5 1.3E+5 2.5E+5 3.1E+6 8.2E+5 1.2E+5

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 2.9E+0 7.9E+3 4.3E+4 9.6E+3 9.9E+3 8.2E+4 6.3E+4 1.3E+5 2.6E+5 7.2E+5 1.1E+5

Koskeljärvi Clayey gyttja 343-360 8.5E-1 4.9E+2 7.6E+4 9.0E+3 8.3E+3 4.5E+4 3.8E+4 9.3E+4 5.7E+5 1.3E+6 4.7E+4

Koskeljärvi Gyttja clay 380-400 1.4E+0 7.0E+0 1.1E+3 5.0E+3 1.5E+2 1.9E+1 2.1E+1 3.1E+1 3.8E+1 3.6E+4 1.9E+1

Koskeljärvi Gyttja clay 440-540 9.2E-1 5.8E+0 3.6E+2 5.7E+3 3.1E+1 9.1E+0 1.1E+1 1.4E+1 3.2E+1 1.5E+4 9.7E+0

Page 195: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

187

Appendix E

Table E. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Cl Co Cr Cs Cu Dy Er Eu Fe Ga Gd

Lampinjärvi Gyttja 20-110 2.9E+0 1.5E+2 2.0E+5 5.5E+3 1.3E+4 2.5E+4 2.5E+4 3.3E+4 4.9E+5 3.1E+6 2.4E+4

Lampinjärvi Gyttja 130-140 1.9E+0 4.4E+0 5.6E+1 2.8E+3 1.0E+1 3.6E+0 3.9E+0 4.1E+0 1.1E+1 7.3E+2 3.8E+0

Lampinjärvi Gyttja clay 160-230 8.1E-1 4.9E+0 1.2E+2 3.9E+3 3.6E+1 6.1E+0 6.7E+0 7.7E+0 1.6E+1 4.1E+3 6.3E+0

Lampinjärvi Sand 271-283 1.9E-1 1.0E+0 9.6E+1 2.1E+3 6.0E+1 1.0E+1 1.3E+1 7.3E+0 7.7E+0 5.0E+3 8.3E+0

Lampinjärvi Clay 300-310 2.1E-1 3.0E+0 8.0E+2 1.2E+4 2.6E+2 1.8E+1 2.2E+1 2.4E+1 4.1E+1 7.6E+4 1.8E+1

Lampinjärvi Clay 385-610 1.3E-1 1.9E+1 7.3E+4 1.7E+4 4.3E+2 2.3E+2 2.7E+2 3.4E+2 1.0E+3 1.3E+6 2.4E+2

Lampinjärvi Clay 720-730 1.4E-1 8.0E+3 9.1E+5 3.0E+4 1.9E+3 1.2E+5 1.2E+5 7.2E+5 5.0E+5 1.6E+6 1.4E+5

Valkjärvi Gyttja 20-140 7.1E+0 4.8E+2 9.2E+4 7.5E+3 1.9E+4 3.1E+4 3.6E+4 3.1E+4 4.0E+5 - 3.3E+4

Valkjärvi Gyttja clay 180-290 3.7E+0 9.8E+0 3.4E+3 7.9E+3 2.9E+2 3.6E+1 3.5E+1 5.1E+1 9.6E+1 8.9E+4 4.0E+1

Valkjärvi Gyttja clay 310-480 2.2E+0 4.7E+0 5.3E+2 7.1E+3 1.7E+2 1.3E+1 1.5E+1 1.9E+1 3.0E+1 1.9E+4 1.4E+1

Narvijärvi Gyttja 20-210 1.6E+0 4.9E+2 1.1E+5 9.3E+3 2.0E+4 4.5E+4 4.9E+4 6.9E+4 2.2E+5 - 4.6E+4

Narvijärvi Gyttja clay 250-480 5.4E-1 8.8E+1 7.1E+4 9.5E+3 5.1E+3 1.1E+4 9.5E+3 2.3E+4 6.6E+3 2.1E+6 1.2E+4

Narvijärvi Gyttja clay 510-630 4.9E-1 4.7E+0 2.4E+3 7.9E+3 1.1E+3 2.4E+1 2.6E+1 3.6E+1 4.9E+1 5.1E+4 2.3E+1

Page 196: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

188

Appendix E

Table E. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

Suomenperänjärvi Gyttja 10-60 1.8E+5 1.3E+4 1.3E+5 6.1E+3 - 5.2E+2 1.1E+5 1.2E+3 8.1E+4 1.1E+2 6.8E+2 4.5E+3

Suomenperänjärvi Clayey gyttja 60-70 - 4.4E+4 3.4E+1 1.4E+3 - 3.5E+3 2.1E+1 6.1E+1 4.5E+1 4.6E+1 9.5E+0 4.7E+3

Suomenperänjärvi Gyttja clay 84-140 - 2.6E+3 1.2E+1 2.8E+2 - 2.0E+4 1.1E+1 3.9E+1 1.5E+1 3.2E+1 4.1E+0 1.9E+3

Suomenperänjärvi Clayey gyttja 150-199 - 8.2E+2 8.5E+0 1.6E+2 - 3.1E+4 7.8E+0 2.7E+1 9.0E+0 2.5E+1 4.4E+0 8.9E+2

Poosjärvi Gyttja 10-190 - 4.1E+5 1.7E+4 7.9E+3 - 4.2E+2 7.2E+3 3.1E+2 1.6E+4 1.2E+2 4.5E+1 4.8E+4

Poosjärvi Sand 207-213 - 8.1E+3 1.4E+4 3.8E+3 - 2.0E+3 1.3E+4 9.2E+2 1.1E+4 2.5E+2 4.3E+2 2.8E+6

Poosjärvi Gyttja clay 230-240 - 1.2E+4 9.0E+0 6.7E+2 - 3.8E+4 7.8E+0 1.8E+1 8.1E+0 2.6E+1 2.9E+0 2.4E+3

Poosjärvi Clay 270-390 - 1.8E+2 9.5E+1 4.0E+1 - 4.3E+2 9.4E+1 5.8E+1 9.5E+1 4.2E+1 5.2E+0 4.4E+3

Poosjärvi Clay 480-520 1.0E+6 8.5E+3 1.8E+5 2.4E+1 - 8.1E+2 2.2E+5 2.5E+3 1.1E+5 5.7E+2 7.8E+2 2.1E+1

Lutanjärvi Gyttja 20-360 6.8E+5 3.6E+3 1.3E+4 7.2E+2 - 8.0E+2 7.2E+3 3.8E+2 1.3E+4 5.5E+1 2.8E+1 8.5E+3

Lutanjärvi Clayey gyttja 370-408 - 2.7E+3 1.6E+1 1.1E+2 - 7.1E+2 9.5E+0 2.0E+1 2.3E+1 1.2E+1 5.4E+0 2.6E+3

Lutanjärvi Gyttja clay 420-640 - 1.2E+3 8.8E+1 1.2E+2 - 1.9E+2 5.1E+1 3.3E+1 1.1E+2 1.6E+1 7.5E+0 3.7E+3

Kivijärvi Gyttja 20-40 - 1.1E+4 2.9E+3 3.4E+3 - 7.0E+2 1.3E+3 2.4E+2 3.3E+3 1.9E+2 1.9E+1 2.5E+4

Kivijärvi Gyttja 60-70 2.7E+6 1.7E+4 6.1E+4 5.5E+3 - 1.5E+3 4.9E+4 9.2E+2 3.6E+4 2.5E+2 4.0E+2 1.5E+4

