RECAP: GHK vs LINEAR I-V RELATIONSHIPlmate/teaching/3G2_2008/02_membpot...RECAP: GHK vs LINEAR I-V...
Embed Size (px)
Transcript of RECAP: GHK vs LINEAR I-V RELATIONSHIPlmate/teaching/3G2_2008/02_membpot...RECAP: GHK vs LINEAR I-V...

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RECAP: GHK vs LINEAR I-V RELATIONSHIP
1
concentration
flux
electricpotential
flux
concentration
1
1
2
2
GHK:
linear:long channel →
short channel → I!(V ) = PF 2
RT· V · ci ! ce e"
V FRT
1! e"V FRT
I!(V ) = PF 2
RT
ce ! ci
ln ce/ci! "# $g
·%V ! RT
Fln
&ce
ci
'(
! "# $V0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RECAP: GHK vs LINEAR I-V RELATIONSHIP
1
concentration
flux
electricpotential
flux
concentration
1
1
2
2
GHK:
linear:long channel →
short channel →
I!
V (mV)
GHK
linear
I!(V ) = PF 2
RT· V · ci ! ce e"
V FRT
1! e"V FRT
I!(V ) = PF 2
RT
ce ! ci
ln ce/ci! "# $g
·%V ! RT
Fln
&ce
ci
'(
! "# $V0
V0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RECAP: GHK vs LINEAR I-V RELATIONSHIP
1
same current at• ← Nernst potential• ← Nernst-Planck eq
V = V0
V = 0
concentration
flux
electricpotential
flux
concentration
1
1
2
2
GHK:
linear:long channel →
short channel →
I!
V (mV)
GHK
linear
I!(V ) = PF 2
RT· V · ci ! ce e"
V FRT
1! e"V FRT
I!(V ) = PF 2
RT
ce ! ci
ln ce/ci! "# $g
·%V ! RT
Fln
&ce
ci
'(
! "# $V0
V0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RECAP: GHK vs LINEAR I-V RELATIONSHIP
1
same current at• ← Nernst potential• ← Nernst-Planck eq
V = V0
V = 0
concentration
flux
electricpotential
flux
concentration
1
1
2
2
GHK:
linear:long channel →
short channel →
I!
V (mV)
GHK
linear
I!(V ) = PF 2
RT· V · ci ! ce e"
V FRT
1! e"V FRT
I!(V ) = PF 2
RT
ce ! ci
ln ce/ci! "# $g
·%V ! RT
Fln
&ce
ci
'(
! "# $V0
V0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RECAP: GHK vs LINEAR I-V RELATIONSHIP
1
same current at• ← Nernst potential• ← Nernst-Planck eq
V = V0
V = 0
concentration
flux
electricpotential
flux
concentration
1
1
2
2
GHK:
linear:long channel →
short channel →
I!
V (mV)
GHK
linear
I!(V ) = PF 2
RT· V · ci ! ce e"
V FRT
1! e"V FRT
I!(V ) = PF 2
RT
ce ! ci
ln ce/ci! "# $g
·%V ! RT
Fln
&ce
ci
'(
! "# $V0
V0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RECAP: GHK vs LINEAR I-V RELATIONSHIP
1
same current at• ← Nernst potential• ← Nernst-Planck eq
V = V0
V = 0
current
membranevoltage
GHK:
linear:long channel →
short channel →
I!
V (mV)
GHK
linear
I!(V ) = PF 2
RT· V · ci ! ce e"
V FRT
1! e"V FRT
I!(V ) = PF 2
RT
ce ! ci
ln ce/ci! "# $g
·%V ! RT
Fln
&ce
ci
'(
! "# $V0
V0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RECAP: GHK vs LINEAR I-V RELATIONSHIP
1
same current at• ← Nernst potential• ← Nernst-Planck eq
V = V0
V = 0
current
membranevoltage
separation oftime-scales
GHK:
linear:long channel →
short channel →
I!
V (mV)
GHK
linear
I!(V ) = PF 2
RT· V · ci ! ce e"
V FRT
1! e"V FRT
I!(V ) = PF 2
RT
ce ! ci
ln ce/ci! "# $g
·%V ! RT
Fln
&ce
ci
'(
! "# $V0
V0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
V
membranew/ channels
I1c1ec1
i
φ∗inside outside

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
Im(V ) =!
i
Ii(V )V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
Im(V ) =!
i
Ii(V )
Im(Vrest) = 0V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
Im(V ) =!
i
Ii(V )
Im(Vrest) = 0V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
none of the individual currentsare necessarily zero!

