REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl...

35
REACTIVITY STUDIES OF CYCLOPENTADIENYL COMPLEXES OF GROUP 6 METALS WITH ARYLSULFIDES, ORGANO P-S AND P-Se HETEROCYCLES AND ARYLTHIOLATE PHOSPHINE LIGANDS OOI MEI LEE THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2011

Transcript of REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl...

Page 1: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

REACTIVITY STUDIES OF CYCLOPENTADIENYL

COMPLEXES OF GROUP 6 METALS WITH

ARYLSULFIDES, ORGANO P-S AND P-Se

HETEROCYCLES AND ARYLTHIOLATE

PHOSPHINE LIGANDS

OOI MEI LEE

THESIS SUBMITTED IN FULFILMENT OF

THE REQUIREMENT FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2011

Page 2: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

i

ABSTRACT

The reactivity of [CpM(CO)3]2 (M = Cr (1), Mo (3)) together with their

congeners, [CpM(CO)2]2 (M = Cr (2), Mo (4)) towards alkyl sulfides such as bibenzyl

di- and trisulfide, organophosphorus chalcogen heterocycles such as 2,4-bis(p-

tolylthio)1,3-dithia-2,4-diphosphetane-2,4-disulfide (Davy’s reagent), 1,3,2,4-

dithiadiphosphetane 2,4-diselenides (Woollins’ Reagent) and thioarylphosphines have

been investigated. Reactions that occurred under mild conditions for 1 was found to

proceed via the highly reactive monomer radical, CpCr(CO)3·. However, the reactions

with 2 and 4 required more forcing conditions at elevated temperature.

Forty metal complexes were synthesized and characterized in this work. All the

products were elucidated via IR, 1H,

13C and

31P NMR, LCMS, elemental analyses and

single crystal x-ray diffraction. Mechanistic pathways were proposed for most of the

reactions investigated based on evidence obtained from thermolysis, NMR and mass

spectra studies. The outcomes of this work are summarized below.

(i) The reaction of 1 with Bz2S2 at R.T. gave [CpCr(CO)2(SBz)]2 (6) followed by

[CpCr(CO)2]2S (5) and [CpCr(SBz)]2S (7) as secondary products which undergo

complete decarbonylation to give the final thermolyzed product Cp4Cr4S4 (8). It

is postulated that the formation of 6 proceeds via the 17e- radical pathway which

involves S-S bond cleavage of the ligand.

At elevated temperature, reaction of 4 with Bz2S2 gave isomeric trans-syn and

trans-anti [CpMo(CO)(SBz)]2 (12a, b), [CpMo(SBz)S]2 (10) and

[CpMo(CO)(SBz)]2S (11) as main products.

(ii) The facile reaction of [CpCr(CO)3]2 (1) with Bz2S3 at ambient temperature has

led to the isolation of [CpCr(CO)2(SBz)]2 (6) with [CpCr(SBz)]2S (7) as main

products. Thermolytic studies showed that 6 underwent complete

Page 3: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

ii

decarbonylation to give [CpCr(SBz)]2S (7). Prolonged thermolysis of 6 and 7

led to decomposition which eventually yielded Cp4Cr4S4 (8).

The reaction of [CpMo(CO)3]2 (3) with Bz2S3 at an elevated temperature

afforded [CpMo(CO)2(SBz)]2 (9), [CpMo(CO)(SBz)]2S (11),

[CpMo(CO)(SBz)]2 (12) and [CpMo(SBz)S]2 (10). Thermolytic studies showed

that 9 underwent stepwise decarbonylation to give 11 and 10. The totally

decarbonylated 10 was isolated as two polymorphs.

(iii) The reaction of 4 with an equivalent of 2,4-bis(p-tolylthio) 1,3-dithia-2,4-

diphosphetane-2,4-disulfide (Davy’s reagent) led to the isolation of

CpMo(CO)2(S2P(SC6H4Me)2) (14), Cp2Mo2(CO)5(S2P(SC6H4Me)) (15) and

Cp2Mo2(µ-S)(µ-S2)(µ-SC6H4Me) (16) with yields dependent on reaction

conditions. However, reaction of 4 with half an equivalent of Davy’s reagent

gave Cp2Mo2(CO)5(S2P(SC6H4Me)) (15), trans-syn/trans-anti-isomer of

[CpMo(CO)(SC6H4Me)]2 (17), Cp2Mo2(CO)2(µ-PS)(µ-SC6H4Me)2 (18),

[CpMo(CO)2S]2 (19) and Cp3Mo3(µ-S)2(µ-S2)(µ3-S) (20). Thermolytic studies

followed by 1H NMR spectroscopy analyses indicated that 14 and 15 had

degraded to 16. The postulated mechanism involves P–S bond cleavage in

Davy’s reagent leading to a ring opening and desulfurization process.

(iv) The reaction of 1 with 1,3,2,4-dithiadiphosphetane 2,4-diselenides or Woollins’

Reagent at ambient temperature gave mainly [CpCr(CO)2]2Se (21) but with an

excess of 1, trans-[CpCr(CO)2(SePPh)]2 (22) was isolated. However thermolytic

reaction with the triply bonded congener Cp2Cr2(CO)4 (2) led to the isolation of

trans-[CpCr(CO)2(SePPh)]2 (22), CpCr(CO)2(SeP(H)Ph) (23) and

[CpCr(Se2P(O)Ph)]2 (24). The ring-opening reaction of Woollins’ Reagent via

Page 4: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

iii

an initial homolytic P-Se bond cleavage by CpCr(CO)n· (n = 2 (2A) or 3 (1A))

depicts a new approach to coordination chemistry involving P-Se based ligands.

The thermolytic reaction of 4 with Woollins’ reagent led to the isolation of

[Cp2Mo2{(µ-Se)2(PPh(Se))}{(µ-Se)(PPh)3}] (25), Cp4Mo4(CO)3Se4 (26) and a

pair of polymorphic products of Cp3Mo3(CO)4[Se3(PPh)2] (27a, b). A dual

pathway via the 15 e- radical, CpMo(CO)2· and the triply-bonded complex 4,

was indicated.

(v) Reactivity studies of 1 and 3 towards P(C6H4SMe-p)3, PPh2(C6H4SMe-o),

PPh(C6H4SMe-o)2 and P(C6H4SMe-o)3 under varying reaction conditions have

led to the isolation of sixteen products. The (P, S) donor ligands of P(C6H4SMe-

p)3, PPh2(C6H4SMe-o), PPh(C6H4SMe-o)2 and P(C6H4SMe-o)3 having one, two

and three thiomethylphenyl groups, preferred mono-, bi- and tridentate

coordination modes, respectively.

(vi) The facile adduct formation of [CpCr(SBz)]2S (7) and [CpMo(SBz)(S)]2 (10)

with 2 moles equivalents of Fe2(CO)9 was found to give both mono- and

dimetallated complexes [Cp2Cr2(SBz)]S2[Fe(CO)3] (44), [CpMo]2S4[Fe(CO)3]2

(45), [CpMo]2S3[Fe(CO)3]2 (46) and [CpMo(SBz)]2S2[Fe(CO)2] (47),

respectively.

(vii) The thermolytic reaction of [CpMo(CO)2(S2P(SC6H4Me)2)] (14) with a mole

equivalent of 1 gave [CpMo(CO)2(µ-S)]2 (19), [CpMo(CO)(SC6H4Me)]2 (17)

[CpCr(µ-SC6H4Me)]2S (48) and Cp4Cr4S4 as products.

Page 5: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

iv

ABSTRAK

Kereaktifan [CpM(CO)3]2 (M = Cr (1), Mo (3)) bersama-sama dengan kongener

mereka, [CpM(CO)2]2 (M = Cr (2), Mo (4)) terhadap alkil sulfida seperti bibenzyl di- dan

trisulfida, heterosikal kalkogen organofosfat seperti 2,4-bis (p-tolylthio) 1,3-dithia-2,4-

diphosphetane-2,4-disulfida (reagen Davy), 1,3,2,4-dithiadiphosphetana 2,4-diselenida

(reagen Woollins’) dan thioarylfosfine telah diselidik. Tindak balas yang terjadi pada suhu

bilik untuk 1 didapati bermula melalui monomer radikal yang sangat reaktif, CpCr(CO)3·.

Namun, tindak balas dengan 2 dan 4, telah dilakukan pada suhu yang lebih tinggi dari

biasa.

Empat puluh kompleks logam telah disintesis dan dicirikan dalam penyelidikan ini.