Kivijärvi Gyttja 90-160 6.6E+5 5.0E+3 6.0E+4 2.4E+3 - 1.4E+3 1.1E+5 1.5E+3 3.9E+4 2.6E+2 4.6E+2 4.5E+3

Kivijärvi Gyttja 200-240 - 1.2E+3 8.4E+0 2.7E+2 - 1.4E+4 7.8E+0 3.5E+1 1.2E+1 1.6E+1 3.9E+0 3.3E+3

Kivijärvi Gyttja clay 260-270 - 1.2E+3 1.4E+1 3.1E+2 - 8.3E+2 1.0E+1 3.1E+1 1.9E+1 1.7E+1 3.8E+0 1.8E+3

Kivijärvi Sand 447-457 - 1.8E+3 6.3E+0 2.9E+1 - 2.4E+4 3.6E+0 8.7E+0 4.1E+0 8.2E+0 2.5E+0 2.7E+2

Kivijärvi Clay 457-466 - 7.9E+2 6.6E+0 9.2E+0 - 3.0E+4 7.3E+0 1.7E+1 5.9E+0 1.3E+1 7.9E-1 7.4E+2

Kivijärvi Clay 466-474 - 4.4E+2 1.5E+3 3.8E+0 - 2.5E+2 6.4E+2 2.0E+2 1.7E+3 4.0E+1 5.0E+0 1.2E+4

Kivijärvi Clay 490-650 3.3E+6 4.9E+2 1.1E+5 1.8E+1 - 3.9E+2 1.3E+5 1.1E+3 5.7E+4 1.7E+2 1.4E+2 1.6E+2

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 2.2E+5 2.3E+3 7.4E+4 1.3E+3 - 1.1E+3 7.8E+4 3.1E+3 3.4E+4 2.0E+2 1.4E+3 9.3E+2

Koskeljärvi Clayey gyttja 343-360 6.6E+5 7.2E+2 4.0E+4 2.0E+2 - 6.9E+2 3.9E+4 6.9E+2 1.8E+4 7.4E+1 2.7E+2 9.4E+2

Koskeljärvi Gyttja clay 380-400 - 1.0E+3 1.9E+1 1.1E+2 - 1.3E+4 1.5E+1 6.5E+1 2.2E+1 2.3E+1 7.5E+0 1.7E+3

Koskeljärvi Gyttja clay 440-540 - 4.3E+2 9.1E+0 1.1E+2 - 4.1E+3 8.9E+0 2.7E+1 9.4E+0 1.6E+1 3.3E+0 1.4E+3

Page 197: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

189

Appendix E

Table E. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Hf Hg Ho I Ir K La Li Lu Mg Mn Mo

Lampinjärvi Gyttja 20-110 2.0E+6 3.2E+3 2.5E+4 1.3E+4 - 9.0E+2 1.2E+4 4.7E+2 1.9E+4 1.1E+2 4.3E+1 2.8E+4

Lampinjärvi Gyttja 130-140 - 9.0E+2 3.9E+0 7.1E+2 - 1.7E+4 4.3E+0 2.7E+1 3.0E+0 1.3E+1 3.8E+0 1.9E+2

Lampinjärvi Gyttja clay 160-230 - 3.7E+2 6.4E+0 4.6E+2 - 3.3E+4 5.6E+0 1.8E+1 5.8E+0 1.3E+1 2.9E+0 1.2E+3

Lampinjärvi Sand 271-283 - 5.5E+2 1.1E+1 2.8E+1 - 2.5E+4 6.6E+0 7.7E+0 5.1E+0 8.9E+0 4.6E+0 1.4E+2

Lampinjärvi Clay 300-310 - 6.0E+2 2.0E+1 2.9E+1 - 1.2E+3 1.4E+1 1.5E+1 1.7E+1 1.4E+1 2.1E+0 9.0E+2

Lampinjärvi Clay 385-610 - 4.7E+2 2.5E+2 1.1E+1 - 2.3E+2 1.7E+2 7.1E+1 2.3E+2 3.3E+1 7.3E+0 3.7E+3

Lampinjärvi Clay 720-730 - 5.0E+2 1.1E+5 2.2E+1 - 4.3E+2 1.1E+5 1.4E+3 9.3E+4 2.3E+2 2.6E+2 3.5E+1

Valkjärvi Gyttja 20-140 8.4E+5 2.0E+3 3.4E+4 2.0E+3 - 9.5E+2 8.1E+3 4.7E+2 2.1E+4 8.7E+1 5.7E+1 5.6E+3

Valkjärvi Gyttja clay 180-290 - 6.6E+3 3.4E+1 2.9E+2 - 5.9E+2 2.5E+1 6.0E+1 4.4E+1 3.0E+1 7.6E+0 4.7E+3

Valkjärvi Gyttja clay 310-480 - 5.1E+2 1.4E+1 1.7E+2 - 1.6E+3 1.1E+1 3.1E+1 1.3E+1 1.8E+1 4.5E+0 1.6E+3

Narvijärvi Gyttja 20-210 1.2E+6 1.8E+3 4.7E+4 4.2E+2 - 6.4E+2 1.8E+4 6.9E+2 3.0E+4 5.9E+1 6.6E+1 4.7E+3

Narvijärvi Gyttja clay 250-480 8.8E+5 8.1E+1 1.0E+4 2.7E+1 - 2.6E+2 7.7E+3 3.2E+2 7.2E+3 2.7E+1 3.5E+1 1.0E+3

Narvijärvi Gyttja clay 510-630 - 1.6E+2 2.3E+1 1.0E+1 - 3.4E+2 1.7E+1 4.9E+1 3.9E+1 1.4E+1 7.3E+0 1.9E+3

Page 198: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

190

Appendix E

Table E. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

Suomenperänjärvi Gyttja 10-60 7.9E+1 1.9E+5 1.9E+5 1.0E+4 - 8.6E+4 1.9E+5 2.3E+4 1.8E+5 - 1.5E+3 -

Suomenperänjärvi Clayey gyttja 60-70 2.0E+2 3.7E+5 4.0E+1 1.5E+1 - 1.6E+4 4.1E+3 1.3E+3 3.4E+1 - 3.2E+3 -

Suomenperänjärvi Gyttja clay 84-140 1.2E+2 8.8E+4 1.4E+1 9.3E+0 - 1.8E+3 8.5E+3 1.4E+3 1.3E+1 - 3.2E+3 1.4E+1

Suomenperänjärvi Clayey gyttja 150-199 9.9E+1 4.1E+4 9.0E+0 5.9E+0 - 1.4E+3 1.0E+4 6.3E+2 8.7E+0 - 3.6E+3 -

Poosjärvi Gyttja 10-190 9.7E+1 1.0E+6 1.7E+4 2.5E+2 - 1.1E+5 5.8E+4 4.2E+3 1.5E+4 - 9.2E+2 2.7E+1

Poosjärvi Sand 207-213 2.9E+2 9.4E+6 1.6E+4 3.5E+3 - 1.4E+5 5.7E+5 1.1E+4 1.4E+4 - 5.2E+3 -

Poosjärvi Gyttja clay 230-240 1.7E+2 1.3E+5 9.6E+0 4.8E+0 - 2.7E+3 5.6E+4 7.3E+2 9.0E+0 - 1.6E+3 2.2E+1

Poosjärvi Clay 270-390 9.9E+1 2.4E+6 1.3E+2 1.8E+1 - 2.0E+4 2.9E+3 1.7E+3 1.3E+2 - 2.3E+3 -

