Recent Developments in Rhodium Carbene and Nitrene Chemistry

47
Recent Developments in Rhodium Carbene and Nitrene Chemistry Brian Ngo Laforteza MacMillan Group Meeting February 3, 2010 Metal carbenoid C-H functionalization "Traditional' C-H activation N 2 R 2 R 1 N 2 L n M L n M R 2 R 1 C H C ML n H X C X H L n M C H C R 2 H R 1

Transcript of Recent Developments in Rhodium Carbene and Nitrene Chemistry

Recent Developments in Rhodium Carbene and Nitrene Chemistry

Brian Ngo Laforteza

MacMillan Group Meeting

February 3, 2010

Metal carbenoid

C-H functionalization

"Traditional'

C-H activation

N2

R2

R1

N2

LnM

LnM

R2

R1

C H

C MLn

H

X

C X

H

LnM

C H

C

R2

H

R1

Rhodium Carbene and Nitrene ChemistryCatalysts

■Rhodium(II) acetate – prototypical structure of dirhodium carbene/nitrene catalysts

Rh Rh

O O

O O

Me

Me

OO

OO

Me

Me

Rh2(OAc)4  “Paddle wheel” catalyst

■Only one rhodium center functions as carbene binding site   Second acts as electron sink to increase electrophilicity of carbene moiety – additional stabilization

open coordination site

  Catalyst binds carbene through strong σ-acceptor interactions and weak π-back-donation M M

R

R

N2

R

R

N2

Rhodium Carbene and Nitrene ChemistryCatalysts

  Symmetry may vary depending on orientation of ligand binding

  Generally much more rigid than rhodium carboxylates

  Optimal for enantioselective intramolecular C–H insertion

  Very active at decomposing diazo compounds

  Optimal for intermolecular C–H insertion reactions

  Later generations possess rigid bridged structure

■Two widely utilized classes of catalysts

Rhodium(II) carboxamidates

XN

O

R

X = O, NCOR

Rh

Rh

4

Rhodium(II) carboxylates

N

SO2Ar

O

O Rh

Rh

4

Rh Rh

X Y

Y X

R

R

YX

YX

R

R

Rhodium Carbene ChemistryThe Metal Carbene

■Control carbene reactivity through substituents - “acceptors” and “donors”

H

N2

O

X

X = R, OR, NR2

N2

O

X

X, Y = R, OR, NR2

O

YY

N2

O

X

X = R, OR, NR2

Y = vinyl, aryl

Acceptor Acceptor/Acceptor Acceptor/Donor

  Acceptor/acceptor and acceptor/donor groups stabilize diazo compound – more active catalyst needed for decomposition

  Carbenoids formed from acceptor/acceptor diazo compounds very electrophilic

  Donor substituent stabilizes carbenoid through resonance

Rhodium Carbene ChemistryTrends in C–H Activation

■Generally believed to occur through concerted (though asynchronous), three-centered transition state

H

A

D

B Rh2L4R

R+

HC

C

A

B

D

R

R

Rh2L4

A

D

B

R

H

R Rh2L4+

  Build-up of positive charge at carbon undergoing C-H cleavage

  C–H activation occurs preferentially at sites that can stabilize δ+

Reactivity of C–H bonds undergoing insertion

methine > methyelene >> methyl

  Steric factors, however, can sometimes override this selectivity

α-hetero C–H, allylic C–H, benzylic C–H preferred sites of activation

Rhodium Carbene ChemistryRh2(DOSP)4

■Rhodium(II) carboxylate developed and heavily utilized by Huw M. L. Davies (Emory)

Rh

Rh

O

O

NH

SO2Ar

Ar = p-(C12H25)C6H4

O

O

N

SO2Ar

O

ON

SO2Ar

H

H

O

O

N

SO2ArH

■Stereochemical model

  Esther considered sterically demanding group Davies et al. Chem. Rev. 2003, 103, 2861. Davies et al. J. Org. Chem. 2009, 74, 6555.

