Recent development of BEM/BIEM in vibration and acoustics

46
M 1 S V Recent development of BEM/BIEM in vibration and acoustics 陳陳陳 陳陳陳陳 陳陳陳陳 陳陳陳陳陳陳 Nov. 19, 2004, NSYSU, 14:10~1 6:00

description

Recent development of BEM/BIEM in vibration and acoustics. 陳正宗 海洋大學 特聘教授 河海工程學系 Nov. 19, 2004, NSYSU, 14:10~16:00. Outlines. Introduction Exterior acoustics - adaptive BEM Interior acoustics - multiply-connected eigenproblems Conclusions. Growth of BEM papers. Introduction. - PowerPoint PPT Presentation

Transcript of Recent development of BEM/BIEM in vibration and acoustics

Page 1: Recent development of BEM/BIEM in vibration and acoustics

M

1

S

V

Recent development of BEM/BIEM in vibration and

acoustics陳正宗

海洋大學 特聘教授河海工程學系

Nov. 19, 2004, NSYSU, 14:10~16:00

Page 2: Recent development of BEM/BIEM in vibration and acoustics

M

2

S

VOutlines

Introduction Exterior acoustics - adaptive BEM Interior acoustics - multiply-connected

eigenproblems Conclusions

Page 3: Recent development of BEM/BIEM in vibration and acoustics

M

3

S

VGrowth of BEM papers

Page 4: Recent development of BEM/BIEM in vibration and acoustics

M

4

S

VIntroduction

Finite difference method (FDM) Finite element method (FEM) Boundary element method (BEM) Meshless method (MM) Boundary integral equation method (BIEM)

FDMFEM

Domain discretization

BEM

Boundary discretization

MM BIEM

No meshNo discretization for circular boun

daries

No meshNo node

Page 5: Recent development of BEM/BIEM in vibration and acoustics

M

5

S

V

Adaptive BEM for exterior radiation

and scattering problems

Page 6: Recent development of BEM/BIEM in vibration and acoustics

M

6

S

VProblem statement

Non-uniform radiator problem Scattering problem

1),( au0),( au

Drruk ),( ,0),()( 22

Drruk ),( ,0),()( 22

Page 7: Recent development of BEM/BIEM in vibration and acoustics

M

7

S

VAdaptive scheme

( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( )B B

u x C PV T s x u s dB s R PV U s x t s dB s Solver

( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( )B B

t x H PV M s x u s dB s C PV L s x t s dB s Error indicator

R.P.V. is Riemann Principal Value

H.P.V. is Hadamard Principal Value

C.P.V. is Cauchy Principal Value

Singular formulation

Hypersingular formulation

Page 8: Recent development of BEM/BIEM in vibration and acoustics

M

8

S

VAdaptive mesh

Uniform mesh Adaptive mesh

-1.00 -0.50 0.00 0.50 1.00

-1.00

-0.50

0.00

0.50

1.00

-1 .00 -0.50 0.00 0.50 1.00

-1.00

-0.50

0.00

0.50

1.00

Page 9: Recent development of BEM/BIEM in vibration and acoustics

M

9

S

VRefinement scheme

h-version p-version r-version

1. Element number increasing2. Interpolation function order increasing3. Optimum nodal collocation

1 2 3

Page 10: Recent development of BEM/BIEM in vibration and acoustics

M

10

S

VMesh

BEM FEM(DtN)

- 1 - 1 0 1 1

- 1

- 1

0

1

1

Taiwan, NTOU

US Navy. Stanford Univ.

Page 11: Recent development of BEM/BIEM in vibration and acoustics

M

11

S

V

Non-uniform radiation : Dirichlet problem

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

Numerical solution: BEM Numerical solution: FEM(DtN) 64 ELEMENTS 2791 ELEMENTS

2ka

Taiwan, NTOU

US Navy. Stanford Univ.

Page 12: Recent development of BEM/BIEM in vibration and acoustics

M

12

S

V

Non-uniform radiation : Dirichlet problem

-1 .50 -1.00 -0.50 0.00 0.50 1.00 1.50

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

Analytical solution: n=20 2ka

nkaH

krH

n

nru

n

n

ncos

)(

)(sin2),(

)1(

)1(

0

1),( au0),( au

Drruk ),( ,0),()( 22

32

5

Page 13: Recent development of BEM/BIEM in vibration and acoustics

M

13

S

VSuperposition principle

),(),(),( )()( rururu si

+

),()( ru s),( ru i cosikre∥

0),(

n

ru

n

u

n

u is

)()(

n

u i

)(

Page 14: Recent development of BEM/BIEM in vibration and acoustics

M

14

S

V

Scattering : Neumann problem

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

Numerical solution: BEM Numerical solution: FEM(DtN) 63 ELEMENTS 7816 ELEMENTS

4ka

Taiwan, NTOU

US Navy. Stanford Univ.

