Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S....

45
Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday), 4:30-5:00 PM Crowne Plaza Galleria Manila Bringing Global Trends in Cardiology Closer to Home 43 rd PHA Annual Convention

Transcript of Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S....

Page 1: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New?

Edwin S. Tucay, MD, FPCP, FPCC, MBAHMay 23, 2012 (Wednesday), 4:30-5:00 PM

Crowne Plaza Galleria Manila

Bringing Global Trends in Cardiology Closer to Home

43rd PHA Annual Convention

Page 2: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),
Page 3: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Available Published Guidelines/Recommendations

Journal of the American Society of EchocardiographySeptember 2009

Page 4: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Outline• A. Types of Prosthetic Valves • B. Evaluation of Prosthetic Valves With Echocardiography and

Doppler:General Recommendations – 1. Clinical Data – 2. Echocardiographic Imaging – 3. Doppler Echocardiography

• a. Determination of Gradients Across Prosthetic Valves • b. EOA • c. Pressure Recovery: Hemodynamic Conditions and Clinical

Implications • d. PPM • e. Doppler Recordings and Measurements Based on Prosthetic

Valve Position • f. Physiologic Regurgitation • g. Pathologic Prosthetic Regurgitation

Page 5: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Outline

• C. Considerations for Intraoperative Patients• D. Complications of Prosthetic Valves• E. The role of stress echocardiography in

evaluating prosthetic valve function • F. Postoperative Evaluation and Follow-Up

Studies

Page 6: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Types of Prosthetic Heart Valves• Mechanical

– Bileaflet (St Jude)(A)– Single tilting disc (Medtronic Hall)(B)– Caged-ball (Starr-Edwards) (C)

• Biologic– Stented

• Porcine xenograft (Medtronic Mosaic) (D)

• Pericardial xenograft (Carpentier-Edwards Magna) (E)

– Stentless• Porcine xenograft (Medronic

Freestyle) (F)• Pericardial xenograft• Homograft ( allograft)

– Percutaneous – Expanded over a balloon

(Edwards Sapien) (G)– Self –expandable (CoreValve) (H) Circulation 2009, 119:1034-1048

Page 7: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Essential Parameters in the ComprehensiveEvaluation of Prosthetic Valve Function

PARAMENTERS

CLINICAL INFORMATION Date of valve replacementType and size of the prosthetic valveHeight, weight and body surface areaSymptoms and related clinical findingsBP and Heart Rate

IMAGING OF THE VALVES Motion of leaflets or occluderPresence of calcification on the leaflets or abnormal densities on the various components of the prosthesisValve sewing ring integrity and motion

Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound, JASE 2009 Volume 22 Number 9

Page 8: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Imaging of the Prosthetic Valves

Page 9: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Imaging of the Prosthetic Valves

Page 10: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Essential Parameters in the ComprehensiveEvaluation of Prosthetic Valve Function

PARAMENTERS

DOPPLER ECHOCARDIOGRAPHY OF THE VALVE

Contour of jet velocity signalPeak velocity and gradientMean pressure gradientVTI of the jetDVIPressure half time in MV and TVEOAPresence, location and severity of regurgitation

Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound, JASE 2009 Volume 22 Number 9

Page 11: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Essential Parameters in the ComprehensiveEvaluation of Prosthetic Valve Function

PARAMETERS

OTHER ECHOCARDIOGRAPHIC DATA LV and RV size, function, and hypertrophyLA and right atrial sizeConcommitant valvular diseaseEstimation of pulmonary artery pressure

PREVIOUS POST OPERATIVE STUDIES, WHEN AVAILABLE

Comparison of above parameters in suspected prosthetic valvular dysfunction

Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound, JASE 2009 Volume 22 Number 9

Page 12: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Echocardiography: A- Determination of Gradients Across the Prosthetic

Valves• Pulse wave, continuous wave and color Doppler• Multiple views and angulations• Blood velocity across a prosthetic valve is dependent on several factors, including flow and valve size and type.

Simplified Bernoulli equation noninvasive calculation of pressure gradients across prosthetic valves

P= 4V2

P=pressure gradientV = the velocity of the jet in meters per second.