Semua produk tersebut telah dikenalpastikan melalui IR, 1H,

13C dan

31P NMR, LCMS,

analisis elemental dan kristal tunggal x-ray difraksi. Mekanisma tindak balas telah

dicadangkan untuk sebahagian besar tindak balas yang diselidiki dengan bantuan bukti

yang diperolehi dari termolisis, NMR dan kajian spektra jisim. Keputusan penyelidikan ini

adalah seperti berikut.

(i) Tindak balas 1 dengan Bz2S2 pada suhu bilik menghasilkan [CpCr(CO)2(SBz)]2 (6)

diikuti oleh [CpCr(CO)2]2S (5) dan [CpCr(SBz)]2S (7) sebagai hasil sekunder yang

mengalami kehilangan karbon dioksida yang lengkap untuk memberi Cp4Cr4S4 (8)

sebagai hasil terakhir daripada proses pemanasan. Dari keputusan ini dicadangkan

bahawa pembentukan 6 dimulakan dengan 17e-radikal yang melibatkan pemutusan

ikatan S-S dalam ligan.

Pada suhu yang tinggi, 4 bertindak dengan Bz2S2 dan memberikan hasil isomerik

trans-syn serta trans-anti [CpMo(CO)(SBz)]2 (12a, b), [CpMo(SBz)S]2 (10) dan

[CpMo(CO)(SBz)]2S (11) sebagai hasil utama.

Page 6: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

v

(ii) Tindak balas yang mudah iaitu antara [CpCr(CO)3]2 (1) dengan Bz2S3 pada suhu

bilik telah menghasilkan [CpCr(CO)2(SBz)]2 (6) dan [CpCr(SBz)]2S (7) sebagai

hasil utama, kedua-duanya telah diasingkan. Kajian pemanasan menunjukkan

bahawa 6 mengalami kehilangan karbon dioksida yang lengkap untuk memberikan

[CpCr(SBz)]2S (7). Proses pemanasan yang panjang untuk 6 dan 7 menyebabkan

penguraian yang akhirnya menghasilkan Cp4Cr4S4 (8).

Suhu yang lebih tinggi diperlukan untuk tindak balas [CpMo(CO)3]2 (3) dengan

Bz2S3 untuk menghasilkan [CpMo(CO)2(SBz)]2 (9), [CpMo(CO)(SBz)]2S (11),

[CpMo(CO)(SBz)]2 (12) and [CpMo(SBz)S]2 (10). Kajian termolitik menunjukkan

bahawa 9 mengalami kehilangan karbon dioksida secara berperingkat untuk

memberikan 11 dan 10. Kompleks 10 yang telah mengalami kehilangan semua

karbon dioksida telah diasingkan sebagai dua polimorf.

(iii) Reaksi 4 dengan 2,4-bis(p-tolylthio) 1,3-dithia-2,4-diphosphetane-2,4-disulfida

(reagen Davy) yang sama kemolaran telah menghasilkan CpMo(CO)2(S2P(SC6H4

Me)2) (14), Cp2Mo2(CO)5(S2P(SC6H4Me)) (15) and Cp2Mo2(µ-S)(µ-S2)(µ-SC-

6H4Me) (16) dengan peratusan hasil bergantung pada keadaan reaksi. Namun,

reaksi 4 dengan 0.5 molar reagen Davy memberikan Cp2Mo2(CO)5(S2P(SC-

6H4Me)) (15), trans-syn/trans-anti-isomer [CpMo(CO)(SC6H4Me)]2 (17),

Cp2Mo2(CO)2(µ-PS)(µ-SC6H4Me)2 (18), [CpMo(CO)2S]2 (19) dan Cp3Mo3(µ-

S)2(µ-S2)(µ3-S) (20). Kajian termolitik yang diikuti dengan 1H NMR menunjukkan

bahawa 14 dan 15 telah bertukar ke 16. Mekanisme yang dicadangkan melibatkan

belahan ikatan P-S dalam reagen Davy diikuti dengan pembukaan gelang dan

proses nyah sulfur.

Page 7: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

vi

(iv) Tindak balas 1 dengan 1,3,2,4-dithiadiphosphetana2,4-diselenida atau reagen

Woollins' pada suhu bilik telah memberikan [CpCr(CO)2]2Se (21) sebagai hasil

utama, tetapi dengan 1 yang berlebihan, trans-[CpCr(CO)2(SePPh)]2 (22) telah

dihasilkan. Namun, tindak balas pemanasan dengan kongener ikatan ganda tiga,

Cp2Cr2(CO)4 (2) menyebabkan pengasingan trans-[CpCr(CO)2(SePPh)]2 (22),

CpCr(CO)2(SeP(H)Ph) (23) and [CpCr(Se2P(O)Ph)]2 (24). Tindak balas yang

melibatkan pembukaan gelang pada reagen Woollins' dimula oleh CpCr(CO)n· (n =

2 (2A) or 3 (1A)) melalui pembelahan ikatan P-Se secara homolitik

menggambarkan pendekatan baru untuk kimia koordinatan yang melibatkan ligan

jenis P-Se.

Tindak balas termolitik dari 4 dengan reagen Woollins' menyebabkan pengasingan

[Cp2Mo2{(µ-Se)2(PPh(Se))}{(µ-Se)(PPh)3}] (25), Cp4Mo4(CO)3Se4 (26) dan

sepasang produk polimorfik dari Cp3Mo3(CO)4[Se3(PPh)2] (27a, b). Dua lalui

melalui 15 e-radikal, CpMo(CO)2· dan ikatan ganda tiga kompleks 4 telah

dikenalpasti.

(v) Kajian kereaktifan 1 dan 3 terhadap P(C6H4SMe-p)3, PPh2(C6H4SMe-o), PPh(C-

6H4SMe-o)2 dan P(C6H4SMe-o)3 dalam pelbagai keadaan tindak balas telah

menyebabkan pengasingan enam belas produk. Ligan penderma (P, S) seperti

P(C6H4SMe-p)3, PPh2(C6H4SMe-o), PPh(C6H4SMe-o)2 dan P(C6H4SMe-o)3

masing-masing mempunyai satu, dua dan tiga kumpulan tiomethylphenyl, lebih

cenderung kepada cara koordinasi dalam mono-, bi- dan tridentate.

(vi) Pembentukan aduk yang mudah dari [CpCr(SBz)]2S (7) dan [CpMo(SBz)(S)]2 (10)

dengan 2 molar Fe2(CO)9 yang setara telah dikenalpasti masing-masing untuk

memberi mono dan kompleks dwilogam [Cp2Cr2(SBz)]S2[Fe(CO)3] (44),

Page 8: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

vii

[CpMo]2S4[Fe(CO)3]2 (45), [CpMo]2S3[Fe(CO)3]2 (46) dan

[CpMo(SBz)]2S2[Fe(CO)2] (47).

(vii) Reaksi termolytik dari [CpMo(CO)2(S2P(SC6H4Me)2)] (14) dengan molar setara 1

memberikan [CpMo(CO)2(µ-S)]2 (19), [CpMo(CO)(SC6H4Me)]2 (17) [CpCr(µ-

SC6H4Me)]2S (48) and Cp4Cr4S4 sebagai hasil.

Page 9: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

viii

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude and appreciation to Assoc. Prof. Dr.

Richard Wong Chee Seng for his inspiring guidance, supervision, invaluable advice and

keen interest throughout the course of this study. I would also like to thank my co-

supervisor, Prof. Dr. Tan Guan Huat for his advice and guidance especially during the

LCMS analysis and his kindness and patience during the final hectic months needed to

complete the thesis. Assistance from Prof. Dr. Ng Seik Weng and Prof. Dr. Ward T.

Robinson for the X-ray diffraction analyses of most of the complexes, Assoc. Prof. Dr.

Noel F. Thomas (advice in proposing certain mechanism), Miss Norzalida Zakaria (NMR

spectroscopy analysis) and Mr. Siew Yau Foo (LCMS analysis), respectively, are also

gratefully acknowledged.

I would like to sincerely thank my colleague Miss Chan Chun Foong and my

juniors Miss Elizabeth Fong Yew Mei, Miss Ngue Chin May, Mr. Ngan Ngui Khiong

and Mr. Ang Chun Hui for their advice and support during my study.

I would also like to thank University Of Malaya for granting a tutorship and

scholarship (Biasiswazah Tuanku Pro-Cancelor) throughout my study. Research grants

from the Academy of Sciences, Malaysia (SAGA), MOSTI (Science Fund) and UMRG

(Cluster Fund) are gratefully acknowledged.

Finally, I like to dedicate this work to my ever supportive parents and my siblings.

