Recent CLEO results on hadron spectroscopy

42
Recent CLEO results on hadron spectroscopy Tomasz Skwarnicki Syracuse University ncentrate on the most recent results (mostly quarkonium spectroscop

description

Recent CLEO results on hadron spectroscopy. Tomasz Skwarnicki Syracuse University. Concentrate on the most recent results (mostly quarkonium spectroscopy). Production of b-quark hadrons. G ¡( 3S ) ~ 24 keV. c. G ¡( 4S ) ~ 24 000 keV. W. q. g. p. p. e +. e +. b. B ( s ) (*). b. - PowerPoint PPT Presentation

Transcript of Recent CLEO results on hadron spectroscopy

Page 1: Recent CLEO results on hadron spectroscopy

Recent CLEO results on hadron spectroscopy

Tomasz SkwarnickiSyracuse University

Concentrate on the most recent results (mostly quarkonium spectroscopy).

Page 2: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 2

Production of b-quark hadrons

SSS S,5S

s

Other states

b

b b

b

e

e

e

e

Soft g

Hard g

Long distance interactions

Short distance interactions

bb spectroscopy bq, (cq, cc) spectroscopy

W

3S ~ 24 keV

4S ~ 24 000 keV

s

c

q

Page 3: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 3

• B physics runs ((4S)) at CLEO ended in mid 2001.

1

10

100

fb-1

/year

0.1

30.001

0.01

History of CLEO/CESR

(1S)(3S) (2S)

(3S) (2S)(1S)

BaBar

Belle

• CLEO-c phase 2003 – (2007)

CLEO-c

• Long runs at (5S) (3S), (2S),(1S) in 2001 – 2002.

(5S)

or #

of r

eson

ance

s

Page 4: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 4

CLEO-III data samples

• CLEO “owns” the field of spectroscopy

• Recently more than 10-fold increase in statistics for the narrow resonances over the previous generation of experiments

• Except for a few systematics limited measurements CLEO is no longer competitive in B physics

(1S)

(3S)

(2S)

(in millions of resonance decays)

(4S)

Continuum below (4S)

(in integrated luminosity fb-1)

• Large increase in statistics for 5S with much improved detector leads to a measurement of Bs production rate

(5S)

Page 5: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 5

Superconducting CESR-cwiggler magnet (2.1 T)

Wigglers needed for low energy operations to increase radiation damping(to keep the size of the beams small)

e+e- collider

No.Of

rings

Instantaneous peak luminosity cm-2 s-1

Beauty Threshold Region

CESR(-b) 1 1.2 1033

PEP-II 2 9.2 1033

KEK-B 2 13.9 1033

Charm Threshold Region

SPEAR II 1 6 1029

BEPC 1 5 1030

CESR-c1 wiggler (fall 2002)

12 1031

6 wigglers (fall 2003) 5 1031

12 wigglers (fall 2004) projected

6 1031

Up to 3 1032

BEPC-II (2007) 2 1 1033

CESR-cCESR(-b)

CESR (single ring machine) PEP-II (double ring machine)

Page 6: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 6

CLEO-c data samples

• Proposed CLEO-c program:– 3 / 3 / 1 fb-1 at Ebeam=3770 / 4140 / 3100 MeV for DD / DsDs / J/– Would also like to take some(2S), c data and perform scan of R – Likely to be revised if CESR-c doesn’t reach its projected luminosity soon

• Advantages of threshold production of D(s) mesons:– Fully reconstruct one D(s) meson, then look at the other– No backgrounds (often limiting factor for D studies at B factories and fixed target

experiments)– Measurement of absolute branching fractions

~107 pb-1~6 pb-1We are continuingto run at (3770)

3640 3680 3720 3760 3800 3840

Page 7: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 7

CLEO-c data samples

• (2S) sample smaller (larger) than that of BES (Crystal Ball) with much better detector

(3770)

• (3770) sample much larger than those of Mark III and BES with much better detector

(2S)

(in millions of resonance decays)

Page 8: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 8

CLEO EM Calorimeter COIL (1.5T)

Detector Calorimetercrystals

E resolution at E=100 MeV

Number of inner segments (crystals)

Inner radius(cm)