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
Im(V ) =!
i
Ii(V )
Im(Vrest) = 0
GHK: Vrest = !RT
Fln
!"j|zj=!1 Pj cj
e +"
j|zj=+1 Pj cji
"j|zj=!1 Pj cj
i +"
j|zj=+1 Pj cje
#
= !RT
Fln
!PNa+
$Na+
%i+ PK+ [K+]i + PCl!
$Cl!
%e
PNa+
$Na+
%e+ PK+ [K+]e + PCl!
$Cl!
%i
#
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
none of the individual currentsare necessarily zero!

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
Im(V ) =!
i
Ii(V )
Im(Vrest) = 0
linear:
GHK: Vrest = !RT
Fln
!"j|zj=!1 Pj cj
e +"
j|zj=+1 Pj cji
"j|zj=!1 Pj cj
i +"
j|zj=+1 Pj cje
#
= !RT
Fln
!PNa+
$Na+
%i+ PK+ [K+]i + PCl!
$Cl!
%e
PNa+
$Na+
%e+ PK+ [K+]e + PCl!
$Cl!
%i
#
Vrest =!
j gj Vj!j gj
=gNa+ VNa+ + gK+ VK+ + gCl! VCl!
gNa+ + gK+ + gCl!
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
none of the individual currentsare necessarily zero!

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
Im(V ) =!
i
Ii(V )
Im(Vrest) = 0
linear:
GHK: Vrest = !RT
Fln
!"j|zj=!1 Pj cj
e +"
j|zj=+1 Pj cji
"j|zj=!1 Pj cj
i +"
j|zj=+1 Pj cje
#
= !RT
Fln
!PNa+
$Na+
%i+ PK+ [K+]i + PCl!
$Cl!
%e
PNa+
$Na+
%e+ PK+ [K+]e + PCl!
$Cl!
%i
#
Vrest =!
j gj Vj!j gj
=gNa+ VNa+ + gK+ VK+ + gCl! VCl!
gNa+ + gK+ + gCl!
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗
depends on channel model
inside outside
none of the individual currentsare necessarily zero!

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
RESTING MEMBRANE POTENTIAL
2
when all channel currents cancel
current
membranevoltage
current
1
2
Im(V ) =!
i
Ii(V )
Im(Vrest) = 0V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗
depends on channel model
inside outside
none of the individual currentsare necessarily zero!

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE MEMBRANE AS A CAPACITOR
3
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside current
membranevoltage
current
1
2
+++
---
Cm

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE MEMBRANE AS A CAPACITOR
3
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside current
membranevoltage
current
1
2
+++
---
Cm

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE MEMBRANE AS A CAPACITOR
3
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside current
membranevoltage
current
1
2
+++
---
opposite charges accumulatedon opposing sides of an insulator (lipid bilayer)
membrane acts as a capacitor
Cm

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE MEMBRANE AS A CAPACITOR
3
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside current
membranevoltage
current
1
2
+++
---
opposite charges accumulatedon opposing sides of an insulator (lipid bilayer)
membrane acts as a capacitor
Cm
Cm V = Q

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE MEMBRANE AS A CAPACITOR
3
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside current
membranevoltage
current
1
2
+++
---
opposite charges accumulatedon opposing sides of an insulator (lipid bilayer)
membrane acts as a capacitor
Cm
Cm V = Q
Cmd
dtV (t) =
d
dtQ(t) = IC(t)

