ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc –...

39
Reach Control Problem on Simplices Mireille E. Broucke Systems Control Group Department of Electrical and Computer Engineering University of Toronto May 7, 2012

Transcript of ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc –...

Page 1: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Problem on Simplices

Mireille E. Broucke

Systems Control Group

Department of Electrical and Computer Engineering

University of Toronto

May 7, 2012

Page 2: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Acknowledgements

• Past Students

– Graeme Ashford, MASc

– Marcus Ganness, MASc

– Dr. Zhiyun Lin, Postdoc

– Bartek Roszak, MASc

• Current Students

– Mohamed Helwa, PhD

– Dr. Elham Semsar-Kazerooni, Postdoc

– Krishnaa Mehta, MASc

• [HvS04] L.C.G.J.M. Habets and J.H. van Schuppen. A control

problem for affine dynamical systems on a full-dimensional

polytope. Automatica 40, 2004.

0

Page 3: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Motivating Example

Motivating Example 1

Page 4: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Cart and Conveyor Belts

Control Specifications:

1. Safety: |x| ≤ 3, |x| ≤ 3, |x+ x| ≤ 3.

2. Liveness: |x|+ |x| ≥ 1.

3. Temporal behavior: Every box arriving on conveyor 1 is picked up

and deposited on conveyor 2.

Motivating Example 2

Page 5: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

State Space View

• The state space is a polytope with a hole, not Rn.

• The safety specification determines the outer boundary.

• The liveness specification creates the hole.

• The arrows capture the temporal behavior.

Motivating Example 3

Page 6: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Naive Approach

• Equilibrium stabilization gives no guarantee of safety or liveness.

• Safety, if achieved, is not robust.

• Difficult to design for trade-off between safety and liveness.

• Operationally inefficient - system must be run unnaturally slowly.

Motivating Example 4

Page 7: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Preferred Approach

• Safety is built in up front and is provably robust.

• Liveness can be traded off with safety by adjusting the size of the hole.

• Triangulation is used in algebraic topology, physics, numerical solution of

PDE’s, computer graphics, etc. Why not in control theory?

Motivating Example 5

Page 8: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Problem

Reach Control Problem 6

Page 9: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

What is Given

1. An affine system

x = Ax+Bu+ a , x ∈ Rn, u ∈ R

m . (1)

2. An n-dimensional simplex S = conv{v0, . . . , vn}.

3. A set of restricted facets {F1, . . . ,Fn}.

4. One exit facet F0.

Reach Control Problem 7

Page 10: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

The Setup

v0

v1 v2C(v1) C(v2)

h1h2

B = ImB

F0

S

O = {x | Ax+ a ∈ B}

cone(S)

Notation: C(vi) :={y ∈ R

n | hj · y ≤ 0 , j 6= i}

Reach Control Problem 8

Page 11: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Problem Statement

Problem. (RCP) Given simplex S and system (1), find u(x) such

that: for each x0 ∈ S there exist T ≥ 0 and γ > 0 such that

• x(t) ∈ S for all t ∈ [0, T ],

• x(T ) ∈ F0, and

• x(t) /∈ S for all t ∈ (T, T + γ).

Notation: SS

−→ F0 by feedback of class U.

Reach Control Problem 9

Page 12: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Basic Principles

Basic Principles 10

Page 13: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Convexity and Affine Systems

Consider an affine system x = Ax+ a. If for all vertices v in Fi,

hi · (Av + a) ≤ 0,

then

• hi · (Ax+ a) ≤ 0, ∀x ∈ Fi.

• Trajectories that leave S do so through a facet Fj , j 6= i.

vj

vk

Fi

hi

Basic Principles 11

Page 14: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Affine Feedback

v1

v2v0

u1 = Kv1 + g

u2 = Kv2 + g

u0 = Kv0 + g

x = Ax+Bu+ au = Kx+ g

vT0 1...

vTn 1

︸ ︷︷ ︸

invertible

KT

gT

=

uT0

...

uTn

,

x = Ax+ B(Kx+ g) + a

= Ax+ a.