Page 10: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

ix

TABLE OF CONTENTS

Page

ABSTRACT . . . i

ABSTRAK . . . iv

ACKNOWLEDGEMENTS . . . viii

TABLE OF CONTENTS . . . ix

LIST OF FIGURES . . . xxiv

LIST OF TABLES . . . xxvii

LIST OF ABBREVIATIONS . . . xxxiii

CHAPTER I INTRODUCTION

1.1 A brief review on the reactivity of [CpM(CO)n]2 [M = Cr, n = 3 (1)

or n = 2 (2); M = Mo, n = 3 (3) or n = 2 (4)]

1.1.1 Biscyclopentadienyldichromiumhexacarbonyl,

[CpCr(CO)3]2 (1) . . . 1

1.1.2 Biscyclopentadienyldichromiumtetracarbonyl,

[CpCr(CO)2]2 (2) . . . 2

1.1.3 Biscyclopentadienyldimolybdenumhexacarbonyl,

[CpMo(CO)3]2 (3) . . . 2

1.1.4 Biscyclopentadienyldimolybdenumtetracarbonyl,

[CpMo(CO)2]2 (4) . . . 3

1.2 A review on the synthesis and reactivity of molybdenum and

chromium with organochalcogenide ligand . . . 4

1.2.1 Organochalcogenide derivatives of molybdenum complexes . . . 4

1.2.2 Organochalcogenide derivatives of chromium complexes . . . 18

1.3 A review on the synthesis and reactivity of molybdenum and

chromium with mixed pnicogen/chalcogen ligands . . . 21

Page 11: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

x

1.3.1 Mixed pnicogen-chalcogen derivatives of molybdenum

complexes . . . 22

1.3.2 Mixed pnicogen-chalcogen derivatives of chromium

complexes . . . 24

1.4 A review on the synthesis and reactivity of molybdenum and

chromium with tertiary phosphine ligands . . . 31

1.4.1 Synthesis and reactivity of molybdenum tertiary phosphine

complexes . . . 32

1.4.2 Synthesis and reactivity of chromium tertiary phosphine

complexes . . . 33

1.5 Objectives . . . 35

CHAPTER II RESULTS AND DISCUSSION

2.1 Studies with bibenzyl trisulfide

2.1.1 The reaction of [CpCr(CO)3]2 (1) with Bibenzyl Trisulfide . . . 36

2.1.2 The reaction of [CpCr(CO)2]2 (2) with Bibenzyl Trisulfide . . . 37

2.1.3 Thermolysis Studies

(a) Thermolysis of [CpCr(CO)2(SBz)]2 (6) . . . 37

(b) Thermolysis of [CpCr(SBz)]2S (7) . . . 37

2.1.4 NMR spectral studies

(a) Reaction of [CpCr(CO)2 ]2S (5) with Bz2S3 at 60 °C . . . 38

(b) Reaction of [CpCr(CO)2(SBz)]2 (6) with Bz2S3 at

ambient temperature . . . 38

2.1.5 Mechanistic pathways: Formation of [CpCr(CO)2(SBz)]2 (6) and

[CpCr(SBz)]2S (7) . . . 39

2.1.6 Physical properties . . . 41

2.1.7 Spectral characteristics

2.1.6.1 IR spectra . . . 41

2.1.6.2 NMR spectra . . . 42

2.1.6.3 Mass spectra . . . 42

Page 12: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xi

2.1.8 Molecular structure . . . 44

2.2 Studies of [CpMo(CO)3]2 (3) with Bibenzyl Trisulfide

2.2.1 The reaction of [CpMo(CO)3]2 (3) with equimolar of Bibenzyl

Trisulfide . . . 46

2.2.2 NMR spectral studies

(a) Reaction of [CpMo(CO)2(SBz)]2 with Bz2S3 at 60 °C . . . 46

(b) Reaction of [CpMo(CO)(SBz)]2S (11) with Bz2S3

at 110 °C . . . 47

2.2.3 Thermolysis studies of [CpMo(CO)2(SBz)]2 (9) and

[CpMo(CO)(SBz)]2S (11) . . . 47

2.2.4 Mechanistic pathways : Formation of [CpMo(CO)2(SBz)]2 (9),

[CpMo(SBz)S]2 (10a & b) and [CpMo(CO)(SBz)]2S (11) . . . 48

2.2.5 Physical properties . . . 50

2.2.6 Spectral properties

2.2.6.1 IR spectra . . . 50

2.2.6.2 NMR spectra . . . 51

2.2.7 Molecular Structures . . . 52

2.3 Studies of [CpCr(CO)3]2 (1) with Bibenzyl Disulfide

2.3.1 Study of [CpCr(CO)3]2 (1) with equimolar of Bibenzyl

Disulfide . . . 59

2.3.2 Study of [CpCr(CO)2]2 (2) with equimolar of Bibenzyl

Disulfide . . . 59

2.3.3 NMR spectral studies

(a) Reaction of [CpCr(CO)2]2 (2) with equimolar of

Bibenzyl Disulfide at 60 ºC . . . 60

(b) Reaction of [CpCr(CO)2]2S (5) equimolar of

Bibenzyl Disulfide at 60 ºC . . . 61

2.3.4 Mechanistic pathways : Formation of [CpCr(CO)2(SBz)]2 (6)

and [CpCr(SBz)]2S (7) . . . 61

2.3.5 Molecular structure . . . 64

2.4 Studies of [CpMo(CO)2]2 (4) with Bibenzyl Disulfide

2.4.1 The reaction of [CpMo(CO)2]2 (4) with equimolar of Bibenzyl

Page 13: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xii

Disulfide . . . 67

2.4.2 NMR spectral studies

(a) Thermolysis of trans-anti[CpMo(CO)(SBz)]2 (12b)

at 110 °C . . . 67

(b) Cothermolysis of trans-syn [CpMo(CO)(SBz)]2 (12a)

with equimolar of Bz2S2 at 110 °C . . . 70

(c) Reaction of [CpMo(CO)3]2 (3) with equimolar of Bz2S2

at 60 °C . . . 70

2.4.3 Cothermolysis study

(a) Reaction of trans-syn [CpMo(CO)(SBz)]2 (12a) with

equimolar of bibenzyl disulfide at 110 °C . . . 70

2.4.4 Solventless reaction at 110 °C for 2h . . . 71

2.4.5 Mechanistic pathways: Formation of doubly bonded isomers of

trans-syn/trans-anti [CpMo(CO)(SBz)]2 (12a&b ) and

[CpMo(SBz)]4 (13) . . . 73

2.4.6 Physical Properties . . . 75

2.4.7 Spectral properties

2.4.7.1 I.R spectra . . . 75

2.4.7.2 NMR spectra . . . 76

2.4.7.3 Mass spectra . . . 77

2.4.8 Molecular Structures . . . 78

2.5 Studies of [CpMo(CO)2]2 (4) with Davy’s Reagent (DR)

2.5.1 The reaction of [CpMo(CO)2]2 (4) with equimolar of Davy’s

Reagent (DR) . . . 82

2.5.2 The reaction of [CpMo(CO)2]2 (4) with 0.5 equimolar of Davy’s

Reagent (DR) . . . 83

2.5.3 NMR thermolytic studies

(a) Thermolysis of [CpMo(CO)2(S2P(SC6H4Me)2)] (14) . . . 84

(b) Thermolysis of Cp2Mo2(CO)5(S2P(SC6H4Me)) (15) . . . 84

Page 14: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xiii

(c) Cothermolysis of [CpMo(CO)2(S2P(SC6H4Me)2)] (14) with

Davy’s reagent (DR) at 110 °C . . . 84

(d) Cothermolysis of [CpMo(CO)2(S2P(SC6H4Me)2)] (14) with

[CpMo(CO)2]2 at 110 °C . . . 84

(e) Thermolysis of [CpMo(CO)(SC6H4Me)]2 (17) at 110 °C . . . 85

(f) Thermolysis of Cp2Mo2(CO)2(µ-PS)(µ-SC6H4Me)2 (18)

at 110 °C . . . 85

(g) Cothermolysis of [CpMo(CO)2(µ-S)]2 (19) with

Davy’s reagent (DR) . . . 85

(h) Thermolysis of [Cp2Mo2(µ-S)(µ-S2)(µ-SC6H4Me)] (16) . . . 85

2.5.4 Mechanistic pathways

2.5.4.1 Mechanistic pathways of the reaction of [CpMo(CO)2]2 (4)

with an equimolar amount of Davy’s Reagent (DR) . . . 86

2.5.4.2 Mechanistic pathways of the reaction of [CpMo(CO)2]2 (4)

with 0.5 mole equivalent of Davy’s Reagent (DR) . . . 89

2.5.5 Physical properties . . . 91

2.5.6 Spectral properties

2.5.6.1 IR spectra . . . 93

2.5.6.2 NMR spectra . . . 94

2.5.6.3 Mass spectra . . . 96

2.5.7 Molecular structures . . . 100

2.6 Studies of [CpCr(CO)3]2 (1) with Woollins’ Reagent

2.6.1 The reaction of [CpCr(CO)3]2 (1) with an equimolar amount of

Woollins’ Reagent . . . 108

2.6.2 The reaction of [CpCr(CO)2]2 (4) with equimolar of Woollins’

Reagent . . . 109

2.6.3 NMR spectral studies

(a) Thermolysis of CpCr(CO)2(SeP(H)Ph) (23) . . . 110

(b) Thermolysis of trans-[CpCr(CO)2(SePPh)]2 (22) . . . 110

(c) Thermolysis of Cp2Cr2(Se2P(O)Ph)2 (24) . . . 111

Page 15: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xiv

(d) Cothermolysis of CpCr(CO)2(SeP(H)Ph) (23) and Woollins’