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm+++
---

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside+++
---

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside+++
---
I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside+++
---
I2I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside
IC
+++
---
I2I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside
Kirchoff’s 1st law: currents flowing in and out of a nodemust be equal
IC
+++
---
I2I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside
Im = I1 + I2
Kirchoff’s 1st law: currents flowing in and out of a nodemust be equal
IC
+++
---
I2I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside
Im = I1 + I2
Kirchoff’s 1st law: currents flowing in and out of a nodemust be equal
IC
+++
---
IC(t) + Im(t) = 0
I2I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside
Im = I1 + I2
Kirchoff’s 1st law: currents flowing in and out of a nodemust be equal
IC
current balance eq:
+++
---
IC(t) + Im(t) = 0
Cmd
dtV (t) = !Im(t)
I2I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE EQUIVALENT CIRCUIT MODEL
4
current
membranevoltage
current
1
2
V
membranew/ channels
V
I1
I2c2ec2
i
c1ec1
i
φ∗inside outside
Cm
V
Cm
inside
outside
Im = I1 + I2
Kirchoff’s 1st law: currents flowing in and out of a nodemust be equal
IC
current balance eq:
+++
---
IC(t) + Im(t) = 0
Cmd
dtV (t) = !Im(t)
I2I1

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
5
current
membranevoltage
current
1
2
V
Cm
inside
outside
IC INa+ IK+ ICl!
Im = INa+ + IK+ + ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
current balance eq: Cmd
dtV (t) = !INa+(t)! IK+(t)! ICl!(t)
!INa+(t) = gNa+ · (VNa+ ! V (t))!IK+(t) = gK+ · (VK+ ! V (t))!ICl!(t) = gCl! · (VCl! ! V (t))! "# $
driving force

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
5
current
membranevoltage
current
1
2
V
Cm
inside
outside
IC INa+ IK+ ICl!
Im = INa+ + IK+ + ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
Na+ +55 0.01
K+ -75 0.20
Cl- -69 0.05
1.0
VX
(mV)gX!mScm2
"
Cm!µFcm2
"
current balance eq: Cmd
dtV (t) = !INa+(t)! IK+(t)! ICl!(t)
!INa+(t) = gNa+ · (VNa+ ! V (t))!IK+(t) = gK+ · (VK+ ! V (t))!ICl!(t) = gCl! · (VCl! ! V (t))! "# $
driving force

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
5
current
membranevoltage
current
1
2
V
Cm
inside
outside
IC INa+ IK+ ICl!
Im = INa+ + IK+ + ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
Na+ +55 0.01
K+ -75 0.20
Cl- -69 0.05
1.0
VX
(mV)gX!mScm2
"
Cm!µFcm2
"
current balance eq: Cmd
dtV (t) = !INa+(t)! IK+(t)! ICl!(t)
!INa+(t) = gNa+ · (VNa+ ! V (t))!IK+(t) = gK+ · (VK+ ! V (t))!ICl!(t) = gCl! · (VCl! ! V (t))! "# $
driving force
mScm2
µAcm2
mV
µAcm2
µFcm2
1ms
mV

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
6
V
Cm
inside
outside
gNa+ gK+ gCl!
VCl!VK+VNa+
Vrest =gNa+ VNa+ + gK+ VK+ + gCl! VCl!
gNa+ + gK+ + gCl!
Rm =1
gNa+ + gK+ + gCl!
Cmd
dtV (t) = !INa+(t)! IK+(t)! ICl!(t)
= gNa+ (VNa+ ! V (t)) + gK+ (VK+ ! V (t)) + gCl! (VCl! ! V (t))
=1
Rm(Vrest ! V (t))
membrane resistance
resting potential

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
6
V
Cm
inside
outside
Vrest =gNa+ VNa+ + gK+ VK+ + gCl! VCl!
gNa+ + gK+ + gCl!
Rm =1
gNa+ + gK+ + gCl!
Vrest
1/Rm
Cmd
dtV (t) = !INa+(t)! IK+(t)! ICl!(t)
= gNa+ (VNa+ ! V (t)) + gK+ (VK+ ! V (t)) + gCl! (VCl! ! V (t))
=1
Rm(Vrest ! V (t))
membrane resistance
resting potential

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
6
V
Cm
inside
outside
Vrest =gNa+ VNa+ + gK+ VK+ + gCl! VCl!
gNa+ + gK+ + gCl!
Rm =1
gNa+ + gK+ + gCl!
Vrest
1/Rm
Cmd
dtV (t) = !INa+(t)! IK+(t)! ICl!(t)
= gNa+ (VNa+ ! V (t)) + gK+ (VK+ ! V (t)) + gCl! (VCl! ! V (t))
=1
Rm(Vrest ! V (t))
K+ Na+
-75 mV +55 mVVrest
gNa+gK+
membrane resistance
resting potential