Poosjärvi Clay 480-520 9.6E+1 1.1E+6 2.0E+5 1.9E+4 - 7.4E+3 2.0E+5 2.4E+3 2.2E+5 - 1.3E+4 -

Lutanjärvi Gyttja 20-360 4.0E+1 3.5E+5 1.6E+4 4.8E+2 - 5.1E+4 4.3E+4 3.0E+4 1.4E+4 - 5.8E+3 -

Lutanjärvi Clayey gyttja 370-408 1.7E+1 1.0E+5 1.5E+1 8.8E+0 - 1.8E+3 2.8E+4 8.7E+2 1.3E+1 - 9.5E+2 1.5E+1

Lutanjärvi Gyttja clay 420-640 1.8E+1 1.8E+5 9.8E+1 1.0E+1 - 1.7E+3 1.1E+3 9.7E+2 8.5E+1 - 1.8E+3 2.0E+1

Kivijärvi Gyttja 20-40 2.8E+2 2.5E+6 3.0E+3 1.1E+2 - 8.1E+4 1.9E+4 2.0E+3 2.6E+3 - 1.6E+3 -

Kivijärvi Gyttja 60-70 2.4E+2 1.1E+6 6.1E+4 2.9E+3 - 5.1E+4 1.2E+5 1.3E+4 6.2E+4 - 4.1E+3 -

Kivijärvi Gyttja 90-160 1.1E+2 3.8E+5 8.9E+4 5.3E+3 - 3.1E+4 4.6E+5 2.3E+4 1.1E+5 - 6.3E+3 -

Kivijärvi Gyttja 200-240 4.8E+1 1.2E+5 8.9E+0 7.5E+0 - 1.2E+3 2.3E+5 1.1E+3 8.6E+0 - 4.1E+3 2.1E+1

Kivijärvi Gyttja clay 260-270 3.5E+1 1.1E+5 1.5E+1 6.0E+0 - 1.5E+3 3.1E+3 5.0E+2 1.3E+1 - 2.5E+3 1.7E+1

Kivijärvi Sand 447-457 7.0E+1 4.5E+4 4.0E+0 1.7E+0 - 3.3E+2 6.2E+4 1.2E+2 3.8E+0 - 2.8E+3 -

Kivijärvi Clay 457-466 4.1E+1 7.6E+4 8.1E+0 3.2E+0 - 2.3E+3 6.4E+4 3.6E+2 7.8E+0 - 3.7E+3 -

Kivijärvi Clay 466-474 4.0E+1 1.7E+6 1.6E+3 6.0E+1 - 1.1E+4 8.6E+4 2.0E+4 1.5E+3 - 2.4E+3 -

Kivijärvi Clay 490-650 4.1E+1 9.5E+5 1.9E+5 2.1E+3 - 5.8E+3 5.5E+5 1.6E+4 2.1E+5 - 5.0E+3 -

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 6.1E+1 9.4E+4 8.5E+4 1.6E+4 - 4.0E+4 2.6E+5 1.7E+4 8.5E+4 - 5.8E+3 -

Koskeljärvi Clayey gyttja 343-360 5.4E+1 3.7E+5 5.9E+4 1.6E+3 - 1.4E+4 1.5E+5 1.4E+4 5.9E+4 - 4.2E+3 -

Koskeljärvi Gyttja clay 380-400 4.1E+1 1.2E+5 2.2E+1 1.4E+1 - 1.7E+3 8.8E+3 6.9E+2 2.0E+1 - 2.3E+3 -

Koskeljärvi Gyttja clay 440-540 3.1E+1 7.5E+4 1.1E+1 7.1E+0 - 1.2E+3 3.9E+4 6.7E+2 1.1E+1 - 2.0E+3 8.8E+0

Page 199: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

191

Appendix E

Table E. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Na Nb Nd Ni Os P Pb Pd Pr Pt Rb Re

Lampinjärvi Gyttja 20-110 7.8E+1 1.3E+6 2.7E+4 6.1E+2 - 5.2E+4 1.3E+5 4.1E+03 2.4E+4 - 3.3E+3 3.0E+1

Lampinjärvi Gyttja 130-140 6.1E+1 1.5E+3 3.8E+0 7.4E+0 - 1.1E+1 2.9E+6 3.0E+02 3.9E+0 - 1.8E+4 3.9E+1

Lampinjärvi Gyttja clay 160-230 3.0E+1 3.3E+4 6.4E+0 5.9E+0 - 3.3E+2 6.8E+4 2.6E+02 6.2E+0 - 3.8E+3 1.6E+1

Lampinjärvi Sand 271-283 3.9E+1 1.3E+4 6.8E+0 2.0E+0 - 4.1E+2 2.2E+5 1.3E+02 6.7E+0 - 2.4E+3 -

Lampinjärvi Clay 300-310 2.1E+1 8.3E+4 1.9E+1 3.6E+0 - 1.5E+3 7.1E+3 4.9E+02 1.8E+1 - 2.5E+3 9.3E+0

Lampinjärvi Clay 385-610 1.2E+1 1.2E+6 2.8E+2 2.0E+1 - 6.9E+3 7.4E+3 8.1E+02 2.6E+2 - 2.9E+3 -

Lampinjärvi Clay 720-730 1.6E+1 8.2E+5 1.4E+5 9.8E+3 - 1.2E+4 7.9E+5 1.8E+04

1.5E+5 - 7.2E+3 -

Valkjärvi Gyttja 20-140 9.8E+1 5.3E+5 2.7E+4 1.1E+3 - 5.1E+4 5.5E+4 8.3E+03 2.0E+4 - 3.5E+3 -

Valkjärvi Gyttja clay 180-290 6.9E+1 3.3E+5 4.5E+1 1.3E+1 - 5.4E+3 1.2E+3 8.2E+02 4.0E+1 - 2.2E+3 2.9E+1

Valkjärvi Gyttja clay 310-480 4.1E+1 6.4E+4 1.6E+1 5.9E+0 - 1.0E+3 2.7E+3 4.0E+02 1.4E+1 - 2.9E+3 1.8E+1

Narvijärvi Gyttja 20-210 3.4E+1 2.4E+5 4.7E+4 2.3E+3 - 3.9E+4 6.7E+4 1.8E+04 3.7E+4 - 3.6E+3 4.3E+1

Narvijärvi Gyttja clay 250-480 1.3E+1 2.2E+5 1.6E+4 4.1E+2 - 6.8E+3 6.0E+4 2.5E+04 1.6E+4 - 2.2E+3 -

Narvijärvi Gyttja clay 510-630 9.7E+0 1.2E+5 2.8E+1 9.5E+0 - 2.2E+3 1.3E+4 1.2E+03 2.5E+1 - 1.5E+3 -

Page 200: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

192

Appendix E

Table E. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result, NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment

type Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

Suomenperänjärvi Gyttja 10-60 4.7E+2 1.3E+3 2.8E+1 5.3E+2 1.4E+5 5.5E+3 8.0E+3 2.1E+5 - 1.6E+2 2.9E+5 1.8E+5

Suomenperänjärvi Clayey gyttja 60-70 - - 5.3E+0 2.4E+3 1.2E+3 1.0E+3 3.6E+3 4.9E+1 7.2E+4 3.6E+1 - 3.6E+1

Suomenperänjärvi Gyttja clay 84-140 - - 5.0E+0 6.0E+2 3.5E+2 1.8E+2 2.7E+3 1.5E+1 3.7E+5 3.0E+1 - 1.2E+1