Rh

RMeO2C

H

S

L

M

H

MeO2C R

Rh

RMeO2C

L

MSL

MS

L

MS

Combined C–H Insertion/Cope RearrangementSynthesis of 4-Substituted Indoles

■C–H insertion into 4-methyl-1,2-dihydronaphthalene proceeded with high diastereoselectivity

Me

CO2Me

N2

Ph

+

Rh2(S-DOSP)4 (0.5 mol%)

2,2-dimethylbutane, 0 °C

Me

H

Ph

CO2Me

95% yield

>98% de

>99% ee

  Selectivity unusually high compared to what is known for C–H insertion into cycloalkenes

  Mechanism more complex than appears?

■Proposed combined C–H activation/Cope rearrangement, followed by retro-Cope rearrangement

Me

Rh

PhCO2Me

H

H C-H/Cope

MePh

CO2Me

CopeMe

PhCO2Me

H

  Fully conjugated product favored

Davies et al. J. Am. Chem. Soc. 2004, 126, 10862.

Combined C–H Insertion/Cope RearrangementRetro-Cope

■Mechanistic analysis

Davies et al. J. Am. Chem. Soc. 2004, 126, 10862.

■Preliminary scope

X

R2

R1

X = CH2, O

R1 = H, m-/p-OMe

R2 = OAc, OSiR3

CO2MeEt

Me

C-H/Cope

>98% de

98% ee

Me

CO2Me

N2

Et

+

Rh2(S-DOSP)4 (2 mol%)

2,2-dimethylbutane, 23 °C

Me

H

Et

CO2Me

//

110 °C

92%, 98% ee

Combined C–H Insertion/Cope RearrangementSynthesis of 4-Substituted Indoles

■C–H insertion into dihydroindoles followed by Cope rearrangement and aromatization

Davies et al. J. Am. Chem. Soc. 2006, 128, 1060.

NBoc

OAc

R

N2

CO2Me+

DMB, rtNBoc

R CO2Me

Rh2(S-DOSP)4

NBoc

OAc

R

CO2Me

NBoc

H

AcO

RR

Cope

Combined C–H Insertion/Cope RearrangementSynthesis of 4-Substituted Indoles

Davies et al. J. Am. Chem. Soc. 2006, 128, 1060.

NBoc

OAc

R

N2

CO2Me+

DMB, rtNBoc

R CO2Me

Rh2(S-DOSP)4

■C–H insertion into dihydroindoles followed by Cope rearrangement and aromatization

MeO Br Cl

Cl

NBoc

H3C

65%, 98% ee 52%, 98% ee 53%, 99% ee 45%, 98% ee

56%, 98% ee 64%, 98% ee 65%, 99% ee 61%, 99% ee

Combined C–H Insertion/Cope RearrangementApplication Towards Natural Product Synthesis

Davies et al. Angew. Chem. Int. Ed. 2005, 44, 1733.

■(+)-erogorgiaene: kinetic enantiodifferentiation

Me

Me

Me

H

Me

Me

(+)-erogorgiaene

Me

(±)

N2

MeMe

+

Me2 mol%

Rh2(R-DOSP)4

Me

Me

MeO2C

H

Me

48%, 90% ee

2 mol%

Rh2(R-DOSP)4

Me

MeH

H

MeO2C

Me

48%

Combined C–H Insertion/Cope RearrangementApplication Towards Natural Product Synthesis

Davies et al. J. Am. Chem. Soc. 2006, 128, 2485. Davies et al. Tetrahedron 2006, 62, 10477.

■Similar enantiodifferentiating step used in analogous syntheses

Me

Me

Me

H

Me

Me

O

O

Me

MeH

Me

O

O

Me MeOH

(+)-elisabethadione (+)-p-benzoquinone

Me

Me

O

OMeH

H

HOHO HO

Me

Me

OH

HO

H

Me

H

Me

O

(–)-colombiasin A (–)-elisapterosin B

Me

Tandem Cyclopropanation/Cope RearrangementFormal [4+3] Cycloadditions

Davies et al. J. Am. Chem. Soc. 2003, 125, 15902.