CLEO-III CsI(Tl) 4.8 MeV 7800 100

CUSB-II BGO 4.2 MeV 72 8

Crystal Ball NaI(Tl) 4.8 MeV 672 25

BES-II Sampling 70 MeV

• Essential for photon spectroscopy– ~8000 CsI(Tl) crystals + photo-diodes– First crystal calorimeter in magnetic

field• In operation since 1990 (CLEO II)

Much better efficiencyin hadronic events

Narrower0 width

Page 9: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 9

CLEO III Tracking• Large drift chamber in 1.5T field (lowered to 1.0T for

CLEO-c)

Stepped endplate toaccommodate newmicro- quadrupoles

Deconstruction of CLEO II DRCLEO III DR

Page 10: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 10

CLEO-c Inner Wire Chamber • CLEO-III Silicon Vertex Detector deteriorated due to radiation damage

and had to be replaced• “ZD Inner Chamber” commissioned Aug/Sep 2003 • The only new detector component of CLEO-c

6 stereo layers 53 to 105 mm radius

Detector Magnetic field

p /p resolution at p=1 GeV

dE/dXresolution

CLEO-c 1.0T 0.5% 6.0%

BES-II 0.4T 2.4% 8.5%

Mark-III 0.4T 2.1%

Tracking resolution

• Much improved momentum and dE/dX resolution compared to the previous charm-threshold experiments

Page 11: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 11

CLEO-III RICH• LiF – MWPC (Methane +

TEA) proximity focused RICH

RadiatorsLiF

PhotodetectorsMWPC

(Methane+TEA)

CLEO-c

B physics

Kaon efficiency = 0.80= 0.85= 0.90

First detector operating at charm threshold with excellent particle ID

In operation since 2000

Page 12: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 12

Measurement of fD

Calculate Missing-Massto separate

signal (MM=m=0)from backgrounds:

Page 13: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 13

Measurement of fD

D- KL -

D- -

8 events (1 background event expected)

Based on 6 wiggler data: 60 pb-1 (29k tagged events)

B(D- -) = (3.5±1.4±0.6) 10-4

fD- = (202±41±17) MeV

First statistically compelling evidence for this decay. (BES 2.7±1.7 events hep-ph/0400150)Need much larger statistics to constrain the theory (data taking in progress!)The same type of calculations used for fB needed for extraction of Vtd from B0B0 mixing

hep-ex/0411050 Accepted by PRD

Page 14: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 14

D meson BRs

0.0380±0.0009

0.130±0.008

0.075±0.003

0.092±0.006

0.0141±0.0008

Using double-tag method (Preliminary)

PDG 2004

Future goal: reduce errors to 1-2% for the major modes

No surprises

Page 15: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 15

Heavy Quarkonia bb

S= 0 1 0 1 0 1 L= 0 1 2

?

cc

n 2S+1 L J

S= 0 1 0 1 0 1 0 1 L= 0 1 2 3

n=1

n=2

n=3

n=4

Hyperfine splitting: 1 2S S

Fine splitting:

1 2 1 2

,L S

S r S r S S

n=1

n=2

Hyperfine splitting

Fine splitting

J 1974

’’ 1974

c 1975

c 1980

c’’ 1982 hc

19861992

2002

1977

’’ 1977

’’’ 1979

b 1983

b’ 1982

2 2002’’’ 1977

’IV 1981

2004

CLEO-III

E835CLEO-c

Belle,BaBar,CLEO

Page 16: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 16

Fine and Hyperfine Structure

• nS states are special:– Have no fine structure (L=0 thus J=S)– The only states for which hyperfine structure is predicted to be significant– Observed in charmonium:

• M(J/) – M(c)= (116±2) MeV; M(’) – M(c’)= (48±4) MeV

• If long range spin-spin forces are negligible then for L>0:– MS=0 = M(c.o.g.) = J (2J+1) MJ

S=1 / J (2J+1)– M(hc)=(5 M(c2)+3 M(c1) + M(c0)) / 9 = (3525.3±0.1) MeV ???