Reagent . . . 111

2.6.3 Mechanistic Pathway: Formation of the Cp2Cr2(CO)4Se (21), trans-

[CpCr(CO)2(SePPh)]2 (22), CpCr(CO)2(SeP(H)Ph) (23) and

[CpCr(Se2P(O)Ph)]2 (24). . . . 112

2.6.4 Physical properties . . . 114

2.6.5 Spectral properties

2.6.5.1 IR spectra . . . 115

2.6.5.2 NMR spectra . . . 116

2.6.5.3 Mass spectra . . . 117

2.6.6 Molecular structures . . . 119

2.7 Studies of [CpMo(CO)2]2 (2) with Woollins’ Reagent

2.7.1 The reaction of [CpMo(CO)2]2 (2) with equimolar of

Woollins’ Reagent . . . 128

2.7.2 Mechanistic pathways : Formation of [Cp2Mo2{(µ-Se)2(PPh(Se))

{(µ-Se)(PPh)3}] (25), Cp4Mo4(CO)3Se4 (26) and

Cp3Mo3(CO)4[Se3(PPh)2] (27a & b) . . . 128

2.7.3 Physical properties . . . 131

2.7.4 Spectral characteristics

2.7.4.1 IR spectra . . . 132

2.7.4.2 NMR spectra . . . 133

2.7.4.3 Mass spectra . . . 139

2.7.5 Molecular structures . . . 141

2.8 Studies with P(C6H4SMe-p)3

2.8.1 Reaction of Cp2Cr2(CO)6 (1) and Cp2Cr2(CO)4 (2) with

P(C6H4SMe-p)3 . . . 144

2.8.2 Proposed Structure for 28 . . . 144

2.8.3 Physical properties . . . 149

2.8.4 Spectral characteristics

2.8.4.1 IR spectrum . . . 146

2.8.4.2 NMR spectrum . . . 146

2.8.4.3 Mass spectrum . . . 147

Page 16: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xv

2.9 Studies of Cp2Mo2(CO)6 (3) and Cp2Mo2(CO)4 (2) with P(C6H4SMe-p)3

2.9.1 Reaction of Cp2Mo2(CO)6 (3) and Cp2Mo2(CO)4 with

P(C6H4SMe-p)3 . . . 148

2.9.2 Mechanistic pathways : Formation of Cp2Mo2(CO)5{P(C6H4SMe-p)3}(29),

Cp2Mo2(CO)(µ-CO)2{P(C6H4SMe-p)3} (30) and

Cp4Mo4(CO)4(µ3-O)(µ2-O)2(O) (31) . . . 148

2.9.3 Physical properties . . . 150

2.9.4 Spectral properties

2.9.4.1 IR spectra . . . 151

2.9.4.2 NMR spectra . . . 151

2.9.4.3 Mass spectra . . . 153

2.9.5 Molecular structures . . . 154

2.10 Studies of [CpCr(CO)3]2 (1) with PPh2(C6H4SMe-o)

2.10.1 The reaction of [CpCr(CO)3]2 (1) with 2.5 mole equivalent of

PPh2(C6H4SMe-o) . . . 160

2.10.2 NMR tube reaction of [CpCr(CO)2]2 (2) with 2.5 mole

equivalent of PPh2(C6H4SMe-o) . . .160

2.10.3 Mechanistic pathways:

Formation of CpCr(CO)2{o-(C6H4S)PPh2}(32) . . .160

2.10.4 Physical Properties . . . 162

2.10.5 Spectra Characteristics

2.10.5.1IR spectrum . . . 162

2.10.5.2NMR spectrum . . . 162

2.10.5.3Mass spectrum . . . 163

2.10.6 Molecular structure . . . 164

2.11 Studies of [CpCr(CO)3]2 (1) with PPh(C6H4SMe-o)2

2.11.1 The reaction of [CpCr(CO)3]2 (1) with PPh(C6H4SMe-o)2 . . . 165

2.11.2 The reaction of [CpCr(CO)2]2 (2) with PPh(C6H4SMe-o)2 . . . 165

2.11.3 NMR Tube Reaction

(a) The reaction of [CpCr(CO)3]2 (1) with PPh(C6H4SMe-o)2 . . . 166

2.11.4 Mechanistic pathways: Formation of [Cp2Cr2(CO)

{(µ-SC6H4)2PPh}] (33) and CpCr{(µ-SC6H4)2PPh} (34) . . . 166

Page 17: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xvi

2.11.5 Physical Properties . . . 169

2.11.6 Spectra Characteristics

2.11.6.1 IR spectra . . . 169

2.11.6.2 NMR spectra . . . 170

2.11.6.3 Mass spectra . . . 170

2.11.7 Molecular structures . . . 171

2.12 Studies of [CpCr(CO)3]2 (1) with P(C6H4SMe-o)3

2.12.1 The reaction of [CpCr(CO)3]2 (1) with P(C6H4SMe-o)3 . . . 174

2.12.2 The reaction of [CpCr(CO)2]2 (2) with P(C6H4SMe-o)3 . . . 174

2.12.3 NMR Tube Reaction

The reaction of [CpCr(CO)3]2 (1) with P(C6H4SMe-o)3 at 80 °C in

C6D6 . . . 174

2.12.4 Mechanistic pathway: Formation of

[Cp2Cr2(CO){(µ-SC6H4)2(C6H4SMe-o)P}] (35) . . . 176

2.12.5 Physical properties . . . 177

2.12.6 Spectral characteristics

2.12.6.1 IR spectrum . . . 177

2.12.6.2 NMR spectrum . . . 177

2.12.6.3 Mass spectrum . . . 178

2.12.7 Molecular structure . . . 178

2.13 Studies of [CpMo(CO)2]2 (4) with PPh2(C6H4SMe-o)

2.13.1 The reaction of [CpMo(CO)2]2 (4) with PPh2(C6H4SMe-o) . . . 180

2.13.2 Mechanistic pathways: Formation of CpMo(CO)2{(C6H4S-o)PPh2}(36)

. . . 180

2.13.3 Physical Properties . . . 181

2.13.4 Spectra Characteristics

Page 18: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xvii

2.13.4.1 IR spectrum . . . 181

2.13.4.2 NMR spectrum . . . 181

2.13.4.3 Mass spectrum . . . 182

2.13.5 Molecular structure . . . 182

2.14 Studies of [CpMo(CO)2]2 (4) with PPh(C6H4SMe-o)2

2.14.1 The reaction of [CpMo(CO)2]2 (4) with an equimolar of amount of

PPh(C6H4SMe-o)2 . . . 184

2.14.2 Mechanistic pathways: Formation of CpMo(CO)3H (37),

[Cp2Mo2(CO){(µ-SC6H4)2PPh}] (38) and

CpMo(CO){(µ-SC6H4)(µ-C6H4SMe-o)PPh} (39) . . . 184

2.14.3 Physical properties . . . 187

2.14.4 Spectral characteristics

2.14.4.1 IR spectrum . . . 187

2.14.4.2 NMR spectra . . . 188

2.14.4.3 Mass spectra . . . 189

2.14.5 Molecular structures . . . 190

2.15 Studies of [CpMo(CO)2]2 (4) with P(C6H4SMe-o)3

2.15.1 The reaction of [CpMo(CO)2]2 (4) with one equivalent of

P(C6H4SMe-o)3 . . . 193

2.15.2 NMR Tube Reactions

(a) Thermolysis of [Cp2Mo2(CO){(µ-SC6H4)2(C6H4SMe-o)P}] (41)