Page 15: Recent development of BEM/BIEM in vibration and acoustics

M

15

S

V

Scattering :Neumann problemAnalytical solution: n=20

-1 .50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

4ka

nkrHkaH

kaJikrH

kaH

kaJru n

n

nn

ncos)(

)(

)(2 )(

)(

)(),( )1(

)1(1

)1(0

)1(0

0

Drruk ),( ,0),()( 22

Page 16: Recent development of BEM/BIEM in vibration and acoustics

M

16

S

V

Fictitious frequency : Non-uniform radiation problem

ka0 2 4 6 8

-0.8

-0.4

0.0

0.4

0.8

1.2UT method

LM method

Burton & Miller method

Analytical solution

u(a,0)

1),( at0),( at

Drruk ),( ,0),()( 22

9

1),( at0),( at

Drruk ),( ,0),()( 22

9

Page 17: Recent development of BEM/BIEM in vibration and acoustics

M

17

S

V

Fictitious frequency : The scattering Dirichlet problem

t(a, 0)

ka

Drruk ),( ,0),()( 22

0 2 4 6 8

-12

-8

-4

0

4

8

UT m ethod

LM m ethod

Burton & Miller m ethod

Analytical solution

1

1J

1

2J

2

0J

1

3J

1

4J

1

5J

2

2J

3

0J

1

6J

Page 18: Recent development of BEM/BIEM in vibration and acoustics

M

18

S

VSummary

Fictitious frequency depends on the formulation (singular or hypersingular) instead of B.C. (Dirichlet or Neumann).

Burton & Miller method and CHIEEF method can overcome the problem of fictitious frequency.

Fictitious frequency happens to be the true eigenvalues of the interior problem

(SingularDirichlet, HypersingularNeumann).

Page 19: Recent development of BEM/BIEM in vibration and acoustics

M

19

S

V

Spurious eigenvalues for multiply-connected pro

blems

Page 20: Recent development of BEM/BIEM in vibration and acoustics

M

20

S

VProblem domain

Doubly-connected domain

Multiply-connected domain

Simply-connected domain

Page 21: Recent development of BEM/BIEM in vibration and acoustics

M

21

S

VBEM&BIEM

BEM

BIEM

.

.

.

.

.

.

.

.

.

..

.

Boundary discretization Fourier series

0 2 0 2

u(θ) or t(θ)

θ θ

u(θ) or t(θ)

Page 22: Recent development of BEM/BIEM in vibration and acoustics

M

22

S

V

The flowchart to determine the eigenvalues and mode shape by BEM

Given G.E.and B.C.

Solve thefundamental solution

BIE for domain point

Moving to the boundary

BIE for boundary point

Boundary element discretization

Linear algebraic system

Solve boundary

dataPotential

SVD

Page 23: Recent development of BEM/BIEM in vibration and acoustics

M

23

S

V

The flowchart to determine the eigenvalues and mode shape by BIEM

Degenerate kernel

Fourier series

Null-field equation

Algebraic equation Fourier Coefficients

Potential

Analytical

Numerical

SVD

Page 24: Recent development of BEM/BIEM in vibration and acoustics

M

24

S

VIntegral Formulation

Null-field integral equations:

0 ( , ) ( ) ( ) ( , ) ( ) ( ), .eB BT s x u s dB s U s x t s dB s x D= - Îò ò%% % % %% % % %

0 ( , ) ( ) ( ) ( , ) ( ) ( ), .eB BM s x u s dB s L s x t s dB s x D= - Îò ò%% % % %% % % %

Page 25: Recent development of BEM/BIEM in vibration and acoustics

M

25

S

Vs

x

EU

rO

RIU

x : source point ; s : field point

s

r

x

Degenerate kernels

Page 26: Recent development of BEM/BIEM in vibration and acoustics

M

26

S

VDegenerate kernels

Degenerate kernels:

(1)

0

(1)

0

( , ) ( | |) ( | |) cos( ),| | | |2

( , )

( , ) ( | |) ( | |) cos( ),| | | |2

Im m j m j j j

m

Em m j m j j j

m

iU s x J k x c H k s c m s c x c

U s xi

U s x H k x c J k s c m x c s c

1, 0,.