■Stereochemical model for cyclopropanation: based on “end-on” approach of olefin

R5

R6R7

R4

R3

N2

MeO2C

R2

R1

+Rh(II)

R4MeO2C

R3

R1

R2 R5

R6R7

MeO2C

R2

R4

R5

R3

R7R6R1

Cope

■General idea

Rh

R2MeO2C

HH

H R1

Rh

R2MeO2C

HH

R1

MeO2C

R2

HH

R1

Tandem Cyclopropanation/Cope RearrangementFormal [4+3] Cycloadditions

Davies et al. J. Am. Chem. Soc. 2009, 131, 8329.

■Scope of dienes

CO2Me

OTBS

Me

CO2Me

OTBS

Ph

CO2Me

OTBS

Me

TBSO

CO2Me

OTBS

MeO

TBSOCO2Me

OTBS

CO2Me

OTBS

MeMe

80% yield

87% ee

82% yield

95% ee

70% yield

99% ee

63% yield

95% ee

86% yield

92% ee

57% yield

R3R2

R1

R4N2

CO2Me

OTBS+

1 mol% Rh2(S-PTAD)4

hexanes, –26 °CR3

CO2Me

OTBS

R4

R1R2

O

OH

N

O

ORh

Rh

4

Rh2(S-PTAD)4

Tandem Cyclopropanation/Cope RearrangementFormal [4+3] Cycloadditions

■Total synthesis of (–)-5-epi-vibsanin E

R3R2

R1

R4N2

CO2Me

OTBS+

1 mol% Rh2(S-PTAD)4

hexanes, –26 °CR3

CO2Me

OTBS

R4

R1R2

Davies et al. J. Am. Chem. Soc. 2009, 131, 8329.

CO2Me

OTBS

Me

Me

Me

N2

CO2Me

OTBS

0.5 mol%

Rh2(S-PTAD)4

Me Me

Me+

O

O

Me

Me

Me

Me

O

OMe

Me

65% yield

90% ee

(–)-5-epi-vibsanin E

Nucleophilic Attack on Rhodium CarbenesFormal [3+2] Annulation of Indoles

■Two isomers of annulated product initially observed

Davies et al. J. Am. Chem. Soc. 2010, 132, 440.

NMe

N2

MeO2C Ph

+Rh2(R-DOSP)4

CH2Cl2, –45 °CNMe

H

H

CO2Me

Ph

+

NMe

H

H

Ph

72% yield

80% ee

CO2Me

exo

17%

>99% ee

endo

■Competition between C2- and C3-nucleophilic attack?

NMe

N2

MeO2C Ph

toluene, –45 °CNMe

H

Me

CO2Me

Ph

68% yield

97% ee

exo

MeRh2(S-DOSP)4

NMe

N2

MeO2C Ph

toluene, –45 °CNMe

Me

H

Ph

CO2Me

74% yield

99% ee

endo

Rh2(S-DOSP)4

Me

Nucleophilic Attack on Rhodium CarbenesFormal [3+2] Annulation of Indoles

■Proposed mechanism

Davies et al. J. Am. Chem. Soc. 2010, 132, 440.

■Stereochemical rationale: configuration of carbene and olefin govern diastereoselectivity

NMe

Rh2L4

MeO2C Ph

NMe

CO2Me

L4Rh2

Ph

NMe

H

H

CO2Me

Ph

  Zwitterionic intermediate

Rh

MeO2C Ph

s-cis

NMe

Me

exo

Rh

MeO2C

s-trans

Ph

MeN

Me

endo

Nucleophilic Attack on Rhodium CarbenesImines As Nucleophiles

■Bicyclic pyrrolidines are formed when excess diazo compound is used

Doyle et al. J. Am. Chem. Soc. 2003, 125, 4692.

■Proposed mechanism

Rh2L4

CO2MePh

N

R

Ar

CO2Me

NAr

R

Ph

N Ar

CO2Me

Ph

R

N

NO2

N2

MeO2C Ph+

1 mol% Rh2(OAc)4

CH2Cl2, refluxR

N

NO2

CO2Me

Ph

Ar

R = H, Cl, Me, OMe

47-66% yield

up to 98:2 dr

Nucleophilic Attack on Rhodium CarbenesImines As Nucleophiles

■Bicyclic pyrrolidines are formed when excess diazo compound is used

Doyle et al. J. Am. Chem. Soc. 2003, 125, 4692.