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
7
V
Cm
inside
outside
Vrest
1/Rm
K+ Na+
-75 mV +55 mVVrest
gNa+gK+
d
dtV (t) =
Vrest ! V (t)!m
, !m = Cm · Rm
membranetime const

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE CELL AS AN RC CIRCUIT
7
V
Cm
inside
outside
Vrest
1/Rm
K+ Na+
-75 mV +55 mVVrest
gNa+gK+
V (t) = Vrest ! (Vrest ! V0) e! t
!m
V (0) = V0
d
dtV (t) =
Vrest ! V (t)!m
, !m = Cm · Rm
membranetime const

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
THE CELL AS AN RC CIRCUIT
7
V
Cm
inside
outside
Vrest
1/Rm
V
Vrest
V0
t!m
K+ Na+
-75 mV +55 mVVrest
gNa+gK+
V (t) = Vrest ! (Vrest ! V0) e! t
!m
V (0) = V0
d
dtV (t) =
Vrest ! V (t)!m
, !m = Cm · Rm
membranetime const

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
THE CELL AS AN RC CIRCUIT
7
V
Cm
inside
outside
Vrest
1/Rm
V
Vrest
V0
t
1e
(Vrest ! V0)
!m
K+ Na+
-75 mV +55 mVVrest
gNa+gK+
V (t) = Vrest ! (Vrest ! V0) e! t
!m
V (0) = V0
d
dtV (t) =
Vrest ! V (t)!m
, !m = Cm · Rm
membranetime const

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
THE CELL AS AN RC CIRCUIT
7
V
Cm
inside
outside
Vrest
1/Rm
V
Vrest
V0
t
1e
(Vrest ! V0)
!m
K+ Na+
-75 mV +55 mVVrest
gNa+gK+
•Na+ and K+ conductances setthe resting membrane potential
•membrane potential tends towardsthe resting membrane potentialexponentially
•speed of convergence depends onthe overall membrane conductance
V (t) = Vrest ! (Vrest ! V0) e! t
!m
V (0) = V0
d
dtV (t) =
Vrest ! V (t)!m
, !m = Cm · Rm
membranetime const

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE ACTION POTENTIAL
8
V(mV)
2 ms
Hodgkin & Huxley, 1939

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE ACTION POTENTIAL
8
restingmembranepotential
depo
lari
sed
hype
rpol
aris
ed
V(mV)
2 ms
membranepotentialregimes:
Hodgkin & Huxley, 1939

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE ACTION POTENTIAL
8
restingmembranepotential
depo
lari
sed
hype
rpol
aris
ed
V(mV)
2 ms
membranepotentialregimes:
parts of the action potential:
Hodgkin & Huxley, 1939

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE ACTION POTENTIAL
8
restingmembranepotential
depo
lari
sed
hype
rpol
aris
ed
V(mV)
2 ms
membranepotentialregimes:
parts of the action potential:
depolarisation(upstroke)
Hodgkin & Huxley, 1939

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE ACTION POTENTIAL
8
restingmembranepotential
depo
lari
sed
hype
rpol
aris
ed
V(mV)
2 ms
membranepotentialregimes:
parts of the action potential:
depolarisation(upstroke)
repolarisation(downstroke)
Hodgkin & Huxley, 1939

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE ACTION POTENTIAL
8
restingmembranepotential
depo
lari
sed
hype
rpol
aris
ed
V(mV)
2 ms
membranepotentialregimes:
parts of the action potential:
depolarisation(upstroke)
repolarisation(downstroke)
hyperpolarisation
Hodgkin & Huxley, 1939

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE ACTION POTENTIAL
8
restingmembranepotential
depo
lari
sed
hype
rpol
aris
ed
V(mV)
2 ms
membranepotentialregimes:
parts of the action potential:
depolarisation(upstroke)
repolarisation(downstroke)
hyperpolarisation
Hodgkin & Huxley, 1939
synonyms:•action potential•spike•firing

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
HODGKIN & HUXLEY
9
Alan L. Hodgkin & Andrew F. Huxley:Nobel prize in Physiology and Medicine, 1963