2, 0,m

m

m

(1)

0

(1)

0

( | |)( , ) ( | |){ }cos( ), | | | |

2( , )

( | |)( , ) ( | |){ }cos( ), | | | |

2

m jIm m j j j

m j

m jEm m j j j

m j

H k s ciT s x J k x c m s c x c

RT s x

J k s ciT s x H k x c m x c s c

R

Page 27: Recent development of BEM/BIEM in vibration and acoustics

M

27

S

VDegenerate kernels

(1)

0

(1)

0

( | |)( , ) ( | |){ cos( ) cos( )

2

1 cos( )( | |) cos( )}, | | | |

2( , )

( | |)( , ) ( | |){ cos(

2

m jI

m m jm

m j j j

m jE

m m jm

c jj

c jj j

j

J k x cis x H k s c m

mJ k x c s c x c

L s xH k x ci

s x J k s c m

L

L

(1)

) cos( )

1 cos( )( | |) cos( )}, | | | |

2m j j j

c j

c jj j

mH k x c x c s c

(1)

0

(1)

0

( | |)( , ) { cos( ) cos( )

2

cos( )( | |) cos( )}, | | | |

2( , )

( , )2

( | |)

1

( | |) ( | |){

m j m jI

mm

m j j j

m j m jE

mm

c jj j

c jj

j

j

J k x cis x m

mJ k x c s c x c

M s xi

s x

H k s cM

R

J k s c H k x cM

R

(1)

cos( ) cos( )

( | |) cos( ) | | | |2

1 cos( )},m j j j

c jj

c jjj

m

H k s c x c s cm

Page 28: Recent development of BEM/BIEM in vibration and acoustics

M

28

S

V

Fourier series for boundary densities

Fourier series:

01

( ) ( cos sin ),j nj j nj j jn

u s a a n b n s Bq q¥

=

= + + Îå% %

01

( ) ( cos sin ),j nj j nj j jn

t s p p n q n s Bq q¥

=

= + + Îå% %

a),( Rs

Page 29: Recent development of BEM/BIEM in vibration and acoustics

M

29

S

VCollocation points

By choosing M terms of Fourier series, we select 2M+1 collocation points on the circle.

01

( ) ( cos sin )M

n nn

u x a a n b n

2M+1 terms

Page 30: Recent development of BEM/BIEM in vibration and acoustics

M

30

S

VIntegral representation

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ),B B

u x T s x u s dB s U s x t s dB s x Dp = - Îò ò% %% % % %% % % %2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ),

B Bt x M s x u s dB s L s x t s dB s x Dp = - Îò ò% %% % % %% % % %

Integral equation formulation:

Page 31: Recent development of BEM/BIEM in vibration and acoustics

M

31

S

VNumerical examples

Example 1

2 2( ) ( ) 0,k u x x D

1 0.5r

2 2.0r

1B

0u 2B

0u

Page 32: Recent development of BEM/BIEM in vibration and acoustics

M

32

S

V

The eigenfrequenies by using singular equation

More accurate

( ) Numerical

[ ] exact

0.0 1.0 2.0 3.0 4.0 5.0

1E-004

1E-003

1E-002

1E-001

1E+000

0.5 2.0

P resent m ethod[U c] kerne l

BEM[U c] kerne l

J 1 0

(4 .83)[4.81]

[4.81]

Contaminated by spurious eigenvalues

Page 33: Recent development of BEM/BIEM in vibration and acoustics

M

33

S

V

Relation of spurious eigenvalue and true eigenvalue

( 0.5) 0 4.81nJ k k

0.5 True

Spurious eigenvalue using singular formulation happens to be the true eigenvalue of the associated interior Dirichlet problem.

Page 34: Recent development of BEM/BIEM in vibration and acoustics

M

34

S

V

The eigenfrequenies by using hyper-singular equation

( ) Numerical

[ ] exact

More accurate

More accurate

0.0 1.0 2.0 3.0 4.0 5.0

1.0E-003

1.0E-002

1.0E-001

1.0E+000

1.0E+001

J '1

0

(0.35)[0 .00]

J '2 0

(3 .68)[3.68]

J '2 0

(3.77)[3 .68]

[0.00][3.68]

0.5 2.0

Present m ethod[L c] kerne l

BEM[L c] kerne l

Contaminated by spurious eigenvalues

Page 35: Recent development of BEM/BIEM in vibration and acoustics

M

35

S

V

Relation of spurious eigenvalue and true eigenvalue

( 0.5) 0 0, 3.68nJ k k

0.5 True

Spurious eigenvalue using hypersingular formulation happens to be the true eigenvalue of the associated interior Neumann problem.