. . . 193

(b) Thermolysis of Mo(CO)3{P(C6H4SMe-o)3} (42) . . . 193

2.15.3 Mechanistic pathways : Formation of [Cp2Mo2(CO){(µ-SC6H4)2(o-

C6H4SCH2)P}] (40), [Cp2Mo2(CO){(µ-SC6H4)2(C6H4SMe-o)P}] (41),

Mo(CO)3{P(C6H4SMe-o)3} (42) and CpMo2(CO)3(µ-S){(µ-SC6H4)

Page 19: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xviii

(C6H4SMe-o)P} (43) . . . 194

2.15.4 Physical properties . . . 196

2.15.5 Spectral properties

2.15.5.1 IR spectra . . . 197

2.15.5.2 NMR spectra . . . 198

2.15.5.3 Mass spectra . . . 200

2.15.6 Molecular structures . . . 201

2.16 Coordination of the (µ-S) ligand to Fe(CO)x (x = 2 or 3) fragments from Fe2(CO)9

2.16.1 The reaction of [CpCr(SBz)]2S with 2 mole equivalent of Fe2(CO)9 . . . 208

2.16.2 The reaction of [CpMo(SBz)(S)]2 with 2 mole equivalent of

Fe2(CO)9 at room temperature. . . . 208

2.16.3 Physical properties . . . 209

2.16.4 Spectral characteristics

2.16.4.1 IR spectra . . . 210

2.16.4.2 NMR spectra . . . 211

2.16.4.3 Mass spectra . . . 212

2.16.5 Molecular structures . . . 213

2.17 The Reaction of [CpMo(CO)2(S2P(SC6H4Me)2)] (14) with [CpCr(CO)3]2 (1)

2.17.1 The Reaction of [CpMo(CO)2(S2P(SC6H4Me)2)] (14) with one mole

equivalent of [CpCr(CO)3]2 (1) at 110 °C . . . 221

2.17.2 Physical properties . . . 224

2.17.3 Spectra characteristics

2.17.3.1 IR spectrum . . . 224

2.17.3.2 NMR spectrum . . . 224

Page 20: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xix

2.17.3.3 Mass spectrum . . . 224

2.17.4 Molecular structures . . . 225

2.18 Conclusions . . . 229

CHAPTER III EXPERIMENTAL

3.1 General Procedures . . . 230

3.1.1 Physical measurements . . . 230

3.1.2 Solvents and reagents . . . 231

3.2 Preparation of starting complexes

3.2.1 Preparation of Dicyclopentadienylhexacarbonyldichromium

and Dicyclopentadienylhexacarbonyldimolybdenum,

[CpM(CO)3]2 [M = Cr(1) or Mo(2)] . . . 232

3.2.2 Preparation of Dicyclopentadienyltetracarbonyldichromium,

[CpCr(CO)2]2 . . . 233

3.2.3 Preparation of Dicyclopentadienyltetracarbonyldimolybdenum,

[CpMo(CO)2]2 . . . 233

3.2.4 Preparation of Tris(o-thiomethylphenyl)phosphine, o-P(PhSMe)3 . . . 233

3.2.5 Synthesis of Bis(o-thiomethylphenyl)phenylphosphine,

PPh(C6H4SMe-o)2 . . . 234

3.2.6 Synthesis of (o-Thiomethylphenyl)diphenyl phosphine,

PPh2(C6H4SMe-o) . . . 235

3.2.7 Preparation of Tris(p-thiomethylphenyl)phosphine, P(C6H4SMe-p)3. . . 235

3.2.8 Preparation of Diiron Enneacarbonyl, Fe2(CO)9 . . . 236

3.3 Reactions of [CpCr(CO)3]2 with Bibenzyl Trisulfide, Bz2S3

3.3.1 Reactivity studies of [CpCr(CO)3]2 with an equimolar of

Bibenzyl Trisulfide at ambient temperature . . . 237

3.3.2 Reactivity studies of [CpCr(CO)3]2 with an equimolar of

Bibenzyl Trisulfide at 60 °C . . . 238

Page 21: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xx

3.3.3 Reactivity studies of [CpCr(CO)2]2 with an equimolar of

Bibenzyl Trisulfide at ambient temperature . . . 238

3.3.4 Thermolysis of [CpCr(CO)2(SBz)]2 (6) . . . 239

3.3.5 Thermolysis of [CpCr(SBz)]2S (7) . . . 239

3.3.6 NMR Tube Reactions . . . 239

3.4 Reaction Of [CpMo(CO)3]2 With Bibenzyl Trisulfide

3.4.1 Reactivity studies of [CpMo(CO)3]2 with an equimolar

of Bibenzyl Trisulfide at 60 °C . . . 240

3.4.2 Thermolysis of [CpMo(CO)2(SBz)]2 (9) . . . 242

3.4.3 Thermolysis of [CpMo(CO)(SBz)]2S (11) . . . 242

3.4.4 NMR tube reactions . . . 243

3.5 Reactions of [CpCr(CO)3]2 with Bibenzyl Disulfide

3.5.1 Reactivity studies of [CpCr(CO)3]2 with an equimolar of

Bibenzyl Disulfide at ambient temperature . . . 243

3.5.2 Reactivity studies of [CpCr(CO)3]2 with an equimolar of

Bibenzyl Disulfide at 110 ˚C . . . 244

3.5.3 Reactivity studies of [CpCr(CO)2]2 with an equimolar of

Bibenzyl Disulfide at 110 ˚C . . . 245

3.5.4 NMR Tube Reaction . . . 246

3.6 Reactions of [CpMo(CO)2]2 with Bibenzyl Disulfide

3.6.1 Reactivity studies of [CpMo(CO)2]2 with an equimolar

of Bibenzyl Disulfide at 70 °C . . . 247

3.6.2 Reactivity studies of [CpMo(CO)2]2 with an equimolar of

Bibenzyl Disulfide at 110 °C . . . 248

3.6.3 Solventless reaction at 110 °C for 2 h . . . 249

3.6.4 Cothermolysis reaction of trans-syn[CpMo(CO)(SBz)]2 (12a)

with an equimolar of Bz2S2 at 110 °C for 2 h . . . 250

Page 22: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxi

3.6.5 NMR Tube Reactions . . . 251

3.7 Reaction of [CpMo(CO)3]2 with Davy’s reagent

3.7.1 Reaction of [CpMo(CO)3]2 with equimolar Davy’s reagent at

110 oC . . . 252

3.7.2 Reaction of [CpMo(CO)2]2 with equilmolar Davy’s reagent at

70 °C . . . 253

3.7.3 Reaction of [CpMo(CO)2]2 with 0.5 mole equivalent

Davy’s reagent at 110 °C . . . 254

3.7.4 Reaction of [CpMo(CO)2]2 with 0.5 mole equivalent of

Davy’s reagent at 70 °C . . . 256

3.7.5 NMR Tube Reactions . . . 257

3.8 Reaction of Cp2Cr2(CO)6 with Woollins’ reagent

3.8.1 Reactivity studies of Cp2Cr2(CO)6 (1) with equimolar

Woollins’ reagent at ambient temperature . . . 260

3.8.2 Reaction of excess Cp2Cr2(CO)6 (1) with Woollins’ Reagent

at ambient temperature . . . 261

3.8.3 Reaction of Cp2Cr2(CO)4 (2) with equimolar Woollins’ reagent

at 60 °C . . . 262

3.8.4 NMR tube reactions . . . 263

3.9 Reaction of Cp2Mo2(CO)4 with Woollins’ reagent

3.9.1 Reactivity studies of Cp2Mo2(CO)4 with equimolar

Woollins’ reagent at 110 °C . . . 264

3.9.2 Reactivity studies of Cp2Mo2(CO)4 with equimolar

Woollins’ reagent at 60 °C . . . 267

3.9.3 NMR Tube Reaction . . . 268

3.10 Reaction of Cp2Cr2(CO)6 with P(C6H4SMe-p)3

3.10.1 Reaction of Cp2Cr2(CO)6 with one mole equivalent of

Page 23: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxii

P(C6H4SMe-p)3 at 70 °C . . . 268

3.10.2 Reaction of Cp2Cr2(CO)4 with one mole equivalent of

P(C6H4SMe-p)3 at 110 °C . . . 269

3.11 Reactions of Cp2Mo2(CO)6 with P(C6H4SMe-p)3

3.11.1 Reaction of Cp2Mo2(CO)6 with one mole equivalent of

P(C6H4SMe-p)3 at 70 °C . . . 270

3.11.2 Reaction of Cp2Mo2(CO)4 with one mole equivalent of

