REE 307 Fluid Dynamics II - Ahmed Nagib

47
Sep 27, 2017 Dr./ Ahmed Nagib Elmekawy REE 307 Fluid Dynamics II

Transcript of REE 307 Fluid Dynamics II - Ahmed Nagib

Page 1: REE 307 Fluid Dynamics II - Ahmed Nagib

Sep 27, 2017Dr./ Ahmed Nagib Elmekawy

REE 307

Fluid Dynamics II

Page 2: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

2

β€’ Pipe in Series

β€’ Pipe in Parallel

Page 3: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

3

β€’ Pipe in Series

β€’ Pipe in Parallel

Page 4: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

4

β€’ Electrical circuits

π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = πΆπ‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ Γ— π‘…π‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’

β€’ Fluid Flow

βˆ†π‘ =𝑓𝑙𝑉2

2𝑔𝑑=0.8 𝑓𝑙𝑄2

𝑔𝑑5= 𝑅𝑄2

𝑅: 𝑝𝑖𝑝𝑒 π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ =0.8 𝑓𝑙

𝑔𝑑5

Page 5: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

5

β€’ Pipe in Series

𝑄1 = 𝑄2 = 𝑄3

β„Žπ‘™π΄βˆ’π΅ = β„Žπ‘™1 + β„Žπ‘™2 + β„Žπ‘™3

Page 6: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

6

β€’ Pipe in Parallel

π‘„π‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑄1 + 𝑄2 + 𝑄3

β„Žπ‘™π΄βˆ’π΅ = β„Žπ‘™1 = β„Žπ‘™2 = β„Žπ‘™3

𝑓1𝑙1𝑉12

2𝑔𝑑1=𝑓2𝑙2𝑉2

2

2𝑔𝑑2

𝑉1𝑉2

=𝑓2𝑙2𝑑1𝑓1𝑙1𝑑2

0.5

Page 7: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

7

β€’ Loop

𝑄1 = 𝑄2 + 𝑄3𝑃𝐴𝛾+𝑉𝐴2

2𝑔+ 𝑧𝐴 =

𝑃𝐡𝛾+𝑉𝐡2

2𝑔+ 𝑧𝐡 + β„Žπ‘™1 + β„Žπ‘™2

𝑃𝐴𝛾+𝑉𝐴2

2𝑔+ 𝑧𝐴 =

𝑃𝐡𝛾+𝑉𝐡2

2𝑔+ 𝑧𝐡 + β„Žπ‘™1 + β„Žπ‘™3

β„Žπ‘™2 = β„Žπ‘™3

Page 8: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

8

Supply at several points

Page 9: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

9

β€’ Three Tank Problem

Page 10: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

10

β€’ Three Tank Problem

Page 11: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

11

β€’ Three Tank Problem

Page 12: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Pipe System

12

β€’ Three Tank Problem

Page 13: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of 3 Tanks Problem

13

1. Assume EJ less than Za, and greater than Zc

πΈπ‘Ž > 𝐸𝐽 > 𝐸𝑐2. Applying Bernoulli's equation between A & J

πΈπ‘Ž= 𝐸𝐽+ β„Žπ‘™

Ξ”πΈπ‘Žβˆ’π½ = 𝐸𝐽 βˆ’ π‘π‘Ž = β„Žπ‘™= 0.8 π‘“π‘™π‘„π‘Ž

2

𝑔𝑑5

∴ π‘„π‘Ž =β„Žπ‘™π‘”π‘‘

5

0.8 𝑓𝑙

π‘ƒπ‘Žπœ”+ π‘π‘Ž +

π‘‰π‘Ž2

2𝑔= 𝐸𝑗 +

0.8 π‘“π‘™π‘„π‘Ž2

𝑔𝑑5

Page 14: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of 3 Tanks Problem

14

Similarly between B & J : Get 𝑄𝑏between C & J : Get 𝑄𝑐

3. Checking the assumption

If π‘„π‘Ž+ 𝑄𝑏+ 𝑄𝑐 = 0.0 Right Assumption

If π‘„π‘Ž+ 𝑄𝑏+ 𝑄𝑐 β‰  0.0 π‘„π‘Ž> (𝑄𝑏+ 𝑄𝑐)

Wrong Assumption

π‘„π‘Ž< (𝑄𝑏+ 𝑄𝑐)

Increase the Energy of

junction (EJ), and decrease

the losses

Increase the Energy of

junction (EJ), and decrease

the losses

Page 15: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of 3 Tanks Problem

15

4. We repeat the last step, by increasing or decreasing the value

βˆ†π‘„ = π‘„π‘Ž+ 𝑄𝑏+ 𝑄𝑐 β‰… 0.0 < π‘‡π‘œπ‘™π‘’π‘Ÿπ‘Žπ‘›π‘π‘’

As it won't equal to zero

Page 16: REE 307 Fluid Dynamics II - Ahmed Nagib

Branched Systems

Supply at Several Points

16

β€’ Pipe Flows

- For known nodal demands, the rates can be partially determined.