Suomenperänjärvi Clayey gyttja 150-199 - - 3.7E+0 2.5E+2 1.4E+2 6.9E+1 2.5E+3 9.0E+0 1.4E+5 2.9E+1 - 8.3E+0

Poosjärvi Gyttja 10-190 1.2E+4 7.8E+2 1.2E+1 3.8E+3 1.7E+5 - 6.1E+3 2.4E+4 1.1E+5 8.0E+1 8.8E+5 1.8E+4

Poosjärvi Sand 207-213 2.1E+3 7.1E+3 1.9E+1 2.2E+2 2.1E+5 - 7.4E+3 1.7E+4 - 3.6E+2 1.4E+6 1.4E+4

Poosjärvi Gyttja clay 230-240 - - 3.2E+0 1.1E+3 3.2E+2 7.3E+2 2.9E+3 9.9E+0 - 4.8E+1 - 8.8E+0

Poosjärvi Clay 270-390 - 4.9E+2 1.7E+0 2.7E+3 1.3E+4 1.3E+2 5.0E+3 1.3E+2 2.1E+5 6.8E+1 - 9.5E+1

Poosjärvi Clay 480-520 1.1E+3 3.4E+2 2.1E+0 1.2E+2 2.6E+6 1.9E+1 3.8E+4 2.6E+5 3.8E+6 6.5E+2 1.2E+6 2.1E+5

Lutanjärvi Gyttja 20-360 - - 1.0E+1 1.2E+3 1.7E+5 3.4E+3 6.2E+3 1.9E+4 1.4E+5 7.9E+1 1.3E+6 1.5E+4

Lutanjärvi Clayey gyttja 370-408 - - 3.6E+0 4.4E+2 8.3E+2 8.5E+2 2.7E+3 1.8E+1 3.7E+4 1.5E+1 - 1.6E+1

Lutanjärvi Gyttja clay 420-640 - - 6.3E+0 3.1E+2 5.9E+3 6.5E+2 3.8E+3 1.2E+2 1.2E+5 2.0E+1 - 9.7E+1

Kivijärvi Gyttja 20-40 - 2.5E+3 1.0E+1 4.5E+3 1.7E+5 1.9E+3 8.0E+3 3.7E+3 - 8.8E+1 - 2.9E+3

Kivijärvi Gyttja 60-70 7.8E+2 2.2E+3 2.1E+1 1.3E+3 7.0E+5 2.1E+3 7.7E+3 6.0E+4 1.5E+5 2.3E+2 9.2E+5 7.1E+4

Kivijärvi Gyttja 90-160 2.6E+3 1.1E+3 2.4E+1 1.5E+3 1.7E+5 - 7.3E+3 8.5E+4 1.6E+5 3.0E+2 7.2E+5 7.4E+4

Kivijärvi Gyttja 200-240 - - 7.5E+0 2.1E+2 2.4E+2 1.8E+3 2.3E+3 9.7E+0 2.3E+4 3.1E+1 - 9.0E+0

Kivijärvi Gyttja clay 260-270 - - 5.2E+0 2.8E+2 5.5E+2 3.1E+2 3.2E+3 1.8E+1 5.1E+4 2.0E+1 - 1.4E+1

Kivijärvi Sand 447-457 - - 6.2E-1 3.4E+2 9.2E+1 5.4E+1 4.8E+3 4.6E+0 1.5E+4 5.7E+1 - 5.9E+0

Kivijärvi Clay 457-466 - - 1.7E+0 1.4E+3 2.3E+2 8.5E+1 2.6E+3 7.8E+0 8.7E+4 5.8E+1 - 6.6E+0

Kivijärvi Clay 466-474 - - 4.0E+0 2.4E+3 4.4E+5 4.6E+1 1.7E+4 1.9E+3 - 5.2E+1 - 1.6E+3

Kivijärvi Clay 490-650 - - 5.6E-1 4.4E+2 1.1E+6 3.8E+1 2.8E+4 1.6E+5 2.6E+5 2.1E+2 1.6E+6 1.4E+5

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 3.2E+3 9.2E+1 3.4E+1 4.4E+2 1.2E+5 4.4E+3 1.1E+4 8.6E+4 8.4E+4 3.7E+2 3.1E+5 9.6E+4

Koskeljärvi Clayey gyttja 343-360 - 2.8E+2 5.2E+0 6.1E+2 1.3E+5 2.2E+2 1.3E+4 5.8E+4 1.9E+5 8.2E+1 7.5E+5 5.0E+4

Koskeljärvi Gyttja clay 380-400 - - 7.3E+0 2.5E+2 7.0E+2 7.2E+2 3.1E+3 2.5E+1 2.5E+4 2.4E+1 - 2.0E+1

Koskeljärvi Gyttja clay 440-540 - - 3.5E+0 2.4E+2 2.8E+2 1.3E+2 2.4E+3 1.1E+1 2.2E+5 1.7E+1 - 9.6E+0

Page 201: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

193

Appendix E

Table E. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb

Lampinjärvi Gyttja 20-110 - 6.8E+2 1.1E+1 3.4E+3 4.6E+5 7.0E+3 7.4E+3 3.3E+4 1.1E+5 9.4E+1 4.1E+6 3.5E+3

Lampinjärvi Gyttja 130-140 - - 4.5E+0 3.5E+2 2.3E+1 1.2E+2 2.1E+3 3.8E+0 4.5E+3 1.9E+2 - 8.7E-1

Lampinjärvi Gyttja clay 160-230 - - 4.2E+0 1.7E+2 1.4E+2 8.5E+2 2.6E+3 6.7E+0 7.1E+4 2.8E+1 - 1.9E+0

Lampinjärvi Sand 271-283 - - 6.1E-1 1.9E+2 7.7E+1 3.0E+1 4.2E+3 7.7E+0 1.4E+4 4.8E+1 - 2.4E-1

Lampinjärvi Clay 300-310 - - 1.7E+0 1.2E+2 7.1E+2 1.5E+2 3.2E+3 2.0E+1 2.6E+4 3.4E+1 - 1.9E+1

Lampinjärvi Clay 385-610 - 6.3E+2 2.2E+0 6.5E+2 3.5E+4 4.8E+1 7.1E+3 3.2E+2 - 4.7E+1 - 2.5E+2

Lampinjärvi Clay 720-730 - 2.1E+2 5.5E-1 1.7E+2 1.1E+6 4.9E+0 5.6E+4 1.6E+5 3.1E+5 2.6E+2 1.5E+6 1.0E+5

Valkjärvi Gyttja 20-140 - 2.1E+2 1.0E+1 1.6E+3 2.2E+5 1.0E+3 7.8E+3 3.6E+4 9.2E+4 8.5E+1 2.7E+5 3.4E+4

Valkjärvi Gyttja clay 180-290 - - 6.1E+0 1.5E+3 2.0E+3 4.8E+2 3.9E+3 5.0E+1 1.3E+5 3.0E+1 - 3.8E+1

Valkjärvi Gyttja clay 310-480 - - 5.0E+0 3.0E+2 4.1E+2 1.7E+2 3.0E+3 1.8E+1 7.3E+4 2.2E+1 - 1.4E+1

Narvijärvi Gyttja 20-210 - 7.5E+2 1.1E+1 8.9E+2 6.6E+5 2.0E+3 1.1E+4 5.1E+4 1.5E+5 7.9E+1 9.5E+5 4.5E+4

Narvijärvi Gyttja clay 250-480 - - 2.9E+0 4.3E+2 9.1E+4 5.3E+2 9.2E+3 1.7E+4 - 4.1E+1 4.8E+5 1.4E+4