P(C6H4SMe-p)3 at 110 °C . . . 270

3.12 Reaction of Cp2Cr2(CO)6 with PPh2(C6H4SMe-o)

3.12.1 Reaction of Cp2Cr2(CO)6 with 2.5 mole equivalent of

PPh2(C6H4SMe-o) at 60 °C . . . 272

3.12.2 NMR tube reaction . . . 273

3.13 Reaction of Cp2Cr2(CO)6 with PPh(C6H4SMe-o)2

3.13.1 Reaction of Cp2Cr2(CO)6 with one mole equivalent of

PPh(C6H4SMe-o)2 at 110 °C . . . 273

3.13.2 Reaction of Cp2Cr2(CO)4 with one mole equivalent of

PPh(C6H4SMe-o)2 at 110 °C . . . 274

3.13.3 NMR Tube Reaction . . . 275

3.14 Reaction of Cp2Cr2(CO)6 with P(C6H4SMe-o)3

3.14.1 Reaction of Cp2Cr2(CO)6 with one mole equivalent of

P(C6H4SMe-o)3 at 110 °C . . . 276

3.14.2 Reaction of Cp2Cr2(CO)4 with one mole equivalent of

P(C6H4SMe-o)3 at 110 °C . . . 277

3.14.3 NMR tube reaction . . . 277

3.15 Reactivity studies of Cp2Mo2(CO)4 with PPh2(C6H4SMe-o)

3.15.1 Reaction of Cp2Mo2(CO)4 with one mole equivalent of

PPh2(C6H4SMe-o) at 110 °C . . . 278

Page 24: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxiii

3.16 Reactivity studies of Cp2Mo2(CO)4 with PPh(C6H4SMe-o)2

3.16.1 Reaction of Cp2Mo2(CO)4 with one mole equivalent of

PPh(C6H4SMe-o)2 at 110 °C . . . 279

3.16.2 NMR tube reaction . . . 280

3.17 Reaction of Cp2Mo2(CO)4 with P(C6H4SMe-o)3

3.17.1 Reaction of Cp2Mo2(CO)4 with one mole equivalent of

P(C6H4SMe-o)3 at 110 °C . . . 280

3.17.2 NMR tube reactions . . . 283

3.18 Formation of specific transition metal carbonyl fragments adducts of

[CpM(SBz)]2Sn (M = Cr, n =1 or Mo, n = 2)

3.18.1 Reaction of [CpCr(SBz)]2S with 2 mole equivalent of Fe2(CO)9 . . . 283

3.18.2 Reaction of [CpMo(SBz)(S)]2 with 2 mole equivalent of

Fe2(CO)9 at room temperature . . . 284

3.19 Reaction of [CpMo(CO)2(S2P(SC6H4Me)2)] (14) with one mole

equivalent of [CpCr(CO)3]2 (1) at 110 °C . . . 285

3.20 Structure determinations . . . 287

3.21 R.F. values of complexes . . . 323

REFERENCES . . . 326

APPENDIX I . . . 335

APPENDIX II . . . 374

Page 25: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxiv

LIST OF FIGURES

Page

Figure 1. Molecular structure of [CpMo(CO)2(µ-SPh)]2 . . . 8

Figure 2. Molecular structure of [CpMo(CO)(µ-SBut)]2 . . . 9

Figure 3. Molecular structure of [CpMo(CO)2(µ-SePh)]2 . . . 10

Figure 4. Molecular structure of [CpMo(µ-Se)(µ-SePh)] . . . 10

Figure 5. Molecular structure of trans/anti-[(η5-MeCOC5H4)Mo(CO)(µ-SPh)]2 . . . 12

Figure 6. Molecular structure of trans/syn-[(η5-MeCOC5H4)Mo(CO)(µ-SPh)]2 . . . 12

Figure 7. The proposed initial step in the P-P and S-S bond cleavage reaction

with 4 . . . 24

Figure 8. Molecular structure of Cp4Cr4(CO)9(P4S3) . . . 25

Figure 9. Molecular structure of Cp4Cr4(CO)9(P4Se3) . . . 26

Figure 10. Molecular structure of [CpCr(CO)2(SBz)]2 (6) . . . 44

Figure 11. Molecular structure of [CpMo(CO)2(SBz)]2 (9) . . . 52

Figure 12. Molecular structure of the orthorhombic modification of

[CpMo(S)(SBz)]2 (10a) . . . 55

Figure 13. Molecular structure of the monoclinic modification of

[CpMo(SBz)S]2 (10b) . . . 56

Figure 14. Molecular structure of [CpMo(CO)(SBz)]2S (11) . . . 57

Figure 15. Molecular structure of [CpCr(SBz)]2S (7) . . . 65

Figure 16. Time-dependant 1H NMR spectra changes of trans-anti[CpMo(CO)(SBz)]2

(12b) in benzene-d6 at 110 °C . . . 69

Figure 17. Time-dependant 1H NMR spectra changes of cothermolysis of trans-syn

[CpMo(CO)(SBz)]2 (12a) with 1 mole equivalent of Bz2S2 at 110 °C . . . 72

Figure 18. Molecular structure of trans-anti [CpMo(CO)(SBz)]2 (12b) . . . 78

Figure 19. Molecular structure of [CpMo(SBz)2]2 (13) . . . 80

Figure 20. Molecular structure of CpMo(CO)2{S2P(SC6H4Me)2} (14) . . . 100

Page 26: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxv

Figure 21. Molecular structure of Cp2Mo2(CO)5{S2P(SC6H4Me)} (15) . . . 101

Figure 22. Molecular structure of Cp2Mo2(µ-S2)(µ-S)(µ-SC6H4Me) (16) . . . 102

Figure 23. Molecular structure of Cp2Mo2(CO)2(µ-PS)(µ-SC6H4Me) (18) . . . 104

Figure 24. Molecular structure of Cp3Mo3(µ-S)2(µ-S2)(µ3-S) (20) . . . 106

Figure 25. Molecular structure of trans-[CpCr(CO)2(SePPh)]2 (22) . . . 119

Figure 26. Molecular structure of CpCr(CO)2(SeP(H)Ph) (23) . . . 121

Figure 27. Molecular structure of [CpCr(Se2P(O)Ph)]2 (24) . . . 123

Figure 28. 31

P NMR decouple spectrum of [Cp2Mo2{(µ-Se)2(PPh(Se))}{(µ-Se)(PPh)3}]

(25) measure in ppm . . . 132

Figure 29. 31

P NMR decouple spectrum of [Cp2Mo2{(µ-Se)2(PPh(Se))}{(µ-Se)(PPh)3}]

(25) measure in KHz . . . 133

Figure 30. Temperature-dependent 1H NMR spectra of Cp4Mo4(CO)3Se4 (26)

in toluene-d8 . . . 134

Figure 31. Molecular structure of [Cp2Mo2{(µ-Se)2(PPh(Se))}{(µ-Se)(PPh)3}] (25). . . 137

Figure 32. Molecular structure of Cp4Mo4(CO)3Se4 (26) . . . 139

Figure 33. Molecular structure of Cp3Mo3(CO)4[Se3(PPh)2] (27a) . . . 142

Figure 34. Molecular structure of Cp2Mo2(CO)5{P(C6H4SMe-p)3} (29) . . . 154

Figure 35. Molecular structure of Cp2Mo2(CO)(µ-CO)2{P(C6H4SMe-p)3} (30) . . . 156

Figure 36. Molecular structure of Cp4Mo4(CO)4(µ3-O)(µ2-O)2(O) (31) . . . 158

Figure 37. Molecular structure of CpCr(CO)2{o-(SC6H4)PPh2} (32) . . . 164

Figure 38. Time-dependant 1H NMR spectra of [CpCr(CO)3]2 (1) with one mole

equivalent of PPh(C6H4SMe-o)2 at 110 °C . . . 168

Figure 39. Molecular structure of [Cp2Cr2(CO){(µ-SC6H4)2PPh}] (33) . . . 171

Figure 40. Molecular structure of CpCr{(µ-SC6H4)2PPh} (34) . . . 172

Figure 41. Time-dependant 1H NMR spectra of [CpCr(CO)3]2 (1) with one mole

equivalent of P(C6H4SMe-o)3 at 80 °C . . . 175

Page 27: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxvi

Figure 42. Molecular structure of [Cp2Cr2(CO){(µ-SC6H4)2(C6H4SMe-o)P}] (35) . . . 178

Figure 43. Molecular structure of CpMo(CO)2{o-(SC6H4)PPh2} (36) . . . 182

Figure 44. Molecular structure of [Cp2Mo2(CO){(µ-SC6H4)2PPh}] (38) . . . 190

Figure 45. Molecular structure of CpMo(CO){(µ-SC6H4)(µ-SMePh)PPh} (39) . . . 191

Figure 46. Molecular structure of [Cp2Mo2(CO){(µ-SC6H4)2(o-PhSCH2)P}] (40) . . . 201