■Proposed mechanism

N

Y

N2

MeO2C Ph+

1 mol% Rh2(OAc)4

CH2Cl2, reflux

X = H, Cl, Me, NO2

up to 84% yield

~ 1:1 dr

2 eq

Y = H, OMe, NO2

X

N

Y

X

Ph H CO2Me

CO2MePh

CHO2MeN

Ph

Ar2

Ar1

N

Ar2

Ar1

Ph Rh2L4

CO2MeRh2L4

CO2MePh CO2MePh

N

Ar2

Ar1

Ph H CO2Me

E Ph

Rhodium(II) Carbenoid Cyclization/Cycloaddition CascadeCycloadditions with Carbonyl Ylides

■Carbonyl oxygen can also act as nucleophile

Padwa et al. Tetrahedron 2008, 64, 988.

■Albert Padwa (Emory) – amide cyclization followed by [3+2] cycloaddition

R1

O

O

R2

N2

( )n

Rh(II) O R2R1

On( )

A B

O

A B

R2R1

n( )O

  Carbonyl ylide

NN

O O

Me

O

CO2Me

N2

Rh2(OAc)4

A B

benzenereflux

NN

O

Me

A

B

OO

CO2Me

O

O

O

O

OMe

CO2Me

O

H

75% 77% 78% 85%

Rhodium(II) Carbenoid Cyclization/Cycloaddition CascadeCycloadditions with Carbonyl Ylides

■Reactions highly regio- and stereoselective

Padwa et al. Tetrahedron 2008, 64, 988.

NN

O O

Me

O

CO2Me

N2

Rh2(OAc)4

A B

benzenereflux

NN

O

Me

A

B

OO

CO2Me

  Regioselectivity governed by FMO interactions – HOMO of carbonyl ylide, LUMO of dipolarophile

  Predominant exo-selectivity result of steric interactions

NN

O O

Me

O

CO2Me

O

OMe!"

!+

Carbonyl Ylides Three-Component Cycloaddition

■Joe Fox (Delaware): Coupling between aldehydes, diazo compounds, and dipolarophiles

Fox et al. J. Am. Chem. Soc. 2009, 131, 1101.

CO2Me CO2Et

Me

O MeO

O

O

O

O

N

N

EtO2C

CO2EtMe CO2Me

R

CN

R1

O

H+ +

CO2R3

N2

R2Rh2(Piv)4 (0.5 mol%)

CH2Cl2, –78 °C

R1 = aryl, alkynyl R2 = alkyl, benzyl R3 = Et, t-Bu

A B

A B

OR1 CO2R3

R2

up to 99% yield

up to >95:5 dr

Carbonyl Ylides Three-Component Cycloaddition

■Joe Fox (Delaware): Coupling between aldehydes, diazo compounds, and dipolarophiles

Fox et al. J. Am. Chem. Soc. 2009, 131, 1101.

R1

O

H+ +

CO2R3

N2

R2Rh2(Piv)4 (0.5 mol%)

CH2Cl2, –78 °C

R1 = aryl, alkynyl R2 = alkyl, benzyl R3 = Et, t-Bu

A B

A B

OR1 CO2R3

R2

up to 99% yield

up to >95:5 dr

■High diastereoselectivity result of endo approach of dipolarophile

O

R2

CHO2R3

H

R1

R4

R5

OR1 CO2R

3

R2

R5R4

endo

O

R2

CHO2R3

H

R1

R4

R5

OR1 CO2R

3

R2

R5R4

exo

Carbonyl Ylides Three-Component Cycloaddition

■Joe Fox (Delaware): Coupling between aldehydes, diazo compounds, and dipolarophiles

Fox et al. J. Am. Chem. Soc. 2009, 131, 1101.