Narvijärvi Gyttja clay 510-630 - - 5.5E+0 1.7E+2 1.2E+3 3.6E+2 3.5E+3 3.2E+1 7.5E+4 1.4E+1 - 2.5E+1

Page 202: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

194

Appendix E

Table E. (cont´d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result, NA=not analysed). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

Suomenperänjärvi Gyttja 10-60 5.2E+3 2.7E+5 2.5E+6 6.3E+2 1.3E+5 1.4E+5 6.5E+5 2.1E+4 1.2E+5 1.2E+5 1.7E+3 2.7E+5

Suomenperänjärvi Clayey gyttja 60-70 1.2E+3 3.0E+3 3.2E+5 4.4E+2 5.0E+1 2.7E+2 2.5E+3 2.9E+3 2.2E+1 5.8E+1 9.2E+0 1.1E+5

Suomenperänjärvi Gyttja clay 84-140 2.5E+2 5.3E+2 1.9E+5 2.6E+3 1.6E+1 6.0E+1 6.6E+4 1.9E+2 9.2E+0 1.8E+1 1.1E+1 2.5E+4

Suomenperänjärvi Clayey gyttja 150-199 1.0E+2 1.6E+2 1.6E+5 1.7E+3 1.1E+1 2.2E+1 5.9E+3 1.2E+2 7.1E+0 1.2E+1 7.5E+0 1.5E+4

Poosjärvi Gyttja 10-190 3.7E+3 1.3E+6 1.3E+7 5.2E+2 2.2E+4 1.2E+5 1.2E+5 6.1E+5 9.4E+3 2.1E+4 1.4E+2 1.5E+6

Poosjärvi Sand 207-213 7.7E+3 2.7E+5 1.3E+7 1.5E+3 1.8E+4 3.0E+4 2.1E+4 1.3E+5 1.2E+4 2.1E+4 8.3E+3 9.4E+6

Poosjärvi Gyttja clay 230-240 8.0E+2 3.6E+2 1.0E+5 1.1E+3 1.2E+1 5.0E+1 6.3E+4 8.5E+2 6.7E+0 1.3E+1 5.7E+0 6.3E+4

Poosjärvi Clay 270-390 1.2E+3 5.2E+4 7.7E+6 1.0E+3 1.4E+2 6.1E+2 1.2E+4 2.1E+5 7.5E+1 1.4E+2 5.9E+1 1.4E+6

Poosjärvi Clay 480-520 1.1E+4 3.2E+5 3.3E+6 3.7E+3 3.3E+5 2.3E+4 1.7E+4 4.2E+4 1.8E+5 1.5E+5 2.2E+4 1.0E+6

Lutanjärvi Gyttja 20-360 9.6E+3 1.0E+6 8.5E+6 1.7E+3 1.5E+4 8.5E+4 9.6E+3 6.9E+4 7.4E+3 1.8E+4 1.4E+2 1.4E+6

Lutanjärvi Clayey gyttja 370-408 5.0E+2 1.8E+3 1.7E+5 4.4E+2 2.3E+1 1.0E+2 3.4E+4 1.7E+2 1.0E+1 3.0E+1 4.9E+0 3.9E+4

Lutanjärvi Gyttja clay 420-640 3.4E+2 2.7E+4 7.1E+5 1.6E+3 1.3E+2 1.2E+3 9.2E+3 1.3E+3 5.3E+1 1.6E+2 1.1E+1 1.3E+5

Kivijärvi Gyttja 20-40 2.1E+3 8.9E+5 3.5E+7 4.0E+2 3.6E+3 4.0E+4 3.2E+4 9.5E+5 1.5E+3 4.2E+3 5.3E+1 1.4E+6

Kivijärvi Gyttja 60-70 2.7E+4 1.2E+6 5.6E+6 2.0E+3 7.4E+4 2.0E+5 2.4E+4 9.1E+4 4.6E+4 7.3E+4 5.8E+2 1.6E+6

Kivijärvi Gyttja 90-160 - 5.6E+5 5.9E+6 2.0E+3 4.5E+4 1.0E+5 1.0E+4 4.6E+4 5.0E+4 4.7E+4 1.6E+3 5.9E+5

Kivijärvi Gyttja 200-240 8.5E+2 3.9E+2 1.3E+5 1.7E+3 1.2E+1 3.9E+1 4.1E+3 6.4E+1 8.0E+0 1.4E+1 4.8E+0 5.7E+4

Kivijärvi Gyttja clay 260-270 3.3E+2 1.1E+3 1.2E+5 4.6E+2 1.9E+1 8.8E+1 1.5E+3 1.2E+2 9.8E+0 2.2E+1 5.8E+0 5.6E+4

Kivijärvi Sand 447-457 2.7E+1 1.3E+2 5.6E+4 5.5E+1 8.5E+0 1.1E+1 5.9E+3 2.6E+1 5.9E+0 1.0E+1 1.6E+0 7.7E+4

Kivijärvi Clay 457-466 1.9E+2 2.6E+2 4.5E+5 1.7E+3 9.1E+0 1.8E+1 3.3E+3 2.4E+2 7.5E+0 9.4E+0 6.1E+0 1.7E+4

Kivijärvi Clay 466-474 2.7E+3 1.9E+6 1.4E+7 1.3E+4 2.4E+3 1.6E+4 3.2E+4 1.8E+6 8.4E+2 2.7E+3 5.0E+2 1.1E+7

Kivijärvi Clay 490-650 9.5E+3 1.9E+6 5.2E+6 1.6E+3 1.1E+5 4.9E+4 2.6E+4 8.9E+4 8.5E+4 1.2E+5 3.0E+4 1.7E+6

Kivijärvi Clay 680-690 NA NA NA NA NA NA NA NA NA NA NA NA

Koskeljärvi Gyttja 50-320 3.6E+3 1.3E+5 1.0E+6 1.6E+3 7.8E+4 4.9E+4 1.7E+4 1.4E+4 6.9E+4 6.0E+4 8.1E+3 2.6E+5

Koskeljärvi Clayey gyttja 343-360 3.3E+3 6.2E+5 5.0E+6 7.3E+2 3.8E+4 7.7E+4 1.5E+5 2.7E+4 2.7E+4 3.8E+4 5.8E+2 6.6E+5

Koskeljärvi Gyttja clay 380-400 2.3E+2 1.5E+3 2.2E+5 6.7E+2 2.8E+1 1.3E+2 4.5E+3 1.6E+2 1.3E+1 3.1E+1 9.1E+0 4.0E+4

Koskeljärvi Gyttja clay 440-540 1.5E+2 3.2E+2 1.2E+5 1.7E+3 1.4E+1 3.9E+1 4.8E+3 1.3E+2 7.7E+0 1.5E+1 7.1E+0 3.0E+4

Page 203: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

195

Appendix E

Table E. (cont`d). Distribution coefficient (Kd) values (L/kgDW) of the deep lake sediments, solids extracted by HNO3-HF(trace) or LiBO2

fusion (-=no result). Under LOQ values are marked in grey and italics.