In aortic prostheses with high cardiac output or narrow LV outflow : velocity proximal to the prosthesis may be elevated and

therefore not negligible (velocity > 1.5 m/s).

In these situations, estimation of the pressure gradient is more accurately determined by considering the velocity proximal to the prosthesis as P = 4(V2

2 - V12)

Page 13: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Echocardiography:b- Effective Orifice Area (EOA)

The EOA of a prosthesis by the continuity equation is a better index of valve function than gradient alone.

EOA = stroke volume / VTIPrV

VTIPrV is the velocity-time integral through the prosthesis determinedby CW Doppler. Stroke volume = cross-sectional

area just proximal to the prosthesis (in aortic or pulmonary valves)

multiplied by the VTI of flow by PW Doppler at that site.

• Don’t use the label size of the prosthetic valve to calculate the cross-sectional area of the annulus

• In prosthetic mitral valves, stroke volume calculated at the aortic annulus or pulmonary annulus may be used, provided no significant regurgitation exists.

• Doppler velocity index (DVI)=– the ratio of velocity proximal to the

valve, to the velocity through the valve.– No LVOT measurement– Validated in aortic but not in pulmonary

prosthetic valve

Page 14: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Echocardiography:e-Patient Prosthesis Mismatch

Physiologic relationship between flow, valve area, and gradient is illustrated by the equation:

Gradient = Q2/(K x EOA2)where EOA is effecive orifice area, Q is flow and K is a constant

• For gradients to remain low, the EOA must be proportionate to the flow requirements of the individual, which at rest are largely determined by body size.

• PPM occurs when the EOA of the prosthesis is too small in relation to the patient’s body size, resulting in abnormally high postoperative gradients.

• Parameter for PPM: Indexed EOA = EOA/BSA, where BSA is body surface area

Dumesnil JG, y. J Am Coll Cardiol 1990;16:637-43.Dumesnil JG.Am J Cardiol 1990;65:1443-8.Dumesnil JG,. J AmColl Cardiol 2000;36:1131-41

Page 15: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

PPM-AORTIC VALVEPrinciples underlying PPM theoretically apply to all valve

positions Most studies have focused on the aortic valve Gradients increase exponentially when the indexed EOA is ≤0.8

to 0.9 cm2/m2

Category of PPM Indexed EOA (cm2/m2

Mild (hemodynamically insignificant)

>0.85

Moderate 0.65 – 0.85

Severe <0.65

Pibarot P, Dumesnil JG. Hemodynamic and clinical impact of prosthesispatient mismatch in the aortic valve position and its prevention. J Am Coll Cardiol 000;36:1131-41.

Page 16: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

PPM-AORTIC VALVE

• Indexed EOA, not the size or geometric specifications of the prosthesis, is the only parameter to be consistently related to postoperative gradients and/or adverse clinical outcomes.Blackstone EH, Cosgrove DM, Jamieson WR, et al. Prosthesis size and long-term survival after aortic valve replacement. J Thorac Cardiovasc Surg 2003;126:783-96.Koch CG, Khandwala F, Estafanous FG, Loop FD, Blackstone EH. Impact of prosthesis-patient size on functional recovery after aortic valve replacement. Circulation 2005;111:3221-9. Dumesnil JG, Pibarot P. Prosthesis-patient mismatch and clinical outcomes: the evidence continues to accumulate. J Thorac Cardiovasc Surg 2006;131:952-5.Pibarot P, Dumesnil JG. Prosthesis-patient mismatch: definition, clinical impact, and prevention. Heart 2006;92:1022-9.

Page 17: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

PPM-AORTIC VALVE

• PPM can largely be avoided by the calculation of the projected indexed EOA of the prosthesis to be Implanted.

• If PPM is anticipated, choosing an alternative prosthesis or considering aortic root enlargement surgery is advised.

• Minimum EOA of the valve to be used is calculated as BSA(m2) x 0.85 cm2/m2

1.6 m2 x 0.85 cm2/m2 = 1.36 cm2

Choose a valve size that is Expected to have a minimum EOA of 1.36 cm2

Page 18: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

1.6 m2 x 0.85 cm2/m2 = 1.36 cm2

Page 19: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

PPM- MITRAL VALVE• Indexed EOA of mitral prostheses should ideally be

no less than 1.2 to 1.3 cm2/m2 to avoid abnormally high postoperative gradients.