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape
def: Vrest = 0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
def: Vrest = 0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
def: Vrest = 0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
def: Vrest = 0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
def: Vrest = 0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
def: Vrest = 0

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
•relative
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
•relative
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
•relative
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
PROPERTIES OF THE ACTION POTENTIAL
10
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 200
5
10
15
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
!20
0
20
40
60
80
100
120
V [m
V]
0 5 10 15 20 25 30 35 40 45 500
100
200
I [µ
A/cm
2 ]
t [ms]
shape all-or-none
refractory period
•relative
•absolute
def: Vrest = 0 threshold

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE HODGKIN-HUXLEY MODEL
11
V
Cm
inside
outside
INa+ IK+ ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
current balance eq: Cmd
dtV (t) = !INa+(t)! IK+(t)! IL(t) + Iext(t)
conductances
membranevoltage
driving forces
!INa+(t) = gNa+(t) · (VNa+ ! V (t))!IK+(t) = gK+(t) · (VK+ ! V (t))!IL(t) = gL · (VCl! ! V (t))
-75 mV +55 mV
gNa+gK+
V
K+ Na+

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE HODGKIN-HUXLEY MODEL
11
V
Cm
inside
outside
INa+ IK+ ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
current balance eq: Cmd
dtV (t) = !INa+(t)! IK+(t)! IL(t) + Iext(t)
conductances
membranevoltage
driving forces
!INa+(t) = gNa+(t) · (VNa+ ! V (t))!IK+(t) = gK+(t) · (VK+ ! V (t))!IL(t) = gL · (VCl! ! V (t))
-75 mV +55 mV
gNa+gK+
V
K+ Na+

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE HODGKIN-HUXLEY MODEL
11
V
Cm
inside
outside
INa+ IK+ ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
current balance eq: Cmd
dtV (t) = !INa+(t)! IK+(t)! IL(t) + Iext(t)
conductances
membranevoltage
driving forces
!INa+(t) = gNa+(t) · (VNa+ ! V (t))!IK+(t) = gK+(t) · (VK+ ! V (t))!IL(t) = gL · (VCl! ! V (t))
-75 mV +55 mV
gNa+gK+
V
K+ Na+

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE HODGKIN-HUXLEY MODEL
11
V
Cm
inside
outside
INa+ IK+ ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
current balance eq: Cmd
dtV (t) = !INa+(t)! IK+(t)! IL(t) + Iext(t)
conductances
membranevoltage
driving forces
!INa+(t) = gNa+(t) · (VNa+ ! V (t))!IK+(t) = gK+(t) · (VK+ ! V (t))!IL(t) = gL · (VCl! ! V (t))
-75 mV +55 mV
gNa+gK+
V
K+ Na+

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
12
current no currentno current

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
12
reaction schemefor channel
current no currentno current

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
12
reaction schemefor channel
current no currentno current
g(S00)g(S01)g(S10)g(S11)g(S20)g(S21)
channelconductance
depends on state

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
12
reaction schemefor channel
current no currentno current
!(V )"(V )#(V )$(V )
g(S00)g(S01)g(S10)g(S11)g(S20)g(S21)
rate constantsdepend on
membrane potential
channelconductance
depends on state

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
13
• each channel is composed of gates• a channel is only open if all its gates are open• gates open independently
the simplified view

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
13
• each channel is composed of gates• a channel is only open if all its gates are open• gates open independently
the simplified view
g(t) = g!
x
x(t)

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
13
• reaction scheme for a gate:
• each channel is composed of gates• a channel is only open if all its gates are open• gates open independently
the simplified view
C O!x(V )
!x(V )
g(t) = g!
x
x(t)

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
13
• reaction scheme for a gate:
• each channel is composed of gates• a channel is only open if all its gates are open• gates open independently
the simplified view
C O!x(V )
!x(V )
d
dtx(t) = !x(V (t)) (1! x(t))! "x(V (t)) x(t)
g(t) = g!
x
x(t)

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
13
• reaction scheme for a gate:
• each channel is composed of gates• a channel is only open if all its gates are open• gates open independently
the simplified view
C O!x(V )
!x(V )
d
dtx(t) = !x(V (t)) (1! x(t))! "x(V (t)) x(t)
g(t) = g!
x
x(t)
steady-state value:
d
dtx(t) =
x!(V (t))! x (t)!x(V (t))
x!(V ) ="x(V )
"x(V ) + #x(V )
!x(V ) =1
"x(V ) + #x(V )
time constant:

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
13
• reaction scheme for a gate:
• each channel is composed of gates• a channel is only open if all its gates are open• gates open independently
the simplified view
C O!x(V )
!x(V )
d
dtx(t) = !x(V (t)) (1! x(t))! "x(V (t)) x(t)
g(t) = g!
x
x(t)
if voltage is kept fixed
0 t
x0
x
x!(V )
!x(V )
1e
(x!(V )! x0)
steady-state value:
d
dtx(t) =
x!(V (t))! x (t)!x(V (t))
x!(V ) ="x(V )
"x(V ) + #x(V )
!x(V ) =1
"x(V ) + #x(V )
time constant:

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
14
in the Hodgkin-Huxley model
gNa+(t) = gNa+ m3(t) h(t)
gK+(t) = gK+ n4(t)

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
14
in the Hodgkin-Huxley model
gNa+(t) = gNa+ m3(t) h(t)
gK+(t) = gK+ n4(t)

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
14
in the Hodgkin-Huxley model
d
dtx(t) = !x(V (t)) (1! x(t))! "x(V (t)) x(t)
d
dtx(t) =
x!(V (t))! x (t)#x(V (t))
gNa+(t) = gNa+ m3(t) h(t)
gK+(t) = gK+ n4(t)

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
14
in the Hodgkin-Huxley model
d
dtx(t) = !x(V (t)) (1! x(t))! "x(V (t)) x(t)
d
dtx(t) =
x!(V (t))! x (t)#x(V (t))
!50 0 50 1000
0$5
1
1$5
2
2$5
3
!' )1
*m,-
. )m.-!50 0 50 1000
0$5
1
1$5
2
2$5
3
" ' )1*m
,-
. )m.-
gNa+(t) = gNa+ m3(t) h(t)
gK+(t) = gK+ n4(t)
!m!m
!h
!h!n
!n

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
14
in the Hodgkin-Huxley model
d
dtx(t) = !x(V (t)) (1! x(t))! "x(V (t)) x(t)
d
dtx(t) =
x!(V (t))! x (t)#x(V (t))
!50 0 50 1000
0$5
1
1$5
2
2$5
3
!' )1
*m,-
. )m.-!50 0 50 1000
0$5
1
1$5
2
2$5
3
" ' )1*m
,-
. )m.-
!50 0 50 1000
0.2
0.4
0.6
0.8
1
x ! [1
]
V [mV]!50 0 50 1000
2
4
6
8
10
" x [ms]
V [mV]
gNa+(t) = gNa+ m3(t) h(t)
gK+(t) = gK+ n4(t)
!m!m
!m
m!
h! !h
!h
!h!n
!n
!n
n!

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
VOLTAGE-GATED ION CHANNELS
14
in the Hodgkin-Huxley model
d
dtx(t) = !x(V (t)) (1! x(t))! "x(V (t)) x(t)
d
dtx(t) =
x!(V (t))! x (t)#x(V (t))
!50 0 50 1000
0$5
1
1$5
2
2$5
3
!' )1
*m,-
. )m.-!50 0 50 1000
0$5
1
1$5
2
2$5
3
" ' )1*m
,-
. )m.-
!50 0 50 1000
0.2
0.4
0.6
0.8
1
x ! [1
]
V [mV]!50 0 50 1000
2
4
6
8
10
" x [ms]
V [mV]
gNa+(t) = gNa+ m3(t) h(t)
gK+(t) = gK+ n4(t)
!m!m
!m
m!
h! !h
!h
!h!n
!n
!n
n!
• activating gate: opens with depolarisation
• inactivating gate: opens with hyperpolarisation
• de(in)activation:(in)activating gate closes