Reference lake Sediment type

Sampling depth cm

Te Th Ti Tl Tm U W V Y Yb Zn Zr

Lampinjärvi Gyttja 20-110 1.0E+4 2.3E+6 8.3E+6 8.7E+2 3.0E+4 1.5E+5 9.5E+4 3.9E+5 1.3E+4 2.9E+4 2.4E+2 2.3E+6

Lampinjärvi Gyttja 130-140 2.9E+2 1.4E+1 5.1E+3 2.7E+4 4.3E+0 5.3E+0 7.8E+2 1.7E+1 4.3E+0 4.5E+0 4.1E+0 2.1E+3

Lampinjärvi Gyttja clay 160-230 4.2E+2 1.2E+2 3.8E+4 1.8E+3 8.0E+0 1.9E+1 3.3E+3 4.8E+1 6.4E+0 9.2E+0 4.4E+0 2.4E+4

Lampinjärvi Sand 271-283 1.9E+1 8.8E+1 3.4E+4 9.5E+1 1.5E+1 1.3E+1 1.6E+3 9.0E+0 1.0E+1 1.6E+1 1.6E+0 5.3E+4

Lampinjärvi Clay 385-610 1.7E+3 1.6E+5 5.9E+6 1.5E+3 3.7E+2 2.0E+3 2.7E+4 2.1E+5 1.6E+2 3.9E+2 1.0E+2 1.4E+6

Lampinjärvi Clay 720-730 3.0E+4 1.8E+6 6.8E+6 3.5E+3 1.3E+5 5.1E+3 7.7+3 3.3E+3 8.8E+4 1.2E+5 1.8E+4 2.6E+6

Valkjärvi Gyttja 20-140 3.5E+3 1.0E+6 1.0E+7 4.0E+2 4.7E+4 1.2E+5 1.5E+4 5.1E+4 1.8E+4 4.6E+4 2.8E+2 1.3E+6

Valkjärvi Gyttja clay 180-290 7.8E+2 5.6E+3 4.8E+5 4.5E+2 4.7E+1 4.0E+2 2.1E+4 1.2E+3 2.4E+1 5.5E+1 1.5E+1 1.5E+5

Valkjärvi Gyttja clay 310-480 2.3E+2 8.5E+2 1.3E+5 5.4E+2 1.8E+1 7.4E+1 6.1E+3 1.2E+2 9.3E+0 2.0E+1 5.7E+0 2.9E+4

Narvijärvi Gyttja 20-210 9.6E+3 1.3E+6 6.9E+6 6.6E+2 4.9E+4 1.8E+5 3.3E+4 7.6E+4 2.5E+4 5.1E+4 5.6E+2 1.3E+6

Narvijärvi Gyttja clay 250-480 6.8E+2 9.9E+5 5.8E+6 9.8E+2 1.1E+4 5.9E+4 1.5E+4 5.4E+4 5.6E+3 1.1E+4 2.3E+2 9.4E+5

Narvijärvi Gyttja clay 510-630 1.7E+2 4.6E+3 3.9E+5 6.0E+2 3.5E+1 2.2E+2 7.5E+3 2.9E+2 1.5E+1 4.3E+1 8.4E+0 6.8E+4

Page 204: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

196

Appendix E

Page 205: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

197

Appendix F

APPENDIX F. LIMIT OF QUANTIFICATION (LOQ) OF THE ANALYSED ELEMENTS

Table F. The limit of quantification (LOQ) of the elements analysed in the ALS laboratory

in Sweden.

Element

NH4Ac (pH 4.5)

HNO3/HF(trace) or LiBO2 fusion for mineral soil samples

Pore water

Element NH4Ac (pH 4.5)

HNO3/HF(trace) or LiBO2 fusion for mineral soil samples

Pore water

µg/kg DM µg/kg DM µg/L µg/kg DM µg/kg DM µg/L

Ag 5.0 5.0 0.01 Na 5000 10000 50

Al 500 2000 1.0 Nb 0.5 1.0 0.001

As 10.0 20 0.1 Nd 0.5 1.0 0.001

Au 0.5 1.0 0.005 Ni 20 50 0.05

B 500 500 2.0 Os 0.5 1.0 0.001

Ba 20 100 0.05 P 500 1000 1.0

Be 1.0 5.0 0.005 Pb 5.0 10.0 0.005

Bi 0.5 1.0 0.001 Pd 2.0 5.0 0.02

Br 500 500 10.0 Pr 0.5 1.0 0.001

Ca 5000 10000 50 Pt 0.5 1.0 0.001

Cd 2.0 2.0 0.005 Rb 5.0 10.0 0.02

Ce 0.5 1.0 0.001 Re 0.5 1.0 0.005

Cl 5000 10000 500 Rh 2.0 5.0 0.001

Co 5.0 5.0 0.005 Ru 2.0 5.0 0.005

Cr 10.0 20 0.05 S 5000 10000 50

Cs 0.5 1.0 0.005 Sb 1.0 2.0 0.005

Cu 10.0 20.0 0.05 Sc 2.0 5.0 0.01

Dy 0.5 1.0 0.001 Se 50 100 0.2

Er 0.5 1.0 0.001 Si 1000 50000 100

Eu 0.5 1.0 0.001 Sm 0.5 1.0 0.001

Fe 500 2000 1.0 Sn 5.0 20 0.05

Ga 0.5 2.0 0.002 Sr 20 50 0.1

Gd 0.5 1.0 0.001 Ta 0.5 1.0 0.001

Ge 20 500 0.2 Tb 0.5 1.0 0.001

Hf 0.5 1.0 0.001 Te 2.0 5.0 0.01

Hg 5.0 10.0 0.03 Th 0.5 1.0 0.001

Ho 0.5 1.0 0.001 Ti 50 200 0.1

I 50 100 1.0 Tl 0.5 1.0 0.001

Ir 0.5 1.0 0.001 Tm 0.5 1.0 0.001

K 5000 10000 50 U 0.5 1.0 0.001

La 0.5 1.0 0.001 W 50 50 0.1

Li 50 100 0.2 V 2.0 5.0 0.01

Lu 0.5 1.0 0.001 Y 0.5 1.0 0.002

Mg 500 1000 2.0 Yb 0.5 1.0 0.001

Mn 10 100 0.1 Zn 500 500 1.0

Mo 5.0 10.0 0.01 Zr 5.0 10.0 0.005

Page 206: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

198

Table G-1. Arithmetic mean, min and max values of the main pore water elements (Ag,

Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr.

Element Min µg/L

Max µg/L

AM µg/L

N (>LOQ)

Ag 0.01 0.011 0.01 2

Cl 8 570 1 3000 000 180 000 38

Cs 0.07 1.8 0.6 38

I 1.0 4 630 334 37

Mo 0.05 46 3.7 35 Nb 0.001 5.4 0.2 37

Ni 1.9 10 300 2 530 38

Pb 0.02 12.4 1.6 37

Pd 0.0 0.0 0.0 0

Se 0.2 42 4.7 33

Sn 0.06 0.4 0.1 6

Sr 203 9 190 3 100 38

Table G-2. Arithmetic mean, min and max values of the main bioavailable elements (Ag,

Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr).

Element Min µg/kg

Max µg/kg

AM µg/kg

N (>LOQ)

Ag 0.0 0.0 0.0 0

Cl 14 100 1 05 000 140 153 39

Cs 9.7 151 44 39 I 85 9 520 1 070 39

Mo 8.5 82 27 35

Nb 1.7 20 8.4 39

Ni 1 050 8 420 3 460 39

Pb 12.8 6 710 1 800 39

Pd 0.0 0.0 0. 0

Se 56 127 77 12 Sn 5.1 15.6 7.8 15

Sr 1 770 23 600 12 500 39

Table G-3 Arithmetic mean, min and max values of the main pseudo-total elements (Ag,

Cl, Cs, I, Mo, Nb, Ni, Pb, Pd, Se, Sn and Sr).