• Prevalence for mitral PPM varies between 39% and 71% • Associated with persisting pulmonary hypertension and

decreased long-term survival.

Dumesnil JG, Honos GN, Lemieux M, Beauchemin J. Validation and applicationsof mitral prosthetic valvular areas calculated by Doppler echocardiography.Am J Cardiol 1990;65:1443-8.

Lam BK, Chan V, Hendry P, et al. The impact of patient-prosthesis mismatch on late outcomes after mitral valve replacement. J Thorac Cardiovasc Surg 2007;133:1464-73.Li M, Dumesnil JG, Mathieu P, Pibarot P. Impact of valve prosthesis patient mismatch on pulmonary arterial pressure after mitral valve replacement. J Am Coll Cardiol 2005;45:1034-40.Magne J, Mathieu P, Dumesnil JG, et al. Impact of prosthesis-patient mismatchon survival after mitral valve replacement. Circulation 2007;115: 1417-25

Page 20: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Echocardiography:e- Doppler Recordings and Measurements

Based on Prosthetic Valve PositionDoppler Measurements

Aortic Position: peak velocity, mean gradient, VTI, DVI, and EOA by the continuity equation

For serial studies, it is reasonable to use the DVI because this avoids measuring the LVO tract diameter

Pulmonary position: peak velocity mean pressure difference

EOA and DVI could be calculated for a prosthetic pulmonary valve, but little experience exists with these parameters.

Mitral and Tricuspid Positions:peak velocity, mean pressure gradient, VTI, pressure half-time.

Heart rate reporting is essential. Pressure half-time formula (220/pressure half-time) to estimate orifice area in prosthetic valves is valid only for moderate or severe stenoses with orifice areas < 1.5 cm2. For larger valve areas, the pressure half-time reflects atrial and LV compliance characteristics and loading conditions and has no relation to valve area.

Page 21: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Echocardiography:Physiologic Regurgitation

• 30% of normally functioning prosthesis

• Features:1. Regurgitant area less than 2 cm2 and

jet length less than 2.5cm in mitral position

2. Regurgitant jet area less than 1 cm2 and jet length less than 1.5 cm for aortic position

3. Characteristic flow pattern ( one central jet for Medtronic Hall, two curved side jets for Starr-Edwards, two unequal side jets for Bjork-Shiley, and two side and one central jet for St Jude Medical)

Mohr-Kahaly S, Kupferwasser I, Erbel R, et al. JASE, 1990;3:187-195

Page 22: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Echocardiography:Severe Aortic Prosthetic Regurgitation• Parameters: 1. PHT of regurgitant jet >250 msec2.Restrictive mitral inflow pattern (in acute

aortic regurgitation)3.Holodiastolic reversal in the descending

thoracic aorta4.Regurgitant fraction >55%

Page 23: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Echocardiography:Severe Mitral Prosthetic Regurgitation• Parameters:1. Increased mitral inflow peak velocity (>2.5

m/sec) and normal mitral inflow PHT (<150 msec)2. Dense mitral regurgitant continuous wave

Doppler signals3. Regurgitant fraction, >55%4. Effective regurgitant orifice, >0.35 cm25. Systolic flow reversal in the pulmonary vein

Page 24: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Diagnosis of Prosthetic Aortic Valve Stenosis

Doppler parameters of prosthetic aortic valve function in mechanical and stented biologic valves*

Parameter Normal Possible stenosis Suggests significant stenosis

Peak velocity (m/s) <3 3-4 >4

Mean gradient (mm Hg)†

<20 20-35 >35

DVI >0.29 0.29-0.25 <0.25

EOA (cm2) >1.2 1.2-0.8 <0.8

Contour of the jet velocity through the PrAV

Triangular, early peaking

Triangular to intermediate

Rounded, symmetrical contour

AT (ms) <80 80-100 >100

Page 25: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Algorithm for evaluation of elevated peak prosthetic aortic jet velocity

Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound, JASE 2009 Volume 22 Number 9

Page 26: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Prosthetic Aortic ValveNormal Obstructed

