Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived...

24
Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1 , Chris Velden 1 , Rolf Langland 2 1- Cooperative Institute for Meteorological Satellite Studies (CIMSS) 2- Naval Research Laboratory, Monterey, CA Research support provided by the Office of Naval Research Grant N00014-1-0251

Transcript of Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived...

Page 1: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived

Atmospheric Motion Vectors (AMVs)

Howard Berger1, Chris Velden1, Rolf Langland2

1- Cooperative Institute for Meteorological Satellite Studies (CIMSS)2- Naval Research Laboratory, Monterey, CA

Research support provided by the Office of Naval ResearchGrant N00014-1-0251

Page 2: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Outline

• Atmospheric Motion Vector (AMV) Introduction– TPARC Experiments– MTSAT Hourly AMV Datasets– MTSAT Rapid-Scan AMVs

• Data Assimilation Studies (TPARC)– NOGAPS MTSAT AMVs Data Impact Experiments

• Experimental AMV Quality Improvements• Quality Indicator Flags• Layer Height Attribution

Page 3: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

AMV ProductionBrief Review

• Target and Track Clouds and WV Structures in Sequential Multi-Spectral Satellite Images

• Assign Heights to the Vectors

(Largest Source of Error)

• Quality Control Post-Processing/Filtering

Page 4: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

MTSAT AMVs produced hourly (by UW-CIMSS) during TPARCExample: Typhoon Nuri -- 20th Aug. 2008

Page 5: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

AMVs From MTSAT-2 Rapid Scans

• The routine, hourly MTSAT AMV datasets are produced from images that are 30-60 minutes apart

• Special images were also made available during selected periods of TPARC typhoon events, courtesy of JMA, at 4-15 minute sequences (rapid scans)

• As part of TPARC/TCS08, special AMV datasets were produced by UW-CIMSS utilizing the rapid-scan imagery during Typhoons Sinlaku and Jangmi

• Studies are underway to utilize these high-res. AMVs to better capture mesoscale features

Page 6: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Example of AMVs from MTSAT-2 Rapid Scan Images

NOGAPS 4DVAR assimilation and forecast impact studies underway

Future plans for COAMPS-TC assimilation experiments

Left: AMV field produced from a routinely available 60-min sequence of images during Typhoon Sinlaku

Bottom Left: Same as above, but using a 15-min rapid scan sequence

Bottom Right: Same as above, but using a 4-min rapid scan sequence (much improved coverage/detail of TC flow fields)

Page 7: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Example of Rapid Scan AMV CoverageValid 07z on 11 September, 2008

30-minute AMVs 15-minute AMVs 4-minute AMVs

Page 8: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

One Application: Calculate Typhoon Cloud-Top Vector Quantities (e.g., Divergence) from Rapid-Scan AMVs

Typhoon Sinlaku

Page 9: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Data Assimilation Experiments (TPARC)

• Test forecast impact of assimilating hourly MTSAT AMV datasets using NRL 4DVAR

• Assess NOGAPS forecasts during TPARC:• CTL – All conventional and available special

TPARC observations included• EX1 – CTL with UW-CIMSS AMVs removed

Page 10: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

850 hPa in the Tropics: Hourly MTSAT AMVs have positive impact

Page 11: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

700 hPa in the Tropics: Hourly MTSAT AMVs have negative impact

Page 12: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

500 hPa in the Mid-Lats: Hourly MTSAT AMVs have

positive impact, particularly late in the forecast.

Page 13: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Experimental AMV Quality Improvements

• Quality Indicator Flags

• Layer Height Attribution

Page 14: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Quality Indicator Flags

The “Expected Error” Indicator:

• Log-Linear regression developed against co-located AMV-RAOB vector differences

log(AMV RAOB 1)a0 a1x1 a2x2 ...a9x9

EE ea0 a1x1 a2x2 ...a9x9 1

Page 15: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

The “Expected Error” Quality Indicator(Adaptation of Le Marshall et al. 2004)

1. Speed Test2. Direction Test3. Vector Difference Test4. Local Consistency Test5. Forecast Test

6. AMV Speed7. Assigned Pressure Level

8. Model Wind Shear (200 hPa below, 200 hPa above)9. Model Temperature Difference (200 hPa below, 200 hPa above)

EE predictors:

Vector Quality Predictors(Essentially the existing AMV“QI” quality indicator)

AMV Predictors

Environmental Predictors

Page 16: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Impact of EE on TPARC MTSAT Dataset: RMS Vector Difference

Act

ual R

MS

Vec

tor

Err

or (

ms-1

)

EE Maximum (ms-1)

Page 17: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

EE Impact - Summary• Lowering the EE threshold improves the AMV RMS

vector difference compared to collocated RAOB values…

• …But at the cost of significantly fewer AMVs and lower average vector speed (higher windspeed AMVs more likely filtered)

• Can we use the existing QI and the EE together to more efficiently reduce AMV RMS error while maintaining similar average speed statistics?

Page 18: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Combined QI/EE Strategy

• For slower AMVs, use singular EE thresholds for filtering

• For faster AMVs, retain AMVs with high QI values

• The trick is setting/optimizing the (QI/EE/Speed) thresholds

Page 19: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

QC -- Expected Error Threshold OnlyE

xpected Error (m

s-1)

Note: No QC performed on RAOB datasets

Page 20: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

QC -- Expected Error Threshold Only

AMVs too slow, but retained

Faster, Better Quality AMVs, but removed

Expected E

rror (ms

-1)

Page 21: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

QC – Combined EE and QI thresholds to retain faster AMVsE

xpected Error (m

s-1)

Page 22: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

AMV Height Assignment• Traditional approach: Estimate the vector height and assign to a

single tropospheric level

• New approach: Estimate the vector height as above, then re-assign the AMV to an optimum tropospheric layer determined by vector properties and a statistical relationship developed on collocated RAOB match datasets (Velden and Bedka, 2009)

• The layer attribution reduces vector error and better represents the motion being indicated by the AMVs

• These experimental layer heights are included in AMV BUFR files being produced at UW-CIMSS, and disseminated to interested data assimilation centers for further evaluation

Page 23: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Example: GOES-12 Upper-Level IR AMV Height Assignment in Strong Vertical Wind Shear Regimes

(from Velden and Bedka, JAMC, 2009)

Wind Shear calculated from a 50 hPa layer of Sonde winds.

In higher vertical shear environments, layer averaging of AMVs lowers RMS difference with collocated RAOB as compared to a single

tropospheric level (0 Thickness)

Page 24: Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger 1,

Summary• Hourly AMVs allow for more consistent temporal coverage

of the atmospheric flow. 4DVAR DA should be able to effectively utilize this frequently available information.

• Rapid Scan AMVs can better capture mesoscale flow features such as present in evolving Tropical Cyclones, leading to more precise kinematic diagnostics. Promising applications in mesoscale data assimilation as well.

• The attributes of two AMV quality indicators (Expected Error and QI) can be employed in combination for improved quality control and dataset filtering.

• AMV motions may be better represented and assimilated by assigning their heights to tropospheric layers, rather than discrete levels. NWP evaluations are planned.