Real Time Control for KAGRA 3km Cryogenic Gravitational Wave Detector in Japan

18
Real Time Control for KAGRA 3km Cryogenic Gravitational Wave Detector in Japan 1 Osamu Miyakawa(ICRR, UTokyo) and KAGRA collaboration October 7, 2013 ICALEPCS at San Francisco, U.S.A ICALEPCS 2013 at San Francisco, Osamu Miyakawa JGW-G1301851

description

Real Time Control for KAGRA 3km Cryogenic Gravitational Wave Detector in Japan. October 7, 2013 ICALEPCS at San Francisco, U.S.A. Osamu Miyakawa(ICRR, UTokyo ) a nd KAGRA collaboration . Gravitational wave. - PowerPoint PPT Presentation

Transcript of Real Time Control for KAGRA 3km Cryogenic Gravitational Wave Detector in Japan

Page 1: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

Real Time Control for

KAGRA3km Cryogenic Gravitational

Wave Detector in Japan

1

Osamu Miyakawa(ICRR, UTokyo)and

KAGRA collaboration

October 7, 2013 ICALEPCS at San Francisco, U.S.A

ICALEPCS 2013 at San Francisco, Osamu MiyakawaJGW-G1301851

Page 2: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

Gravitational wave

2

Gravitational waves!

Coalescing compact binaries (neutron stars, black holes)

Non-axi-symmetric supernova collapse

Non-axi-symmetric pulsar (rotating, beaming neutron star)

Einstein’s Theory: information carried by gravitational radiation at the speed of light

JGW-G1301851

Page 3: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

ICALEPCS 2013 at San Francisco, Osamu Miyakawa 3

Laser

FringeBeam Splitter

MirrorMirror

Lens

Screen

Detection of gravitational wave usinglaser interferometer

GWs move mirrors differentially.We measure the distance between

mirrors using fringe of light.

Expected length change by GW :    ~1x10-19m

JGW-G1301851

Page 4: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

4JGW-G1301851

Network of GW detectorsGEO-HF

LIGO Hanford

LIGO Livingston

Advanced-Virgo

KAGRA

3km 4km

4km

600m3km, underground

LIGO-Australia in proposal

LIGO-India in proposal

Page 5: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

5

Super Kamiokande

KamlandXMASS

3kmKAGRA

CLIO

Location ofKAGRA

• Underground Kamioka mine, Gifu prefecture.• ~250km away from Tokyo.• ~40km away from Japan sea.• This area is being used as cosmic ray observatories.

Tokyo

Kamioka 250km

JGW-G1301851

Page 6: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

   

     

   

KAGRA tunnel entrance (New Atotsu)

6

春 (Spring)

JGW-G1301851

冬 (Winter)

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

Page 7: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

7

   

     

   

Center room

Y arm

X armLaser room

JGW-G1301851

~80% of tunnelDone

Page 8: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

Cryostat construction and test

Low temperature operation at KAGRA to reduce thermal distortion

8JGW-G1301851

Polished sapphire crystal of 200-mm diameter

Inside radiation shield

Page 9: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

Development of optical configurations

Michelson interferometer (MI) Fabry-Perot MI (FPMI)

Power recycling (PRFPMI) Dual recycling (DRFPMI)