Pulse DopplerLVOT

Continuous DopplerProsthetic Valve

Triangular shapeAT <80msAT/ET <0.4DVI >0.29Peak Velocity <3m/s

Rounded shapeAT >100AT/ET>0.4Dvi<0.25Peak velocity>4 m/s

Page 27: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler parameters of prosthetic mitral valve function/stenosis

Normal* Possiblestenosis‡

Suggests significantstenosis* ‡

Peak velocity (m/s)†

<1.9 1.9-2.5 >2.5

Mean gradient(mm Hg)†

<6 6-10 >10

VTIPrMv/VTILVO <2.2 2.2-2.5 >2.5

EOA (cm2) >2 1-2 <1

PHT (ms) <130 130-200 >200

Page 28: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Doppler Patterns in Normal and Obstructed Prosthetic Mitral Valve

200 ms

Page 29: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

c. INTRAOPERATIVE TEE

• The American Society of Anesthesiologists has recommended intraoperative TEE as a category II indication in patients undergoing valve surgery.*

• Current American College of Cardiology and American Heart Association practice guidelines recommend TEE as a class 1 indication for patients undergoing valve replacement with stentless xenograft, homograft, or autograft valves.**

*ACC/AHA 2006 guidelines for the management of patients with valvular heart disease .Circulation 2006;114:e84-231

**Practice guidelines for perioperative transesophageal echocardiography. A report by the American Society of Anesthesiologists and the Society ofCardiovascular Anesthesiologists Task Force on Transesophageal echocardiography. Anesthesiology 1996;84:986-1006.

Page 30: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Intraoperative Environment Affect Prosthetic Valve Evaluation

• The period prior to cardiopulmonary bypass is usually associated with reduced preload and myocardial depression that accompanies the anesthetized state.*

• Moreover, an open chest, open pericardial cavity, and positive pressure ventilation also influence loading conditions.**

• The postbypass phase, on the other hand, is a labile period during which there are frequent changes in preload and afterload, inotropic and chronotropic drugs may be in effect, and the heart is frequently electrically paced.***

* Grewal KS, MalkowskiMJ, Piracha AR, et al. Effect of general anesthesiaon the severity of mitral regurgitation by transesophageal echocardiography.Am J Cardiol 2000;85:199-203.** Kubitz JC, Annecke T, Kemming GI, et al. The influence of positive endexpiratorypressure on stroke volume variation and central blood volume during open and closed chest conditions. Eur J Cardiothorac Surg 2006; 30:90-5.***McKinlay KH, Schinderle DB, Swaminathan M, et al. Predictors of inotropeuse during separation from cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2004;18:404-8.

Page 31: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Prosthetic Valve Assessment Intraoperatively in 3 situations:

1. after the replacement of a diseased native valve

2. in unrelated cardiac surgery as a part of comprehensive TEE

3. prior to redo valve surgery in dysfunctional prosthetic valves.

Page 32: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Immediate Surgical Attention

• Risk of geometric mismatch• Moderate to severe valvar regurgitation• Paravalvar leak- significant• ‘‘stuck’’ mechanical valve leaflets • valve dehiscence• Dysfunction of adjacent valves

Page 33: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Abnormally high pressure gradient across newly seated aortic prosthetic valve

• Physiologic factors: high postbypass cardiac output, hemodilution,high subvalvular velocities, and PPM.

• Mechanical causes of valve obstruction, such as stuck valve leaflets or occlusive thrombus.

• If echocardiographic assessment demonstrates no apparent mechanical cause, the surgery may proceed as planned and the valve may be interrogated postoperatively.

• Inappropriately high gradients may also be assessed by alternate imaging modalities, such as epicardial or epiaortic ultrasound.

Page 34: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

D- EARLY AND LATE COMPLICATIONS OF PROSTHETIC VALVES

1. PPM2. Dehiscence3. Primary failure4. Thrombosis and thromboembolism5. Pannus formation6. Endocarditis7. Hemolysis

Page 35: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Significant Paravalvar AR due to dehiscence

Page 36: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

SevereParavalvar MR due to dehiscence

Page 37: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Pannus Formation

Pannus formation on aSt JudeMedical valve prosthesis in the aortic position as depicted byTEE. The mass is highly echogenic and corresponds to the pathology of the pannus at surgery. The pannus is depicted by the arrows. LA, Left atrium; LV, left ventricle.

echodense

Page 38: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Thrombosis in the Mitral Position

Prosthetic St Jude Medical valve thrombosis in the mitral position (arrow) obstructing and immobilizing one of the leaflets of the valve. After thrombolysis, leaflet mobility is restored, and the mean gradient (Gr) is significantly decreased. LA, Left atrium.