Element Min µg/kg

Max µg/kg

AM µg/kg

N (>LOQ)

Ag 23 162 77 38

Cl 47 600 982 000 237 000 39

Cs 936 7 410 3 980 39

I 1 360 99 000 27 200 39

Mo 493 4 250 1 500 39

Nb 1 220 20 300 10 600 39

Ni 10 200 58 600 36 700 39 Pb 4 280 45 300 16 300 39

Pd 0.0 0.0 0.0 0

Se 106 1 230 649 38

Sn 758 2 590 1 860 39

Sr 43 650 187 000 130 000 39

Page 207: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

199

Appendix F

Table G-4. Geometric mean, min and max values of the distribution coefficients (Kd

values), solids extracted by NH4Ac (pH 4.5) of the deep lake sediments (- = no result).

Element N of samples

GM L/kg

Min L/kg

Max L/kg

Element N of samples

GM L/kg

Min L/kg

Max L/kg

Ag 31 4.4E+1 9.5E+1 4.4E+3 Na 37 2.6E+0 6.4E-2 6.2E+0

Al 38 1.2E+2 3.4E-2 9.4E+3 Nb 38 4.0E+2 3.0E+0 6.1E+3

As 38 2.9E+2 2.2E+0 1.4E+3 Nd 38 2.1E+2 2.0E-1 1.5E+4

Au 30 4.9E+1 2.6E+0 3.5E+2 Ni 38 1.8E+1 2.7E-2 5.8E+2

B 38 2.5E+0 1.4E-1 6.2E+0 Os 38 1.4E+2 9.7E+0 4.7E+2

Ba 38 1.1E+2 3.1E+0 5.6E+2 P 38 6.2E+2 2.1E+0 4.1E+3

Be 38 1.1E+2 1.0E-1 8.9E+3 Pb 38 2.9E+3 3.8E+1 1.4E+5

Bi 38 4.1E+3 2.9E+2 2.1E+5 Pd 0 - - -

Br 38 4.7E+1 2.4E-2 4.7E+1 Pr 38 1.8E+2 1.7E-1 1.5E+4

Ca 38 1.3E+1 5.0E-1 9.9E+1 Pt 10 2.4E+1 1.2E+0 2.9E+2

Cd 38 3.7E+1 5.1E-2 2.3E+3 Rb 38 1.9E+1 2.7E+0 8.6E+1

Ce 38 1.5E+2 1.5E-1 1.3E+4 Re 20 4.7E+0 1.1E-1 3.7E+1

Cl 34 1.3E+0 4.2E-2 3.2E+0 Rh 6 2.0E+2 1.3E+2 2.1E+2

Co 38 2.6E+1 2.9E-2 8.3E+2 Ru 14 1.9E+2 4.9E+1 4.8E+2

Cr 38 4.3E+2 7.4E-1 6.6E+3 S 38 1.7E+0 1.2E-1 4.5E+0

Cs 38 2.3E+2 1.2E+1 4.7E+2 Sb 38 2.5E+1 8.9E+0 4.5E+2

Cu 37 9.4E+1 5.7E-1 1.0E+3 Sc 38 5.4E+2 1.2E+0 6.9E+4

Dy 38 2.2E+2 1.5E-1 1.1E+4 Se 16 1.5E+2 1.1E+0 2.9E+2

Er 38 5.2E+0 1.7E-1 8.0E+3 Si 38 2.7E+2 1.5E-1 4.2E+4

Eu 26 6.5E+0 2.1E-1 2.4E+3 Sm 38 2.6E+2 2.0E+4 2.0E+4

Fe 38 4.6E+2 2.1E-1 7.9E+4 Sn 38 7.5E+2 1.2E+1 6.3E+3

Ga 34 6.5E+0 1.0E+0 9.9E+3 Sr 38 1.0E+1 3.3E-1 1.1E+2

Gd 38 2.4E+2 1.6E-1 2.0E+4 Ta 0 - - -

Ge 38 1.2E+2 3.1E-1 1.4E+4 Tb 38 2.2E+2 1.7E-1 2.0E+4

Hf 12 2.3E+3 6.5E+2 6.7E+3 Te 38 5.7E+1 3.6E-2 7.1E+3

Hg 34 1.3E+2 1.2E+1 9.8E+2 Th 38 2.3E+4 1.1E+0 1.6E+6

Ho 38 1.8E+2 1.5E-1 2.2E+4 Ti 38 5.1E+2 1.9E+0 1.7E+4

I 38 1.1E+1 3.4E-1 2.3E+2 Tl 38 4.5E+1 3.5E+0 3.4E+2

Ir 8 3.0E+1 3.2E+0 2.2E+2 Tm 0 - - -

K 38 6.5E+0 2.1E+0 9.0E+1 U 38 2.0E+3 9.0E-1 5.6E+4

La 38 1.1E+2 1.2E-1 1.0E+4 W 38 1.0E+2 5.2E+0 3.3E+3

Li 38 2.6E+0 5.2E-2 2.3E+1 V 38 8.6E+1 2.5E-2 2.2E+4

Lu 38 1.6E+2 2.1E-1 1.7E+4 Y 38 1.5E+2 1.3E-1 2.4E+4

Mg 38 5.2E+0 4.4E-2 4.3E+1 Yb 38 5.6E+1 2.0E-1 1.6E+4

Mn 38 1.6E+1 2.3E-2 4.3E+2 Zn 38 1.0E+0 1.7E-3 1.5E+3

Mo 35 3.7E+1 1.3E-1 2.0E+2 Zr 38 7.3E+2 1.0E+1 2.0E+4

Page 208: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

200

Appendix F

Table G-5. Geometric mean, min and max values of the distribution coefficients (Kd

values), solids extracted by HNO3-HF extraction or LiBO2 fusion method of the deep lake

sediments (- = no result).