Figure 47. Molecular structure of [Cp2Mo2(CO){(µ-SC6H4)2(C6H4SMe-o)P}] (41) . . . 202

Figure 48. Molecular structure of Mo(CO)3{P(C6H4SMe-o)3} (42) . . . 204

Figure 49. Molecular structure of CpMo2(CO)3(µ-S){(µ-SC6H4)2(C6H4SMe-o)P}(43). .206

Figure 50. Molecular structure of [Cp2Cr2(SBz)]S2[Fe(CO)3] (44) . . . 213

Figure 51. Molecular structure of [CpMo]2S4[Fe(CO)3]2 (45) . . . 215

Figure 52. Molecular structure of [CpMo]2S3[Fe(CO)3]2 (46) . . . 217

Figure 53. Molecular structure of [CpMo(SBz)]2S2[Fe(CO)2] (47) . . . 219

Figure 54. Molecular structure of [CpMo(CO)2(µ-S)]2 (19) . . . 225

Figure 55. Molecular structure of [CpCr(µ-SC6H4Me)]2S (48) . . . 227

Page 28: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxvii

LIST OF TABLES

Page

Table 1. Variation of product composition

a from the reaction of

[CpCr(CO)2 ]2S (5) with Bz2S3 at 60 °C . . . 38

Table 2. Electrospray ionization mass spectrum of [CpCr(CO)2(SBz)]2 (6) . . . 43

Table 3. Electrospray ionization mass spectrum of [CpCr(SBz)]2S (7) . . . 43

Table 4. Bond lengths [Å] and angles [°] for [CpCr(CO)2(SBz)]2 (6) . . . 45

Table 5. Variation of product compositiona from the reaction of

[CpMo(CO)2(SBz)]2 (9) with Bz2S3 at 60 °C . . . 47

Table 6. Bond lengths [Å] and angles [deg] for [CpMo(CO)2(SBz)]2 (9) . . . 53

Table 7. Comparison of Mo-Mo bonds and Mo-S bonds . . . 54

Table 8. Bond lengths (Å) and angles (º) for 10a and 10b . . . 56

Table 9. Bond lengths [A] and angles [deg] for [CpMo(CO)(SBz)]2S (11) . . . 58

Table 10. Variation of product compositiona from the reaction of

[CpCr(CO)2 ]2 (2) with Bz2S2 at 60 °C . . . 60

Table 11. Dissociation energies of polysulfide . . . 62

Table 12. Bond lengths [Å] and angles [°] for [CpCr(SBz)]2S (7) . . . 66

Table 13. Time dependent variation of product compositiona from thermolysis

study of trans-anti [CpMo(CO)(SBz)]2 (12b) . . . 68

Table 14. Electrospray ionization mass spectrum of [CpMo(CO)(SBz)]2 (12b) . . . 77

Table 15. Bond lengths [Å] and angles [deg] for trans-anti[CpMo(CO)(SBz)]2 (12b) . . 79

Table 16. Bond lengths [Å] and angles [deg] for [CpMo(SBz)2]2 (13) . . . 81

Table 17. Electrospray ionization mass spectrum of CpMo(CO)2{S2P(SC6H4Me)2} (14)

. . . 97

Table 18. Electrospray ionization mass spectrum of [Cp2Mo2(CO)5(SP(SC6H4Me))] (15)

. . . 97

Table 19. Electrospray ionization mass spectrum of Cp2Mo2(µ-S2)(µ-S)(µ-SC6H4Me) (16)

. . . 98

Page 29: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxviii

Table 20. Electrospray ionization mass spectrum of [CpMo(CO)(SC6H4Me)]2 (17a) . . . 98

Table 21. Electrospray ionization mass spectrum of Cp2Mo2(CO)2(µ-PS)(µ-SC6H4Me) (18)

. . . 99

Table 22. Electrospray ionization mass spectrum of [CpMo(CO)2S]2 (19) . . . 99

Table 23. Electrospray ionization mass spectrum of Cp3Mo3(µ-S)2(µ-S2)(µ3-S) (20). . . 100

Table 24. Bond lengths (Å) and angles (o) for 14, 15 and 16 . . . 103

Table 25. Bond lengths [Å] and angles [°] for Cp2Mo2(CO)2(µ-PS)(µ-SC6H4Me) (18)

. . . 105

Table 26. Bond lengths [Å] and angles [°] for Cp3Mo3(µ-S)2(µ-S2)(µ3-S) (20) . . . 107

Table 27. Time dependent variation of product compositiona from thermolysis

study of CpCr(CO)2(SeP(H)Ph) (23) . . . 110

Table 28. Time dependent variation of product compositiona from the thermolysis

study of trans-[CpCr(CO)2(SePPh)]2 (22) . . . 111

Table 29. Time dependent variation of product compositiona from cothermolysis

study of CpCr(CO)2(SeP(H)Ph) (23) with Woollins’ reagent . . . 112

Table 30. Electrospray ionization mass spectrum of trans-[CpCr(CO)2(SePPh)]2 (22). . 117

Table 31. Electrospray ionization mass spectrum of CpCr(CO)2(SeP(H)Ph) (23) . . . 118

Table 32. Electrospray ionization mass spectrum of [CpCr(Se2P(O)Ph)]2 (24) . . . 118

Table 33. Bond lengths [Å] and angles [°] for trans-[CpCr(CO)2(SePPh)]2 (22) . . . 120

Table 34. Bond lengths [Å] and angles [°] for CpCr(CO)2(SeP(H)Ph) (23) . . . 122

Table 35. Bond lengths [Å] and angles [°] for [CpCr(Se2P(O)Ph)]2 (24) . . . 124

Table 36. 31

P{1H} NMR Resonances of [Cp2Mo2{(µ-Se)2(PPh(Se))}

{(µ-Se)(PPh)3}] (25) . . . 130

Table 37. Electrospray ionization mass spectrum of [Cp2Mo2{(µ-Se)2(PPh(Se))}

{(µ-Se)(PPh)3}] (25) . . . 136

Table 38. Electrospray ionization mass spectrum of Cp4Mo4(CO)3Se4 (26) . . . 136

Table 39. Electrospray ionization mass spectrum of Cp3Mo3(CO)4[Se3(PPh)2] (27) . . . 137

Page 30: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxix

Table 40. Bond lengths [Å] and angles [°] for [Cp2Mo2{(µ-Se)2(PPh(Se))}{(µ-Se)(PPh)3}] (25)

. . . 138

Table 41. Bond lengths [Å] and angles [°] for Cp4Mo4(CO)3Se4 (26) . . . 140

Table 42. Bond lengths [Å] and angles [°] for Cp3Mo3(CO)4[Se3(PPh)2] (27a) . . . 143

Table 43. Electrospray ionization mass spectrum of [CpCr(CO)2{P(C6H4SMe)3}2]-

[CpCr(CO)3] (28) . . . 147

Table 44. Electrospray ionization mass spectrum of Cp2Mo2(CO)5{P(SC6H4-p)3}(29). .153

Table 45. Electrospray ionization mass spectrum of Cp2Mo2(CO)(µ-CO)2{P(SC6H4-

p)3}(30) . . . 153

Table 46. Bond lengths [Å] and angles [°] for Cp2Mo2(CO)5{P(SC6H4-p)3} (29) . . . 155

Table 47. Bond lengths [Å] and angles [°] for Cp2Mo2(CO)(µ-CO)2{P(SC6H4-p)3} (30)

. . . 157

Table 48. Bond lengths [Å] and angles [°] for Cp4Mo4(CO)4(µ3-O)(µ2-O)2(O) (31) . . . 159

Table 49. Electrospray ionization mass spectrum of CpCr(CO)2{o-(SC6H4)PPh2} (32) . 163

Table 50. Bond lengths [Å] and angles [°] for CpCr(CO)2{o-(SC6H4)PPh2} (32) . . . 165

Table 51. Electrospray ionization mass spectrum of

[Cp2Cr2(CO){(µ-SC6H4)2PPh}] (33) . . . 170

Table 52. Bond lengths [Å] and bond angles [°] for complex 33 . . . 172

Table 53. Bond lengths [Å] and bond angles [°] for complex CpCr{(µ-SC6H4)2PPh}(34)

. . . 173

Table 54. Electrospray ionization mass spectrum of [Cp2Cr2(CO){(µ-SC6H4)2-

(SC6H4-o)P}] (35) . . . 178

Table 55. Bond lengths [Å] and angles [°] for [Cp2Cr2(CO){(µ-SC6H4)2-

(SC6H4-o)P}] (35) . . . 179

Table 56. Electrospray ionization mass spectrum of CpMo(CO)2{o-(SC6H4)PPh2} (36)