n, L

c.o.g

L S

Spin-orbit

1 2 1 2r rS S S S

Tensor

J = L - 1

J = L + 1

J = L1 2S S

Spin-spin

J = L

S = 0 S = 1Fine structureHyperfine structure

Page 17: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 17

Inclusive search for hc

0

hc

c

• Require 0 recoil mass to be consistent with the c mass

• Plot 0 recoil mass (should reflect the hc mass)

hc

156 ± 48 events3.3significant

anything

Page 18: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 18

Exclusive search for hc

0

hc

c KsK,2K0,2K24,2

• Reconstruct c in one of the exclusive decay modes

• Then follow the same steps as in the inclusive analysis

hc15.0 ± 4.2 events5significant

c mass sidebandsData MC

Signal sample ’ 0 hc 0 c

Optimize c reconstruction on ’ cc

Page 19: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 19

Preliminary CLEO results for hc mass

For comparison: hep-ex/040085Preliminary E835 results:

Disapprove E760 evidence for pp hc J ~13 pp c events in the peak~3.3 significance for hc

M(hc) = 3525.8±0.2±0.2 MeV

E835

• Inclusive analysis: M(hc)= (3524.8±0.7) MeV• Exclusive analysis: M(hc)= (3524.4±0.9) MeV• Together:

M(hc)= ( 3524.7 ± 0.6 ± 1.0 ) MeV M(c

cog) - M(hc) = ( 0.6 ±1.2 ) MeV• Consistent with zero• In any case small as expected

• The analysis is still in progress and numbers will change slightly before they are published

Page 20: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 20

Search for X(3872) in fusion and ISR• Reconstruct exclusive J/, J/ events in CLEO-

III high energy data (15 fb-1)Untagged fusionJPC=0±+,2±+,…

Initial State RadiationJPC=1

_ _

No signal found

hep-ex/0410038Accepted by PRL

Page 21: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 21

Search for X(3872) in fusion and ISRAssuming B(B± → K± X) ≈ B(B± → K± ψ’) → B(X → π+ π- J/ψ) ≈ 0.02our limits imply:

(2J+1)X(3872)) < 0.65 keV

• ¼ that for χc0 and χc2

• Ackleh &Barnes prediction for 11D2 state: (2J+1)(11D2) keVee(X(3872)) < 0.42 keV• comparable to ψ(3770)• ½ that of ψ(4040)

Page 22: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 22

Determination of B((nS) )Measure yields on and off the resonance peaks

• Much larger samples than previously available

• Much better detector than previously available (tracking, calorimeter, muon system)

Page 23: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 23

• Compared to the previous measurements:– Good agreement for (1S)– Substantial disagreement for (2S), (3S)

Determination of B((nS) )CLEO-III

hep-ex/0409027Accepted by PRL

Page 24: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 24

Determination of tot((nS))

B((nS) ) are important for determination of tot((nS))

and CLEO-III values for B and PDG values for B

• Important change for many comparisons of data (Bx) vs theory (x): Bx=x/tot

Page 25: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 25

Photon transitions – E1

123

456

7891011

1213,14,15

16,1718

J=210

J=210

BR * tot E1

E M(n3PJ)

• Electric Dipole Transitions

g g gHadrons (…0..)

g g g

123

5,46

(2S)

21 3

65,4

(2S)87 9

65,4

1211,10

1514,13

16,1718

(3S)

22 3

E1 f f iQ iL r Le n n E

g g

cc

bb

Page 26: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 26

Photon transitions – E1

123

789

J=210

J=210

(2S)

(2S)

cc

bb(3S)

1

1 2

2

3

3 879

hep-ex/0408133 Accepted by PRD

hep-ex/0408133 Accepted by PRL

16,1718

(3S)

18

16,1733S1 13P0

Page 27: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 27

Comparison to previous measurements - examples(2S) bJ(1P2) (3S) bJ(2P2)

Good agreementon Ei.e.mbJ

Disagreements on B((3S) bJ(2PJ))

Improvedprecision

Page 28: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 28

Fine splitting of P-states• Tests of relativistic corrections to the mass spectrum

01

12

mmmm

r

r(1P) 0.570.010.01

r(2P) 0.580.010.01

r(1P) 0.4900.0020.003

bb

cc

Nearly equal, against most of theoretical predictions.}

The results favor confining potential of effective scalar type

(=0.8 for pure Coulomb potential)

Page 29: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 29

Relativistic effects in transition rates• In non-relativistic approximation E1 matrix

elements are spin (J) independent2

E1 E13 3(2 1) (2 1)

( )f f i i JL L

Jr

B in n fE E

(J=2)/(J=1)b(2P): (J=0)/(J=1)

(J=0)/(J=2)