R1

O

H+ +

CO2R3

N2

R2Rh2(Piv)4 (0.5 mol%)

CH2Cl2, –78 °C

R1 = aryl, alkynyl R2 = alkyl, benzyl R3 = Et, t-Bu

A B

A B

OR1 CO2R3

R2

up to 99% yield

up to >95:5 dr

■Suppression of β-hydride elimination of alkyldiazoacetates has been a continuing challenge

CO2t-Bu

N2

Me Rh2(OAc)4CO2Me

Me

O

+Me

Ph

O

+

Carbonyl Ylides Three-Component Cycloaddition

■Joe Fox (Delaware): Coupling between aldehydes, diazo compounds, and dipolarophiles

Fox et al. J. Am. Chem. Soc. 2009, 131, 1101.

R1

O

H+ +

CO2R3

N2

R2Rh2(Piv)4 (0.5 mol%)

CH2Cl2, –78 °C

R1 = aryl, alkynyl R2 = alkyl, benzyl R3 = Et, t-Bu

A B

A B

OR1 CO2R3

R2

up to 99% yield

up to >95:5 dr

■β-hydride elimination can be completely suppressed through appropriate conditions

Rh2(Piv)4

-78 °C

O CO2t-BuPh

MeO

Me

CO2t-Bu

N2

Me

O

+Me

Ph

O

+

77%

Sterically encumbering catalysts and low temperatures are critical!

Rhodium(II) Nitrene-Mediated C–H InsertionAzide Precursors to Nitrenes

■Carbazole synthesis via bisaryl azides

Stokes et al. J. Org. Chem. 2009, 74, 3225.

  m-substituted pendant arenes lead to mixtures of regioisomers

■Intermediacy of free nitrene, or completely catalyst-mediated?

N3

OMe

toluene

NH

OMe

NH

OMe

+

Rh2(O2CC7H15)4

heat (250 °C)

94 6:

31 : 69

  reversal in thermal selectivity argues against presence of free nitrene

R1

N3

NH

R1

Rh2(O2CC3F7)4

toluene, 60 °C

R1-R2 = H, Me, Et, t-Bu, Cl, F, OMe, CF3, NO2, vinyl, CO2Et

41-98% yield

R2

R2

Rhodium(II) Nitrene-Mediated C–H InsertionAzide Precursors to Nitrenes

■Proposed mechanism

Stokes et al. J. Org. Chem. 2009, 74, 6442.

[Rh]

N

R

[Rh]

N

R

[Rh]

4-electron-5-atomelectrocyclization

N

[Rh]

H

R

NH

R

  Primary KIE 1.01

  Linear correleation with σp Hammet values (negative ρ values)

  Nonlinear correlation with σm Hammet values (not electrophilic aromatic substitution on nitrene)

Mechanistic EvidenceN3

R

N

R

[Rh]

N2

Rhodium(II) Nitrene-Mediated C–H InsertionAzide Precursors to Nitrenes

■Proposed mechanism

Stokes et al. J. Org. Chem. 2009, 74, 6442.

[Rh]

N

R

[Rh]

N

R

[Rh]

4-electron-5-atomelectrocyclization

N

[Rh]

H

R

NH

R

N3

R

N

R

[Rh]

N2

N3NH

Rh(II)//

  Contiguous array of π-orbitals necessary

Rhodium(II) Nitrene-Mediated C–H InsertionAzide Precursors to Nitrenes

■Synthesis of indoles and N-heteroarenes via vinyl azides

Stokes et al. J. Am. Chem. Soc. 2007, 129, 7500.

R1

R2

R3N3

CO2Me Rh2(O2CC3F7)4

toluene

R1

R2

R3 NH

CO2Me

R1-R3 = H, Me, i-Pr, t-Bu, l, Br, OMe, CF3

71-98% yield

N3

CO2Me

N3

CO2Me

O

N3

CO2Me E

N3

CO2Me

E = O, S, N(PG)

Rhodium(II)-Catalyzed C–H Amination Iminoiodanes

■Traditionally, iminoidanes were treated with metal complexes to generate nitrenes

Dauban et al. Synlett 2003, 1571.