. . . 182

Table 57. Bond lengths [Å)] and angles [º] for CpMo(CO)2{o-(SC6H4)PPh2} (36) . . . 183

Table 58. Electrospray ionization mass spectrum of [Cp2Mo2(CO){(µ-SC6H4)2PPh}] (38)

. . . 189

Table 59. Electrospray ionization mass spectrum of CpMo(CO){(µ-SC6H4)-

Page 31: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxx

(µ-C6H4SMe)PPh}(39) . . . 189

Table 60. Bond lengths [Å] and angles [°] for [Cp2Mo2(CO){(µ-SC6H4)2PPh}] (38) . . .191

Table 61. Bond lengths [Å] and angles [°] for CpMo(CO){(µ-SC6H4)(µ-

C6H4SMe)PPh}(39) . . . 192

Table 62. Electrospray ionization mass spectrum of [Cp2Mo2(CO){(µ-SC6H4)2-

(C6H4SMe-o)P}] (41) . . . 200

Table 63. Electrospray ionization mass spectrum of Mo(CO)3{o-P(SC6H4Me-o)3}(42). 200

Table 64. Bond lengths [Å] and angles [°] for [Cp2Mo2(CO){(µ-SC6H4)2(PhSCH2-o)P}]

(40) . . . 202

Table 65. Bond lengths [Å] and angles [°] for [Cp2Mo2(CO){(µ-SC6H4)2(SC6H4Me-o)P}]

(41) . . . 203

Table 66. Bond lengths [Å] and angles [°] for Mo(CO)3{P(SC6H4Me-o)3} (42) . . . 205

Table 67. Bond lengths [Å] and angles [°] for CpMo2(CO)3(µ-S){(µ-SC6H4)2(o-

SMe)P}(43) . . . 207

Table 68. Electrospray ionization mass spectrum of [Cp2Cr2(SBz)]S2[Fe(CO)3] (44) . . 212

Table 69. Electrospray ionization mass spectrum of [CpMo(SBz)]2S2[Fe(CO)2] (47) . . 212

Table 70. Bond lengths [Å] and angles [°] for [Cp2Cr2(SBz)]S2[Fe(CO)3] (44) . . . 214

Table 71. Bond lengths [Å] and angles [°] for [CpMo]2S4[Fe(CO)3]2 (45) . . . 216

Table 72. Bond lengths [Å] and angles [°] for [CpMo]2S3[Fe(CO)3]2 (46) . . . 218

Table 73. Bond lengths [Å] and angles [°] for [CpMo(SBz)]2S2[Fe(CO)2] (47) . . . 220

Table 74. Bond lengths [Å] and angles [°] for [CpMo(CO)2(µ-S)]2 (19) . . . 226

Table 75. Bond lengths [Å] and angles [°] for [CpCr(µ-SC6H4Me)]2S (48) . . . 227

Table 76. Crystal data and structure refinement for [CpCr(CO)2(SBz)]2 (6) . . . 290

Table 77. Crystal data and structure refinement for [CpCr(SBz)]2S (7) . . . 291

Table 78. Crystal data and structure refinement for [CpMo(CO)2(SBz)]2 (9) and

[CpMo(CO)(SBz)]2S (11) . . . 293

Table 79. Crystals data and structure refinement for [CpMo(SBz)(S)]2 (10a & b) . . . 294

Page 32: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxxi

Table 80. Crystals data and structure refinement for trans-anti[CpMo(CO)(SBz)]2 (12b)

and [CpMo(SBz)2]2 (13) . . . 296

Table 81. Data collection and processing parameters of CpMo(CO)2{S2P(SC6H4Me)2}(14),

Cp2Mo2(CO)5{S2P(SC6H4Me)} (15) and Cp2Mo2(µ-S2)(µ-S)(µ-SC6H4Me) (16)

. . . 298

Table 82. Data collection and processing parameters of Cp2Mo2(CO)2(µ-PS)(µ-SC6H4Me)

(18) and Cp3Mo3(µ-S)2(µ-S2)(µ3-S) (20) . . . 300

Table 83. Data collection and processing parameters of trans-[CpCr(CO)2(SePPh)]2 (22),

CpCr(CO)2(SeP(H)Ph) (23) and Cp2Cr2(Se2P(O)Ph)2 (24) . . . 302

Table 84. Data collection and processing parameters of [Cp2Mo2{(µ-Se)2(PPh(Se))}

{(µ-Se)(PPh)3}] (25), Cp4Mo4(CO)3Se4 (26) and Cp3Mo3(CO)4[Se3(PPh)2] (27)

. . . 304

Table 85. Data collection and processing parameters of Cp2Mo2(CO)5{P(SC6H4Me-p)3}

(29), Cp2Mo2(CO)(µ-CO)2{P(SC6H4Me-p)3} (30) and Cp4Mo4(CO)4(µ3-O)(µ2-

O)2(O) (31) . . . 306

Table 86. Data collection and processing parameters of CpCr(CO)2{o-(SC6H4)PPh2} (32)

. . . 308

Table 87. Data collection and processing parameters of [Cp2Cr2(CO){(µ-SC6H4)2PPh}]

(33) and CpCr{(µ-SC6H4)2PPh} (34) . . . 310

Table 88. Data collection and processing parameters of [Cp2Cr2(CO){(µ-SC6H4)2-

(SC6H4Me-o)P}] (35) . . . 312

Table 89. Data collection and processing parameters of CpMo(CO)2{o-(SC6H4)PPh2} (36)

. . . 314

Table 90. Data collection and processing parameters of [Cp2Mo2(CO){(µ-SC6H4)2PPh}]

(38) and CpMo(CO){(µ-SC6H4)(µ-SC6H4Me)PPh} (39) . . . 316

Table 91. Data collection and processing parameters of [Cp2Mo2(CO){(µ-SC6H4)2-

(PhSCH2-o)P}] (40) and [Cp2Mo2(CO){(µ-SC6H4)2(SC6H4Me-o)P}] (41). . .318

Table 92. Data collection and processing parameters of Mo(CO)3{P(SC6H4Me-o)3} (42)

and CpMo2(CO)3(µ-S){(µ-SC6H4)( SC6H4Me-o)P}(43) . . . 319

Table 93. Data collection and processing parameters of [Cp2Cr2(SBz)]S2[Fe(CO)3] (44)

. . . 321

Table 94. Data collection and processing parameters of [CpMo]2S4[Fe(CO)3]2 (45),

[CpMo]2S3[Fe(CO)3]2 (46) and [CpMo(SBz)]2S2[Fe(CO)2] (47) . . . 323

Page 33: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxxii

Table 95. Data collection and processing parameters of [CpMo(CO)2(µ-S)]2 (19) and

[CpCr(µ-SC6H4Me)]2S (47) . . . 325

Table 96. R.F. values of complexes . . . 326

Page 34: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxxiii

LIST OF ABBREVIATIONS

e- Electron

σ Sigma

π Pi

λ Lambda (wavelength)

δ PPM

Ar Aromatic ring

Bz Benzyl

But tert-Butyl

Cp Cyclopentadienyl

Cp* Pentamethylcyclopentadienyl

Cp’ Methylcyclopentadienyl

Cp’’ Ethyltetramethylcyclopentadienyl

C6D6 Deuterated benzene-d6

C6D5CD3 Deuterated toluene-d8

Cosy Correlation spectroscopy

dppe 1,2-Bis(diphenylphosphino)ethane

Eqn Equation

ESI Electrospray ionization

Et Ethyl

h Hour

HMBC Hetero-nuclear multiple-bond connectivity

HMQC Hetero-nuclear multiple quantum coherence

IR Infrared spectroscopy

Page 35: REACTIVITY STUDIES OF CYCLOPENTADIENYL · PDF filereactivity studies of cyclopentadienyl complexes of group 6 metals with arylsulfides, organo p-s and p-se heterocycles and arylthiolate

xxxiv

J Coupling constant

Me Methyl

LCMS Liquid chromatography mass spectrometry

Ph Phenyl

PBu3 Tributylphosphine

PEt3 Triethylphosphine

PMe2Ph Dimethylphenylphosphine

PPh2Me Diphenylmethylphosphine

PPh3 Triphenylphosphine

P(OBu)3 Tributoxyphosphine

P(OPh)3 Triphenoxyphosphine

iPr Isopropyl

THF Tetrahydrofuran

TLC Thin layer chromatography

UV Ultraviolet