Element N of samples

GM L/kg

Min L/kg

Max L/kg

Element N of samples

GM L/kg

Min L/kg

Max L/kg

Ag 30 1.8E+4 3.3E+3 1.3E+5 Na 38 2.8E+1 9.7E+0 2.9E+2

Al 38 7.4E+3 2.7E+1 2.4E+6 Nb 38 1.5E+5 1.5E+3 9.4E+6

As 38 4.0E+3 2.1E+1 3.2E+4 Nd 38 2.3E+3 3.8E+0 2.0E+5

Au 29 7.4E+2 2.6E+2 4.5E+3 Ni 38 3.1E+2 1.7E+0 1.9E+4

B 38 2.0E+1 4.9E+0 1.1E+2 Os 0 - - -

Ba 38 4.5E+3 1.5E+3 1.6E+4 P 38 1.4E+4 1.1E+1 1.4E+5

Be 38 9.1E+2 5.9E+0 2.6E+5 Pb 38 5.0E+4 1.1E+3 2.9E+6

Bi 36 3.3E+4 1.4E+3 4.8E+5 Pd 0 - - -

Br 38 1.2E+2 5.5E-1 2.0E+3 Pr 38 2.1E+3 3.8E+0 2.2E+5

Ca 38 3.6E+1 1.2E+1 3.2E+2 Pt 38 - - -

Cd 38 6.3E+1 3.1E-1 4.1E+3 Rb 38 1.5E+3 9.2E+2 1.8E+4

Ce 38 1.9E+3 3.8E+0 2.2E+5 Re 15 2.0E+1 1.0E+1 4.3E+1

Cl 38 3.1E+0 1.3E-1 2.0E+1 Rh 8 4.7E+2 4.7E+2 3.2E+3

Co 38 1.2E+2 7.0E-1 2.9E+4 Ru 15 3.4E+2 9.2E+1 2.5E+3

Cr 38 1.4E+4 5.6E+1 9.1E+5 S 38 1.2E+1 5.5E-1 3.4E+1

Cs 38 5.5E+3 1.7E+3 9.1E+4 Sb 38 3.0E+2 1.2E+2 4.5E+3

Cu 38 4.8E+3 1.0E+1 2.6E+4 Sc 38 1.3E+4 2.3E+1 2.6E+6

Dy 38 2.1E+3 3.6E+0 1.8E+5 Se 35 1.4E+3 4.9E+0 7.0E+3

Er 33 2.6E+1 3.0E+0 6.3E+4 Si 38 5.3E+3 2.1E+3 5.6E+4

Eu 26 3.6E+1 4.1E+0 3.1E+4 Sm 38 2.6E+3 3.8E+0 2.6E+5

Fe 38 4.8E+3 7.7E+0 3.1E+6 Sn 38 2.0E+5 4.5E+3 3.8E+6

Ga 38 5.1E+4 7.3E+2 5.6E+6 Sr 38 4.8E+1 1.4E+1 6.5E+2

Gd 38 2.2E+3 3.8E+0 2.1E+5 Ta 38 2.9E+5 2.7E+5 1.6E+6

Ge 38 4.0E+3 2.1E+2 9.0E+5 Tb 38 2.1E+3 4.1E+0 2.1E+5

Hf 12 1.8E+5 1.8E+5 3.3E+6 Te 38 9.4E+2 1.9E+1 3.0E+4

Hg 38 1.5E+3 8.1E+1 4.4E+4 Th 38 3.5E+4 1.4E+1 2.3E+6

Ho 38 1.7E+3 3.9E+0 1.8E+5 Ti 38 9.8E+5 5.1E+3 3.5E+7

I 38 2.5E+2 3.8E+0 1.3E+4 Tl 38 6.1E+2 5.5E+1 2.7E+4

Ir 38 - - - Tm 38 2.1E+3 3.3E+5 4.3E+0

K 38 4.2E+2 1.9E+2 3.8E+4 U 38 5.6E+3 5.3E+0 2.0E+5

La 38 1.4E+3 3.6E+0 2.2E+5 W 38 7.0E+4 7.8E+2 6.5E+5

Li 38 2.4E+2 7.7E+0 3.1E+3 V 38 2.5E+3 9.0E+0 1.8E+6

Lu 38 1.8E+3 3.0E+0 1.1E+5 Y 38 1.4E+3 4.3E+0 1.8E+5

Mg 38 4.0E+1 8.2E+0 5.7E+2 Yb 38 2.3E+3 4.5E+0 1.5E+5

Mn 38 7.0E+1 7.9E-1 1.4E+3 Zn 38 1.2E+2 1.6E+0 3.0E+4

Mo 33 2.9E+3 2.1E+1 2.8E+4 Zr 38 1.4E+5 2.1E+3 1.1E7

Page 209: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

201

Appendix F

APPENDIX H KNOWLEDGE QUALITY ASSESSMENT FOR DATA

Data characteristics

A five-criterion matrix for evaluating data quality is presented in Table H-1, and the

criteria can be summarised as:

empirical, statistical and methodological quality; from educated guesses to

controlled experiments, direct measurement by best available practise and good

statistical basis;

spatial variability in the scale of the Olkiluoto site, in the assessment context; from

virtually certain to highly unlikely that the parameter value would significantly

differ in other parts of the site for which the underlying data remain valid;

robustness against time scales and external conditions, in the assessment context;

from virtually certain to highly unlikely that the parameter value will be

significantly altered over time or due to changes in the external conditions;

appropriateness to the Olkiluoto site in the assessment context; whether the data

are from the site itself or from another site which may be judged on its qualities

as an analogue; and

appropriateness to the Olkiluoto site; whether the data are from the site itself or a

variability good analogous site

Table H-1. Data quality assessment table (modified from Posiva 2014, Table 2-2 and

Table B-1).

Criteria for data Value

Empirical, statistical and methodological quality A. Controlled experiments, direct measurements, field data. Best available practise, or reliable method common with established discipline.

Proxy (parameterisation) An exact or good description/measure of the processes

Epistemic spatial uncertainty to the scale of model (does not include internal (aleatoric) stochastic variation of data)

B. Varies possibly, the variability has been included in the data/models

Robustness against time scales and external conditions

A. Unlikely that the parameter values will be significantly altered over time or due to changes in the external conditions

Appropriateness for the assessment context A. Site-specific, regional data, data from similar sites. Very likely that the data are appropriate

Page 210: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

202

Appendix F

Main assumptions

The main assumptions are categorised in the Table H-2 and described shortly in Table H-

3.

Table H-2. Classification system of assumptions for data, modified from (Posiva 2014,

Table 2-1 and references therein). Categorisation of assumptions

LE Conceptual assumption corresponds to the likely/expected characteristics and evolution of the system

PCA Pessimistic conceptual assumption within the reasonably expected range of possibilities

WRP Within the range of possibilities but likelihood not currently possible to evaluate — other (and sometimes more pessimistic) assumptions may not be unreasonable

ST Stylised conceptualisation of system characteristics and evolution

Table H-3. Main assumptions for data. The categorisation of the assumption types is

presented in Table H-2.

Assumption Category Comment

Site measurements and the analysis of the stable element concentrations and in in situ Kd values are representative

LE Most of the concentrations are representative, but for some cases element concentration are below LOQ.

Page 211: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

203

Appendix F

Main uncertainties

The main uncertainties of data are described in Table H-4 with causes and effects.

Table H-4. Main data uncertainties.

Uncertainty Cause of the uncertainty Effect on the assessment Means to deal with the uncertainty

The quantity that contains the uncertainty

No data available Information density Aleatoric variation Lack of knowledge

Describe the relevance to assessment results

How uncertainty has been taken into account in further work

Concentrations below limit of quantification (LOQ) of the laboratory measurements

No realiable data available: too low concentration values of the studied elements

Increases uncertainty in sediment geochemistry and in the in situ Kd values

If concentrations in the samples were below LOQ, then the value used in the Kd calculations for the solids was the LOQ itself and for porewater LOQ/2.

Sedimentation rates

Information density Increases uncertainty in sediment geochemistry and in situ Kd values

Literature review, comparison with the values similar to the studied sediments

Active layer of the sediment (top sediment), sludge or fluffy gyttja/mud

Information density Increases uncertainty in sediment geochemistry and in situ Kd values; and diffuse interface between water column and sediment

Literature review, comparison with the values similar to the studied sediments

Redox-potential Lack of data Used to determine if oxidizing or reducing conditions are prevalent in water, sediments or soil, and to predict the states of different chemical species of elements

Not taken account, due to variability of the literature data

Overall judgement

Data provides site-specific, regional data, analogues data for the Olkiluoto site, in-situ Kd

values of the elements for the biosphere assessment and radionuclide transport modelling.

However, the main concern is the realiability of the analyses for some elements, i.e. the

concentrations of the elements are below LOQ.

Page 212: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

204

Page 213: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview
Page 214: Reference Lake Sediments, Geochemistry and in situ ... · hydrogeography (e.g. discharge areas) of the Reference Area are described in Haapanen et al. (2010). 7 Figure 2. Overview

Wo

rk

ing

Re

po

rt 2

01

4-4

4 •

Re

su

lts o

f Mo

nito

ring

at O

lkilu

oto

in 2

01

3 - H

yd

rog

eo

ch

em

istry