- Flow rates & directions in the pipe routes connecting the sources

depend on the piezometrie heads at the sources and the

distribution of nodal demands.

β€’ Velocities

- Also partially known.

β€’ Pressures

- Conditions are the same as in case of the single source, once the

flows and velocities have been determined.

β€’ Hydraulic calculation

- Single pipe calculation can only partially solve the system.

- Additional condition Γ¬s necessary.

Page 17: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution of Branched Pipe

Systems

17

β€’ Note

In case of rectangular duct or not circular cross section.

𝑑 =4𝐴

𝑀𝑒𝑑𝑑𝑒𝑑 π‘π‘’π‘Ÿπ‘–π‘’π‘‘π‘’π‘Ÿ (𝑝)

Page 18: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

18

β€’ Given :

β€’ Required :

Qa, Qb, Qc, Flow Direction

L1 = 3000 m D1 = 1 m f1 = 0.014 Za = 30 m

L2 = 6000 m D2 = 0.45 m f2 = 0.024 Zb = 18 m

L3 = 1000 m D3 = 0.6 m f3 = 0.02 Zc = 9 m

Page 19: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

19

1. Assume EJ = 25 m

2. Applying Bernoulli's equation between A & J

πΈπ‘Ž= 𝐸𝐽+ β„Žπ‘™

π‘ƒπ‘Žπœ”+ π‘π‘Ž +

π‘‰π‘Ž2

2𝑔= 𝐸𝑗 +

0.8 π‘“π‘™π‘„π‘Ž2

𝑔𝑑5

Ξ”πΈπ‘Žβˆ’π½ = 𝐸𝐽 βˆ’ π‘π‘Ž = β„Žπ‘™= 0.8 π‘“π‘™π‘„π‘Ž

2

𝑔𝑑5

∴ π‘„π‘Ž =β„Žπ‘™π‘”π‘‘

5

0.8 𝑓𝑙=

30βˆ’25 Γ—9.8Γ—15

0.8 Γ—0.014Γ—3000

∴ π‘„π‘Ž = 1.2 m3/s

Page 20: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

20

3. Similarly between B & J and C & J

∴ 𝑄𝑏 =25βˆ’18 Γ—9.8Γ—0.455

0.8 Γ—0.024Γ—6000= 0.105 m3/s

∴ 𝑄𝑐 =25βˆ’9 Γ—9.8Γ—0.65

0.8 Γ—0.02Γ—1000= 0.873 m3/s

βˆ†π‘„ = π‘„π‘Ž+ 𝑄𝑏+ 𝑄𝑐 = 1.2 βˆ’ 0.105 βˆ’ 0.873 = 0.222 > 0.0

π‘„π‘Ž = 1.2 m3/s 𝑄𝑏 = 0.105 m3/s 𝑄𝑐 = 0.873 m3/s

Page 21: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

21

4. Increase energy of junction (EJ = 26.6 m)

∴ π‘„π‘Ž =β„Žπ‘™π‘”π‘‘

5

0.8 𝑓𝑙=

30βˆ’26.6 Γ—9.8Γ—15

0.8 Γ—0.014Γ—3000= 0.996 m3/s

∴ 𝑄𝑏 =26.6βˆ’18 Γ—9.8Γ—0.455

0.8 Γ—0.024Γ—6000= 0.116 m3/s

∴ 𝑄𝑐 =26.6βˆ’9 Γ—9.8Γ—0.65

0.8 Γ—0.02Γ—1000= 0.916 m3/s

βˆ†π‘„ = π‘„π‘Ž+ 𝑄𝑏+ 𝑄𝑐 = 0.996 βˆ’ 0.116 βˆ’ 0.916 = βˆ’0.036 β‰… 0.0

π‘„π‘Ž = 0.996 m3/s 𝑄𝑏 = 0.116 m3/s 𝑄𝑐 = 0.916 m3/s

Page 22: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

22

Page 23: REE 307 Fluid Dynamics II - Ahmed Nagib

Solution

23

β€’ For more accuracy, use more assumptions, but the result can

be accepted, as βˆ†Q is very small w.r.t the smallest value, which

is Qb

β€’ For more accuracy and saving time, use programming

languages to solve the problem.