Longer light path using Fabry-Perot cavities

Enhance the GW signals by a signal recycling mirror at the dark port

Keep dark condition at detection port to reduce shot noise

CLIO

TAMA, LIGO , VIRGO KAGRA,aLIGO, aVIRGOJGW-G1301851

Higher laser power by a power recycling mirror at laser port

Control

Control

Control

Control

Control

Control

Control

Control Control

Control

Control

Control

Control

To keep interferometer being operated, we need

Very Low Noise Control all the time

Position: ~10DOFsAngle: ~20DOFs

Others: ~100DOFs

Page 10: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

ICALEPCS 2013 at San Francisco, Osamu Miyakawa 10

Client workstations

Remote Control room

Severs

Front room

X end

ADCDAC BO

Timing

slave

Center room

ADCDAC BO

Timing

slave

ADCDAC BO

Timing

slave

ADC

D

A

C

BOTiming

sla ve

Real-time PCs

KAGRA control network designMetal cableFiber cable

Data storage

Computer center

JGW-G1301851

Y end3km

GPS antenna

Timingmaster

Short RFMnetwork

Timingnetwork

Outside

Mine

CircuitDAQnetwork

Generalnetwork

Long RFMnetwork RT control signal: very low latency

GW data: huge amount, low latency

TCP/IP: EPICS, NFS, network boot

RT control signal:very low latency

Circuit

Page 11: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

11ICALEPCS 2013 at San Francisco, Osamu MiyakawaJGW-G1301851

Rack layout for initial setup

Network for Kamioka buiding

Network for front-room in mine

Real time PC testfor Center area

Real time PC test for End area

DAQ servers,storages

Will be expanded when going to mine

Page 12: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

12

Real time model on Matlab, Simulink

ICALEPCS 2013 at San Francisco, Osamu MiyakawaJGW-G1301851

Sensor Feedbackfilter

Globalcontrol

InputMatrix

OutputMatrix

Actuator

Whitening/dewhitening

Switch

6DOF input signal

6DOF output signal

Page 13: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

ICALEPCS 2013 at San Francisco, Osamu Miyakawa 13

Generated C source of Real Time code from GUI

Actual control signals ( filter bank, matrix, trigger, linearization etc. ) will be generated automatically when building real time modules.

. .//Start of subsystem LSC **************************************************// FILTER MODULElsc_pox = filterModuleD(dsp_ptr,dspCoeff,LSC_POX,dWord[0][0],0);

// FILTER MODULElsc_poxfb = filterModuleD(dsp_ptr,dspCoeff,LSC_POXFB,dWord[0][1],0);..for(ii=0;ii<1;ii++){

lsc_nxmtrx[1][ii] =pLocalEpics->ctr.LSC_NXMTRX[ii][0] * lsc_trx + pLocalEpics->ctr.LSC_NXMTRX[ii][1] * lsc_poxdc;

}

// Relational Operatorlsc_operator = ((pLocalEpics->ctr.LSC_XTHRESH) <= (lsc_trx));

// DIVIDEif(lsc_nxmtrx[1][0] != 0.0){

lsc_divide = lsc_pox / lsc_nxmtrx[1][0];}else{

lsc_divide = 0.0;}

JGW-G1301851

Running askernel modules

of Linux

Page 14: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

14

MEMD screen -- GUI for EPICS --

ICALEPCS 2013 at San Francisco, Osamu MiyakawaJGW-G1301851

SensorFeedback

filterGlobalcontrol

InputMatrix Output

Matrix

Actuator

Offsetcontrol

Page 15: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

JGW-G1301851

Local control for Pre-Isolator

15

Real Time PC

ADC/DAC

Anti AliasAnti Image

Pre-Isolator

Client WS

Diagnosis on Mac through wireless LAN

DTT (FFT)

Dataviewer( oscilloscope )

MEDM

Control ON

Page 16: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

16JGW-G1301851 ICALEPCS 2013 at San Francisco, Osamu Miyakawa

DAQ items• ~30 RT front-end PC• ~30 Fiber connected PCIE extension chassis• ~60 ADC (x32ch) : total ~2000ch• ~40 DAC(x16ch): total ~500ch• ~80 DO (x32ch): total ~2000ch

16ch Anti Imaging filter32ch Anti Alias filter

32ch ADC 16ch DAC

ADC

DAC

DIOTiming injection board

Timing reciever

IO chassis (PCIe extension box)

Page 17: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

ICALEPCS 2013 at San Francisco, Osamu Miyakawa 17

Network design for controls and DAQ

JGW-G1301851

RFMDAQTimingTCP/IP

RFM

DAQ

Timing

TCP/I

P

RFM

DAQ

Timing

TCP/I

P

GPS antenna

MozumiEntrance

New AtotsuEntranceRemote

control

Timing: Synchronization for all RT PC and ADC/DAC

GW buildings at Kamioka

Data StorageiKAGRA: 250TBbKAGRA: 1PB/year

RFM RT control signal: very low latencyDAQ GW data: huge amount, low latency

TCP/IP: EPICS, NFS, network boot

Page 18: Real Time Control  for KAGRA 3km  Cryogenic  Gravitational Wave Detector in Japan

ICALEPCS 2013 at San Francisco, Osamu Miyakawa 18

Schedule

• The project started in 2010• Due to the March 11 earthquake (2011), budget implementation was

delayed and whole the schedule shifted 1 year behind.• KAGRA will be in 2 stages: iKAGRA and bKAGRA

JGW-G1301851

baseline KAGRA• Cryogenic RSE• High laser power (180W)• Low frequency seismic isolation• 23kg sapphire TM

initial KAGRA• Room-temp. FPMI• Low laser power (10W )• Simple seismic isolation• 10kg silica TM

iKAGRA bKAGRA