IN

SO2Ar LnMLnM N

SO2Ar RR

RR

N

SO2Ar

  Isolated material

I(OAc)2

+H2N

SAr

O O

Rhodium(II)-Catalyzed C–H Amination Iminoiodanes

■Traditionally, iminoidanes were treated with metal complexes to generate nitrenes

Du Bois et al. J. Am. Chem. Soc. 2001, 123, 6935.

IN

SO2Ar LnMLnM N

SO2Ar RR

RR

N

SO2Ar

■Du Bois (Stanford): generation of iminoiodanes in situ

H2NS

X

O O

R

NS

X

O O

R

PhIN

SX

O O

R

L4Rh2HN

SX

O O

R

PhI(OAc)2 Rh2L4 "C-H"

Rhodium(II)-Catalyzed C–H Amination Understanding the Mechanism

■General reactivity trends parallel those of rhodium(II) carbenes

Du Bois et al. Tetrahedron 2009, 65, 3042.

■Six-membered oxathiazinanes favored

Reactivity of C–H bonds undergoing insertion

methine > ethereal ~ benzylic > methyelene >> methyl

NS

X

O O

R

L4Rh2HN

SX

O O

R

"C-H"

  Elongated S–X, S–N bonds

  Obtuse N–S–X bond angle

■Concerted C–H insertion

NH2

SO

OO

Ph

H D   KIE of 1.9 ± 0.2

HNS

X

O O

H

Ph

  No opening of radical clock (not C–H abstraction/radical-rebound

Rhodium(II)-Catalyzed C–H Amination Understanding the Mechanism

■Proposed mechanism of rhodium-nitrene formation

Du Bois et al. Tetrahedron 2009, 65, 3042.

ROS

NH2

O O PhI(OAc)2

ROS

NH

O O

IPh

OAc–AcOH

ROS

N

O O

IPh

Rh2L4

fast

ROS

N

O O

IPh

Rh2L4–IPh

ROS

N!Rh2L4

O O"C–H"HNS

O

O O

R

  First-order dependence on sulfamate and oxidant

 Zero-order dependence on catalyst (during initial reaction burst)

Rhodium(II)-Catalyzed C–H Amination Rh2(esp)2

■Very efficient catalyst for C–H aminations

Du Bois et al. J. Am. Chem. Soc. 2004,126, 15378.

Rh

Rh

O

O

O

O

O

O O

O

Me MeMeMe

MeMe Me Me

Rh2(esp)2

■Dinuclear rhodium catalysts known to undergo structural changes within minutes of initiating the reaction

  Catalyst degradation believed to proceed through ligand exchange

  Appropriately spaced linker in (esp) ligand adds stability to dirhodium complex

Rhodium(II)-Catalyzed C–H Amination Rh2(esp)2

■Interesting results obtained in intermolecular C–H amination experiments

Du Bois et al. J. Am. Chem. Soc. 2007,129, 562. Du Bois et al. J. Am. Chem. Soc. 2009, 131, 7558.

  From oxidant?

■If C–H bond is slow to intercept reactive Rh-nitrene intermediate, catalyst degradation occurs

  Formation mixed-valence Rh2+/Rh3+ species observed by UV/vis spectroscopy

  Could this mixed-valence dimer interact with oxidant in reaction mixture?

Me2 mol % Rh2(esp)2

TcesNH2, benzene

Me

NHTces

+N

Me

Me

Tces

72% 15%

PhI(CO2t-Bu)2

Tces =Cl3C O

S

O O

Rhodium(II)-Catalyzed C–H Amination Rh2(esp)2

■Interesting results obtained in intermolecular C–H amination experiments

Du Bois et al. J. Am. Chem. Soc. 2007,129, 562. Du Bois et al. J. Am. Chem. Soc. 2009, 131, 7558.