Page 24: REE 307 Fluid Dynamics II - Ahmed Nagib

Network of pipes

24

Function of piping system:

1. Transmission ---- One single pipeline

2. Collection ---- Waste water system

3. Distribution ---- Distribution of drinking water

---- Distribution of natural gas

---- Distribution of cooling water

---- Air conditioning systems

---- Distribution of blood in veins and

arteries

Page 25: REE 307 Fluid Dynamics II - Ahmed Nagib

Types of Network

25

1. Branched network

Properties

1. Lower reliability

2. High down time

3. Less expensive

4. Used in rural area

Page 26: REE 307 Fluid Dynamics II - Ahmed Nagib

Types of Network

26

2. Looped network

Properties

1. Higher reliability

2. lower down time

3. More expensive

4. Used in urban area

Page 27: REE 307 Fluid Dynamics II - Ahmed Nagib

Looped Networks

27

Page 28: REE 307 Fluid Dynamics II - Ahmed Nagib

Looped Networks

28

β€’ Pipe Flows

➒ Flow rates and directions are unknown.

β€’ Velocities

➒ The velocities and their directions are known only after the

flows have been calculated.

β€’ Pressures

➒ Conditions are the same as in case of branched networks

once the flows and hydraulic losses have been calculated

for each pipe.

β€’ Hydraulic calculation

➒ The equations used for single pipe calculation are not

sufficient.

➒ Additional conditions have to be introduced.

➒ Iterative calculation process is needed.

Page 29: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Components

29

1.Pipes

2.Pipes fitting

3.Valves

4.Pumps / Compressors

5.Reservoir and tanks

Page 30: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Analysis – Hardy Cross Method

30

β€’ Pipe/Element/Branch: 12, 23, 36, 16, 34, 65, 45

β€’ Hydraulic node (junction): 1, 2, 3, 4, 5, 6

β€’ Loop: 12361, 63456

Page 31: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Analysis – Hardy Cross Method

31

β€’ It is not acceptable that the outlet of consumption

is a junction

Page 32: REE 307 Fluid Dynamics II - Ahmed Nagib

Basic Equations

32

1. Continuity equation σ𝑄 at any node = 0.0

2. Energy equation Οƒβ„Žπ‘™π‘œπ‘ π‘  around any closed loop = 0.0

For losses β„Žπ‘™=0.8 𝑓𝑙𝑄2

𝑔𝑑5

𝑓 = fn(Re, πœ€

𝑑) from Moody Chart

Page 33: REE 307 Fluid Dynamics II - Ahmed Nagib

Basic Equations

33

β€’ In case of using programming, we can't use moody chart

Hazen Williams equation Colebrook equation

β„Žπ‘™πΏ=

𝑅𝑄𝑛

π·π‘š

𝑛 = 1.852

π‘š = 4.8704

𝑅 =10.675

𝐢𝑛,

𝐢 = 60 ⟷ 140

𝐢 : is a constant depending on

the pipe age and roughness

(pipe condition)

1

𝑓= βˆ’2 log

Ξ€νœ€ 𝐷

3.7+

2.51

𝑅𝑒 𝑓

β„Žπ‘™πΏ= 𝑓

𝑉2

2𝑔𝑑

β€’ Colebrook is a curve fitting

β€’ 1st equation is solved by

trial & error

β€’ Colebrook equation is the

most commonly used in the

industrial field

Rough Smooth

Page 34: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy Cross Method

34

1. Assume flow rate at each pipe 𝑄0, so that:

β€’ The velocity range between 1 - 3 m/s

β€’ Satisfying the continuity equation

2. If β„Žπ‘™ = 0.0 (stop) Impossible

If β„Žπ‘™ β‰  0.0

2. Adjust 𝑄: 𝑄 = 𝑄0 + βˆ†π‘„

β„Žπ‘™π‘œπ‘ π‘  = π‘Ÿπ‘„π‘› = π‘Ÿ 𝑄0 + βˆ†π‘„ 𝑛

β„Žπ‘™π‘œπ‘ π‘  = π‘Ÿ 𝑄0𝑛 + π‘›βˆ†π‘„π‘„0

π‘›βˆ’1 + … . .

Since Οƒβ„Žπ‘™π‘œπ‘ π‘  = Οƒπ‘Ÿπ‘„π‘› = 0.0 ∴ βˆ’Οƒπ‘Ÿ 𝑄0|𝑄0|π‘›βˆ’1 = Οƒπ‘Ÿ 𝑛|𝑄0|

π‘›βˆ’1βˆ†π‘„

Page 35: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy Cross Method

35

∴ βˆ’π‘Ÿπ‘„0|𝑄0|π‘›βˆ’1 =π‘Ÿπ‘›|𝑄0|

π‘›βˆ’1βˆ†π‘„

∴ βˆ†π‘„ =βˆ’π‘ŸΟƒπ‘„0|𝑄0|

π‘›βˆ’1

Οƒπ‘Ÿ 𝑛|𝑄0|π‘›βˆ’1

β„Žπ‘™π‘œπ‘ π‘  =0.8 𝑓𝑙𝑄2

𝑔𝑑5= π‘Ÿπ‘„π‘›

where

n=2

π‘Ÿ =0.8 𝑓𝑙

𝑔𝑑5……pipe resistance

Page 36: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy Cross Method

36

Note:

Since β„Žπ‘™π‘œπ‘ π‘  won't reach 0.0

Then Hardy Cross Method is used till

Οƒ |βˆ†π‘„| <Small value (Tolerance)

Page 37: REE 307 Fluid Dynamics II - Ahmed Nagib

Network Analysis – Hardy Cross Method

37

β€’ Pipe/Element/Branch: 12, 23, 36, 16, 34, 65, 45

β€’ Hydraulic node (junction): 1, 2, 3, 4, 5, 6

β€’ Loop: 12361, 63456

Page 38: REE 307 Fluid Dynamics II - Ahmed Nagib

Kirchhoff's Laws

38

Flow continuity at junction of pipes

The sum of all ingoing and outgoing flows in each node equals

zero (σ𝑄𝑖= 0).

Head loss continuity at loop of pipes

The sum of all head-losses along pipes that compose a complete

loop equals zero (Οƒβˆ†π»π‘–; = 0).

β€’ Hardy Cross Method

o Method of Balancing Heads

o Method of Balancing Flows

β€’ Linear Theory

β€’ Newton Raphson

β€’ Gradient Algorithm

Page 39: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy CrossMethod of Balancing Heads

39

Step 1

Arbitrary flows are assigned to each pipe; (σ𝑄𝑖 = 0).

Step 2

Head-loss in each pipe is calculated.

Step 3

The sum of the head-losses along each loop is checked.

Step 4

lf Οƒβˆ†π»π‘– differs from the required accuracy, a flow

correction 𝛿𝑄 is introduced in loop β€˜i’

Step 5

Correction 𝛿𝑄 is applied in each loop (clockwise or anti-

clockwise). The iteration continues with Step 2

Page 40: REE 307 Fluid Dynamics II - Ahmed Nagib

Hardy CrossMethod of Balancing Heads

40

∴ βˆ†π‘„ =βˆ’Οƒπ‘Ÿπ‘„0|𝑄0|

π‘›βˆ’1

Οƒπ‘Ÿ 𝑛|𝑄0|π‘›βˆ’1

𝛿𝑄𝑖 =βˆ’Οƒπ‘–=1

𝑛 βˆ†π»π‘–

2σ𝑖=1𝑛 |

βˆ†π»π‘–π‘„π‘–

|

Page 41: REE 307 Fluid Dynamics II - Ahmed Nagib

Dealing with network pressure heads

41

1. Using valves or fittings

β€’ Valves and fittings are source of energy loss

Page 42: REE 307 Fluid Dynamics II - Ahmed Nagib

Dealing with reservoir

42

1. Draw a pipe connecting the tanks, and it's resistance = ∞2. This pipe creates a new loop

3. The losses between the tanks = the difference between the

heads of the tanks, and it's sign depends on the direction of

the loop

Example:

β„Žπ‘‘π‘Žπ‘›π‘˜(𝐴) = 100 π‘š

β„Žπ‘‘π‘Žπ‘›π‘˜(𝐡) = 70 π‘š

βˆ†β„Ž = 100 βˆ’ 70 = +30 π‘š(+) the flow direction in the

pipe is the same direction

of loop III

Page 43: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

43

Page 44: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

44

Page 45: REE 307 Fluid Dynamics II - Ahmed Nagib

Example

45

L π‘Ÿπ‘„0|𝑄0|π‘›βˆ’1 π‘Ÿπ‘›|𝑄0|

π‘›βˆ’1

3-4

4-1

1-3

5(-30)(30)

6(70)(70)

3(35)(35)

5(2)(30)

6(2)(70)

3(2)(35)

28575 1350

L π‘Ÿπ‘„0|𝑄0|π‘›βˆ’1 π‘Ÿπ‘›|𝑄0|

π‘›βˆ’1

1-2

2-3

3-1

1(15)(15)

2(-35)(35)

3(-35)(35)

1(2)(15)

2(2)(35)

3(2)(35)

-5900 380

βˆ†π‘„1 =βˆ’28575

1350= βˆ’21.17 π‘š3/𝑠 βˆ†π‘„2 =

5900

380= 15.53 π‘š3/𝑠

|βˆ†π‘„| = 21.17 + 15.5 = 36.67 > Tolerance

Page 46: REE 307 Fluid Dynamics II - Ahmed Nagib

Epanet Software

46

Page 47: REE 307 Fluid Dynamics II - Ahmed Nagib

Why do we solve network problems ?

47

1. Replacement and renovation of networks

2. Network Design

Consumption of network elements

Flow rate of network

Select Velocity (1-3 m/s)

Diameter

3. Selecting pumps, valves and fittings