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
THE HODGKIN HUXLEY MODEL
15
V
Cm
inside
outside
INa+ IK+ ICl!
gNa+ gK+ gCl!
VCl!VK+VNa+
current balance eq:
conductances
membranevoltage
driving forces
gating eqs:
-75 mV +55 mV
K+ Na+
gNa+gK+
V
Cmd
dtV (t) = gNa+ m3(t) h(t) (VNa+ ! V (t)) +
+gK+ n4(t) (VK+ ! V (t)) + gL (VL ! V (t)) + Iext(t)
d
dtm(t) =
m!(V (t))!m(t)!m(V (t))
d
dth(t) =
h!(V (t))! h(t)!h(V (t))
d
dtn(t) =
n!(V (t))! n(t)!n(V (t))

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
50
100
V [m
V]
0
0.5
1
gatin
g va
rs [1
]
0
20
g X [mS/
cm2 ]
!1000
0
1000
I X [µA/
cm2 ]
0 5 10 15 200
10
20
I ext [µ
A/cm
2 ]
t [ms]
THE HODGKIN HUXLEY MODEL
16
in action
mh n
gK+
IL
gL
gNa+
IK+
INa+

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
50
100
V [m
V]
0
0.5
1
gatin
g va
rs [1
]
0
20
g X [mS/
cm2 ]
!1000
0
1000
I X [µA/
cm2 ]
0 5 10 15 200
10
20
I ext [µ
A/cm
2 ]
t [ms]
THE HODGKIN HUXLEY MODEL
16
in action
I. depolarisation:• injected current depolarises V• depolarised V activates m• activated m further depolarises V
mh n
gK+
IL
gL
gNa+
IK+
INa+
I.

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
50
100
V [m
V]
0
0.5
1
gatin
g va
rs [1
]
0
20
g X [mS/
cm2 ]
!1000
0
1000
I X [µA/
cm2 ]
0 5 10 15 200
10
20
I ext [µ
A/cm
2 ]
t [ms]
THE HODGKIN HUXLEY MODEL
16
in action
I. depolarisation:• injected current depolarises V• depolarised V activates m• activated m further depolarises V
fastpositivefeedback
mh n
gK+
IL
gL
gNa+
IK+
INa+
I.

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
50
100
V [m
V]
0
0.5
1
gatin
g va
rs [1
]
0
20
g X [mS/
cm2 ]
!1000
0
1000
I X [µA/
cm2 ]
0 5 10 15 200
10
20
I ext [µ
A/cm
2 ]
t [ms]
THE HODGKIN HUXLEY MODEL
16
in action
I. depolarisation:• injected current depolarises V• depolarised V activates m• activated m further depolarises V
II. repolarisation:• depolarised V
activates n and inactivates h• activated n and inactivated h
repolarises V• repolarising V deactivates m
fastpositivefeedback
mh n
gK+
IL
gL
gNa+
IK+
INa+
II.I.

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
50
100
V [m
V]
0
0.5
1
gatin
g va
rs [1
]
0
20
g X [mS/
cm2 ]
!1000
0
1000
I X [µA/
cm2 ]
0 5 10 15 200
10
20
I ext [µ
A/cm
2 ]
t [ms]
THE HODGKIN HUXLEY MODEL
16
in action
I. depolarisation:• injected current depolarises V• depolarised V activates m• activated m further depolarises V
II. repolarisation:• depolarised V
activates n and inactivates h• activated n and inactivated h
repolarises V• repolarising V deactivates m
fastpositivefeedback
slownegativefeedback
mh n
gK+
IL
gL
gNa+
IK+
INa+
II.I.

3G2: Mathematical electrophysiology - Membrane potential, 6 Feb 2008 http://www.gatsby.ucl.ac.uk/~lmate/teaching
0
50
100
V [m
V]
0
0.5
1
gatin
g va
rs [1
]
0
20
g X [mS/
cm2 ]
!1000
0
1000
I X [µA/
cm2 ]
0 5 10 15 200
10
20
I ext [µ
A/cm
2 ]
t [ms]
THE HODGKIN HUXLEY MODEL
16
in action
I. depolarisation:• injected current depolarises V• depolarised V activates m• activated m further depolarises V
II. repolarisation:• depolarised V
activates n and inactivates h• activated n and inactivated h
repolarises V• repolarising V deactivates m
III. hyperpolarisation:• n deactivates and h deinactivates• V returns to resting membrane potential
fastpositivefeedback
slownegativefeedback
mh n
gK+
IL
gL
gNa+
IK+
INa+
III.II.I.