1.000.010.050.760.020.070.760.020.09

(J=2)/(J=1)b(1P): (J=0)/(J=1)

(J=0)/(J=2)

1.010.020.080.820.020.060.810.020.11

(J=2)/(J=1)c(1P): (J=0)/(J=1)

(J=0)/(J=2)

1.500.020.050.860.010.060.590.010.05

Ratio of 3(2 1)( ( 1) )J

JB nS n P

E

Consistent with the NRexpectations

Relativistic effects in J=0are expected to be the largest

Smaller c-quark massand substantial 2S-1D1

mixing}cc

bb

Page 30: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 30

E1 matrix elements• Large relativistic

corrections (triangles) needed to describe E1 rates in charmonium.

• Corrections small in bottomonium.

• Small matrix element 33S1 13PJ difficult to predict (cancellations)

Date ofpublication 33S1 13PJ

33S1 23PJ

S.Godfrey

23S1 13PJ

-+

McC

lary

83

Gro

tch

84 23S1 13PJ

23S1 13PJ

33S1 23PJ

33S1 13P0

<1P 0|r

|3S>

“Spin averaged” matrix elements

bb

bb

cc

Page 31: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 31

Photon transitions – M1

4

A way to reach singlet states

Crystal Ball claimed observation of all M1 transitions in charmonium ~20 years ago (Direct: “1”, “2”, Hindered: “4”)

1

2

365

• Magnetic Dipole Transitions

3

g g

2

4

(2S)

(2S)

4

2

(3S)

5

6

3

3

2 2

M3

1 2

DIRECT

1

tiny

HINDERED

l

0

arge

f i

f i

f i

i f

i f

Q

Q

n n

n

L L

n L n L

n L n

E

E

n

L

mE

en n

cc

bb

Page 32: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 32

Search for b(11S0)

• No signal found for this or any other M1 transition in the Upsilon system

Hindered M1

E1

E1

E123PJ13S1 M1

33S111S0

M123S111S0(2S)

(3S)

cc

bb

4

6

(4)

(6)

Page 33: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 33

M1 matrix elements

• Even recent calculations only marginally consistent with our upper limit on 33S1 11S0

13S1 11S0

23S1 11S0

23S1 11S0

33S1 21S0

33S1 11S0

allowed range

Lahd

e 03

Ebe

rt 0

3

Date ofpublication

Page 34: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 34

Inclusive (2S) X J/(1S), J/(1S) +-

cut cutcut cut

MCLog

scal

e !

• Large statistics, good agreement with MC precision measurement of B((2S) X J/(1S))

Page 35: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 35

Exclusive (2S) X J/(1S), J/(1S) +-

Page 36: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 36

Exclusive (2S) X J/(1S), J/(1S) +-

Page 37: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 37

(2S) X J/(1S), J/(1S) +-

• Preliminary results presented at QWG workshop Oct 2004

• Improved results are being prepared for publication.

Page 38: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 38

Exclusive hadronic (2s) decays

Log scale!

• A lot of theoretical complications e.g.:

– Interference with continuum– s and relativistic

corrections• Happy with agreements

within a factor of ~2

Page 39: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 39

Exclusive hadronic (2s) decays

• (2s) Dalitz plot distinctively different than continuum or J/(1S)

BESJ/

CLEO(2S)

Page 40: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 40

Exclusive hadronic (2s) decays

Linear scale

Page 41: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 41

Continuum production of PV at 3.67 GeVhep-ex/0407028

Page 42: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 42Summary• First statistically compelling measurement of fD-

• Observe highly significant (2S)0hc,hc c signal with the hc mass consistent with the c.o.g. of the cJ states

• Non-observation of X(3872) and ee X(3872). • Precision measurements of B((nS) ). The results for

(2S),(3S) significantly different from the PDG values, impacting estimates of the total widths of these states.

• Precision measurements of photon transitions from (2S),(2S),(3S). More sensitive tests of relativistic corrections in the potential model calculations.

• Precision measurements of inclusive and exclusive transition rates for (2S) X J/(1S). Some significantly different from the previous measurements.

• Many new insights into B((2S)X)/B(J/(1S) X) for 2- and multi-body exclusive final states.

• First measurements of continuum productions of 2-body pseudo scalar-vector final states at 3.67 GeV. Ratios of cross-sections in rough agreement with SU(3) except for K*0K0