Page 36: Recent development of BEM/BIEM in vibration and acoustics

M

36

S

V

The spurious eigenvalues are filtered by Burton&Miller method

Only true eigenvalues appear

0.0 1.0 2.0 3.0 4.0 5.0

1E-002

1E-001

1E+000

1E+001

0.5 2 .0

B urton&M iller m ethod(P resent m ethod)

B urton&M iller m ethod

(BE M )

Page 37: Recent development of BEM/BIEM in vibration and acoustics

M

37

S

V

The former five eigenvalues of Helmholtz eigenproblem with an eccentric d

omain

1 2 3 4 5

FEM [Chen et. al.] 1.73 2.13 2.45 2.76 2.95

BEM[Chen and Zhou] 1.75 2.14 2.47 2.78 2.97

BEM [Chen et. al.] 1.74 2.14 2.47 2.78 2.98

Present method 1.74 2.14 2.46 2.78 2.96

Page 38: Recent development of BEM/BIEM in vibration and acoustics

M

38

S

V

The former five eigenmodes for eccentric case using present method, FEM a

nd BEM

Page 39: Recent development of BEM/BIEM in vibration and acoustics

M

39

S

VNumerical examples

Example 2

R=1

c1=0.3c2=0.4

e=0.5

2 2( ) ( ) 0,k u x x D

Page 40: Recent development of BEM/BIEM in vibration and acoustics

M

40

S

V

Extraction of the spurious eigenvalues by using SVD updating docu

ment

0 1 2 3 4 5 6 7 8 9

0.001

0.01

0.1

1

10

100

1000

The m in im um singular va lues 1 for the updating docum ent by BEM (90 e lem ents)

The m in im um singular va lues 1 for the updating docum ent by B IEM (63 co llocation po ints)

( ) : e x ac t so lu tio n

6.01 8.02More accurate

More accurate

Page 41: Recent development of BEM/BIEM in vibration and acoustics

M

41

S

V

The former five eigenvalues for a multiply-connected problem with two unequal holes using different approaches

Method ki

k1 k2 k3 k4 k5

Burton & Miller method 4.82 4.82 6.72 6.72 7.82

Direct BEM + SVD Updating 4.81 4.81 6.73 6.73 7.81

Null-field BEM + SVD Updating 4.81 4.81 6.73 6.73 7.82

Fictitious BEM + SVD Updating 4.80 4.80 6.72 6.72 7.79

Direct BEM + CHIEF method 4.81 4.81 6.73 6.73 7.82

Null-field BEM + CHIEF method 4.83 4.83 6.74 6.74 7.84

Fictitious BEM + CHIEF method 4.77 4.77 6.68 6.68 7.88

FEM 4.790 4.801 6.619 6.634 7.797

Present method 4.85 4.85 6.77 6.77 7.91

Page 42: Recent development of BEM/BIEM in vibration and acoustics

M

42

S

V

The former five modes for a circle domain with two unequal holes using present method, BEM and FEM

Page 43: Recent development of BEM/BIEM in vibration and acoustics

M

43

S

VSummary

Spurious eigenvalues depend on formulation (singular or hyper-singular).

Spurious eigenvalues are independent of B.C. (Dirichlet or Neumann).

Spurious eigenvalues happens to be the true eigenvalues of the interior problem

(Dirichletsingular, Neumannhypersingular).

To overcome the spurious eigenvalues Burton&Miller, SVD updating term, SVD upd

ating document…….

Page 44: Recent development of BEM/BIEM in vibration and acoustics

M

44

S

VConclusions

Exterior acoustic problems (radiation and scattering) were solved by using adaptive BEM.

Good accuracy and efficiency of the present method were obtained in comparison with those with FEM.

Spurious eigenvalues embedded in the BIEM/BEM were examined and filtered out in this study.

Both the fictitious frequency and spurious eigenvalue depend on the formulation instead of B.C. .

Page 45: Recent development of BEM/BIEM in vibration and acoustics

M

45

S

V

歡迎參觀海洋大學力學聲響振動實驗室 烘培雞及捎來伊妹兒

URL: http://ind.ntou.edu.tw/~msvlab/ Email: [email protected]

Page 46: Recent development of BEM/BIEM in vibration and acoustics

M

46

S

V