Me2 mol % Rh2(esp)2

TcesNH2, benzene

Me

NHTces

+N

Me

Me

Tces

72% 15%

PhI(CO2t-Bu)2

  Radical decarboxylation

[Rh2(esp)2]+

Rh2(esp)2

t-Bu

O

O

CO2, H•

Me

Me

t-BuCO2H

Ph Me

1 mol% Rh(II)

TcesNH2

PhI(CO2R)2

Ph Me

NHTcesR = Me

n-Pr

t-Bu

CMe2Ph

12%

17%

27%

62%

  More reducing carboxylic acid – higher yields

  Evidence that Rh2(esp)2 is active catalyst

Rhodium(II)-Catalyzed C–H Amination Justin Du Bois

■Rich variety of rhodium-catalyzed aminations

intermolecular amination oxathiazinanes 1,3-diamines 1,2-diamines

■Amines are readily deprotected

J. Am. Chem. Soc. 2001,123, 6935. J. Am. Chem. Soc. 2007, 129, 562.

J. Am. Chem. Soc. 2008, 130, 11248. Angew. Chem. Int. Ed. 2009, 48, 2777.

NHTces

R2

R1HN

SNBoc

O O

R1 R2

HNS

O

O O

NR1 R2

HNS

O

O O

R1 R2

HNS

NBoc

O O

Ph

DMAP

Cl3CCH2OH

dioxane, 80 °C

TcesHN NHBoc

Ph89%

Rhodium(II)-Catalyzed C–H Amination Justin Du Bois

■Products can act as iminium ion equivalents

J. Am. Chem. Soc. 2003,125, 2028. Angew. Chem. Int. Ed. 2004, 43, 4349.

■Diastereoselectivity governed by combination of twist Felkin-Ahn transition state model

Nu =R

Li

SiMe3

R

OSiR3

HNS

O

O O

LG R2

HNS

O

O O

R2

–LG Nu-HN

SO

O O

Nu R2

R1 R1 R1

S

O

NH

O

OR1

R1

H

N HO

S

O

O

Nu

Felkin-Ahn T.S.

O

SNO

O NuH

R1

HNS

O

O O

Nu

R1

H

no destabilizing

interactions

Rhodium(II)-Catalyzed C–H Amination Justin Du Bois

■Products can act as iminium ion equivalents

J. Am. Chem. Soc. 2003,125, 2028. Angew. Chem. Int. Ed. 2004, 43, 4349.

■Diastereoselectivity governed by combination of twist Felkin-Ahn transition state model

Nu =R

Li

SiMe3

R

OSiR3

HNS

O

O O

LG R2

HNS

O

O O

R2

–LG Nu-HN

SO

O O

Nu R2

R1 R1 R1

  Introduction of R2 can have a dramatic impact on selectivity!

S

O

NH

O

OR1

R2

S

O

NR1

R2

O

O H

destabilizing

Leads to Felkin-Ahn-disfavored T.S.

  Erosion of diastereoselectivity

Rhodium(II)-Catalyzed C–H Amination Justin Du Bois

■Application towards natural product synthesis

J. Am. Chem. Soc. 2002,124, 12950. J. Am. Chem. Soc. 2006,128, 3926.

Angew. Chem. Int. Ed. 2009, 48, 3802.

HN N

O

O

NH

Br

CO2HMe

manzacidin A

N NH

NHHN

H2N

HO

HO

NH2

O NH2

O

(+)-saxitoxin

N

NH

Br

O

NH

NHO

Me

O

(–)-agelastatin A

C–H Amination with N-Tosyloxycarbamates Rhodium Nitrene Formation without Iminoiodanes

■Substitute in situ-generated iminoiodanes with alternative leaving group?

Lebel et al. Chem. Eur. J. 2008, 14, 6222.

R1O

O

NH

OTsRh2L4

R1O

O

NOTs

Rh2L4

K2CO3

K+

–KOTs

R1O

O

N!Rh2L4

R2 R3

R2 R3

NHCO2R1

■Lebel (Montréal) utilized the tosyl leaving group

R2

R1

OHN

O

OTs

Rh2(tpa)4 (6 mol%)

K2CO3, CH2Cl2, 25 °C

OHN

O

R2R1

41-92% yield

R1 R2Cl3C O N

H

O

OTs+Rh(II)

R1 R2

NHTroc

50-87% yield

(R1-R3 = alkyl, Ar)

Ph3C

O

O Rh

Rh

4

Rh2(tpa)4 =

  Up to 15 eq of alkane required (Du Bois requires only 1 eq)

Amination of Alkynes and Allenes π-Nucleophilic Attack onto Rhodium Nitrenes

■Electrophilic rhodium(II) nitrene analogous to rhodium carbenes

Blakey et al. J. Am. Chem. Soc. 2008, 130, 5020.