Page 39: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

STRESS ECHOCARDIOGRAPHY IN EVALUATING AORTIC PROSTHETIC VALVE FUNCTION

• patients with exertional symptoms for which the diagnosis is not clear.

• aim to test for valve dysfunction, coexistent coronary disease, and new or worsening MR.

• Dobutamine and supine bicycle exercise are most commonly used. Treadmill exercise provides additional information about exercise capacity.

Page 40: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

STRESS ECHOCARDIOGRAPHY IN EVALUATING AORTIC PROSTHETIC VALVE FUNCTION

• Guide to significant obstruction of stented or stentless bioprosthetic aortic valve would be similar to that for native valves = a rise in mean gradient >15mmHg with stress.

• A combination of exact reproduction of symptoms with no wall motion abnormality and a large rise in pressure difference is highly suggestive of abnormal valve dynamics.

Pibarot P, Dumesnil JG, Jobin J, ET AL. J Am Coll Cardiol 1999;34:1609-17.

Page 41: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

STRESS ECHOCARDIOGRAPHY IN EVALUATING MITRAL PROSTHETIC VALVE FUNCTION

• Exertional dyspnea after mitral valve replacement may be caused by– primary valve failure, LV and/or right ventricular (RV)

dysfunction, pulmonary hypertension, or other noncardiac causes.

• Stress echocardiography considered if the diagnosis is not clear.

• The aims are to record changes in transmitral velocities and the tricuspid regurgitant signal.

• Obstruction or PPM is likely if the mean gradient rises above 18 mm Hg after exercise, even when the resting mean gradient is normal.

Reis G, Motta MS, Barbosa MM,. JAm Coll Cardiol 2004;43:393-401.

Page 42: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

POSTOPERATIVE EVALUATION AND FOLLOW UP STUDIES

• Baseline transthoracic echocardiogram: – first visit, 2 to 4 weeks after hospital

discharge, when the chest wound has healed, ventricular function has improved, and anemia with its attendant hyperdynamic state has abated.– Before hospital discharge if the patient is

being transferred and may not return• Echocardiography on annual clinical visit after

valve replacement, earlier if there is a change in clinical status.

Zoghbi et al. Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound. JASE, September 2009

Page 43: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

POSTOPERATIVE EVALUATION AND FOLLOW UP STUDIES

• Routine echocardiography after a first postoperative study is not indicated in normally functioning prosthetic valve in the absence of– other indications for echocardiography (eg, follow-up of

LV dysfunction)– clinical symptoms suggestive of valvular dysfunction – other cardiac pathology

• Annual echocardiography after the first 5 years: – for patients with bioprosthetic valves (not for

mechanical prosthetic valve) in the absence of a change in clinical status

Zoghbi et al. Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound. JASE, September 2009

Page 44: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Outline• A. Types of Prosthetic Valves • B. Evaluation of Prosthetic Valves With Echocardiography

and Doppler:General Recommendations – 1. Clinical Data – 2. Echocardiographic Imaging – 3. Doppler Echocardiography

• a. Determination of Gradients Across Prosthetic Valves • b. EOA • d. PPM • e. Doppler Recordings and Measurements Based on Prosthetic

Valve Position • f. Physiologic Regurgitation • g. Pathologic Prosthetic Regurgitation

Page 45: Recommendations for the Echocardiographic Evaluation of Prosthetic Valves: What is New? Edwin S. Tucay, MD, FPCP, FPCC, MBAH May 23, 2012 (Wednesday),

Outline

• C. Considerations for Intraoperative Patients• D. Complications of Prosthetic Valves• E. The role of stress echocardiography in

evaluating prosthetic valve function • F. Postoperative Evaluation and Follow-Up

Studies