LnMN

R

Nu-

N R

LnM

N R

LnM

Nu

MLn

N RNu

O

OSO2NH2

Rh2L4

OS

N

O O

O

L4Rh2

OS

N

O O

O

L4Rh2

OS

N

O O

O

NaBH4O

SHN

O O

O

■Blakey (Emory) utilized oxygen for nucleophilic attack onto carbocation

Amination of Alkynes and Allenes π-Nucleophilic Attack onto Rhodium Nitrenes

■Scope

Blakey et al. J. Am. Chem. Soc. 2008, 130, 5020.

OSO2NH2

( )n2 mol % Rh2(esp)2

PhI(OAc)2

CH2Cl2, RT

then NaBH4

ROO

SHN

O O

O R

( )n

OS

HN

O O

O

Ph

56%

OS

HN

O O

O

Ph

71%

OS

HN

O O

O

76%

OS

HN

O O

O

85%

OS

HN

O O

O

98%

OS

HN

O O

O

81%

(quenched with allyl-MgBr)

NHS

O

O O

O

Ph

R

R = H, 55%

Me, 48%

Amination of Alkynes and Allenes π-Nucleophilic Attack onto Rhodium Nitrenes

■Scope

OSO2NH2

( )n2 mol % Rh2(esp)2

PhI(OAc)2

CH2Cl2, RT

then NaBH4

ROO

SHN

O O

O R

( )n

Blakey et al. J. Am. Chem. Soc. 2009, 131, 2434.

■Other nucleophilic traps – arenes and olefins

R = Ph R =

R'

OSO2NH2

R

OS

HN

O O

Friedel-Crafts termination

OS

HN

O O

R'

cyclopropanation

Amination of Alkynes and Allenes π-Nucleophilic Attack onto Rhodium Nitrenes

■Mechanistic insight – what is the active intermediate?

Blakey et al. J. Am. Chem. Soc. 2009, 131, 2434.

OS

N

O OL4Rh2

OS

N

O O

L4Rh2

1,3-shift

R R

vinyl cation iminocarbenoid

■Control experiment

OSO2NH2O

SN

O O

L4Rh2

Rh(II)

OS

N

O Obenzylic "C–H"

Rh(II)

OS

N

O OL4Rh2

OS

HN

O OFriedel-Crafts

72% Not observed

Amination of Alkynes and Allenes π-Nucleophilic Attack onto Rhodium Nitrenes

■Allene amination - amidoallylcations

Blakey et al. J. Am. Chem. Soc. 2010, ASAP.

■Aminocyclopropanes

OS

N

O O

Me

OS

N

O OL4Rh2

OSO2NH2

Me

OS

HN

O O

Me

O

t-BuO

73%

t-BuCO2H

5 mol% Rh2(esp)2

t-BuCO2H

C6H5CF3, 45 °C

PhI(CO2t-Bu)2

R

LnMN

R'

N

R'

R

LnM

Amination of Alkynes and Allenes π-Nucleophilic Attack onto Rhodium Nitrenes

■Allene amination - amidoallylcations

Blakey et al. J. Am. Chem. Soc. 2010, ASAP.

OSO2NH2

R

5 mol% Rh2(esp)2

PhI(CO2t-Bu)2

then R'MgX

OS

HN

O O

R

R'52-85% yield

single isomers

R = Me, allyl, benzyl

R' = Me, i-Pr, Ar, vinyl

OSO2NH2

R

OS

HN

O O

Me

H

Me

Ar

96% ee 53%, 82% ee

  Chirality transfer   Cycloadditions

OS

N

O OL4Rh2

Ph

O

O

O

SHN

Ph

O

O

40%