[HvS04] L.C.G.J.M. Habets and J.H. van Schuppen. Automatica 2004.

Basic Principles 12

Page 15: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Escaping Compact, Convex Sets

Theorem. Consider an affine system x = Ax+ a on S. If

Ax+ a 6= 0 , ∀x ∈ S ,

then trajectories starting in S leave S in finite time.

Basic Principles 13

Page 16: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Affine Feedback

Affine Feedback 14

Page 17: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A First Result

Theorem. SS

−→ F0 by affine feedback iff there exists

u(x) = Kx+ g such that

(a) The invariance conditions hold:

Avi + a+Bu(vi) ∈ C(vi), i ∈ {0, . . . , n}.

(b) The closed-loop system has no equilibrium in S.

[HvS06] L.C.G.J.M. Habets and J.H. van Schuppen. IEEE TAC 2006.

[RosBro06] B. Roszak and M.E. Broucke. Automatica 2006.

Affine Feedback 15

Page 18: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Numerical Example

x =

0 1

0 0

x+

0

1

u+

4

1

S determined by: v0 = (−1,−3), v1 = (4,−1), and v2 = (3,−6).

Invariance conditions give:

• hT1 (Av0 +Bu0 + a) ≤ 0 ⇒ u0 ≥ −1.75

• hT2 (Av0 +Bu0 + a) ≤ 0 ⇒ u0 ≤ −0.6

• hT2 (Av1 +Bu1 + a) ≤ 0 ⇒ u1 ≤ 0.2

• hT1 (Av2 +Bu2 + a) ≤ 0 ⇒ u2 ≥ 0.5.

Affine Feedback 16

Page 19: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Numerical Example

Choose u0 = −1.175, u1 = 0.2, u2 = 0.5.

h1

h2

v0 = (−1,−3)

v1 = (4,−1)

v2 = (3,−6)

F0

equilibrium

Affine Feedback 17

Page 20: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Numerical Example

The affine feedback is: u = [0.325 − 0.125]x− 1.225

h1

h2

v0 = (−1,−3)

v1 = (4,−1)

v2 = (3,−6)

F0

equilibrium

Affine Feedback 18

Page 21: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Equilibrium Set and Triangulations

Let B = ImB. The equilibrium set is

O = {x | Ax+ a ∈ B} .

Define

G := S ∩ O .

Assumption. If G 6= ∅, then G is a κ-dimensional face of S, where

0 ≤ κ < n. Reorder indices so that

G = conv{v1, . . . , vκ+1} .

Note: v0 6∈ G, otherwise there’s a trivial solution to RCP.

Can be achieved using the placing triangulation.

Affine Feedback 19

Page 22: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A Second Result

Theorem. Suppose the triangulation assumption holds. TFAE:

(a) SS

−→ F0 by affine feedback.

(b) SS

−→ F0 by continuous state feedback.

Proof. Fixed point argument using Sperner’s lemma, M -matrices.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Affine Feedback 20

Page 23: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Limits of Continuous State Feedback

S

v0

v1

v2

y0

b1

b2

F0

F1

F2

Let u(x) be a continuous state feedback satisyfing the invariance conditions. If B = sp{b}

and G = v1v2, then

y(x) := c(x)b , x ∈ v1v2 c : Rn

→ R continuous ,

where c(v1) ≥ 0 and c(v2) ≤ 0. By Intermediate Value Theorem there exists x s.t. c(x) = 0.

Affine Feedback 21

Page 24: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Conditions for a Topological Obstruction

1. B ∩ cone(S) = 0 nontriviality condition

2. 6 ∃ lin. indep. set {b1, . . . , bκ+1 | bi ∈ B ∩ C(vi)} system is “underactuated”

v0

v1

v2

v3

b1b2

h3

O

B

G

cone(S)

Affine Feedback 22

Page 25: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Indices

Reach Control Indices 23

Page 26: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

M -Matrices

Let 1 ≤ p ≤ q ≤ κ+ 1 and bi ∈ B ∩ C(vi). Define

Mp,q :=

(hp · bp) (hp · bp+1) · · · (hp · bq)...

......

(hq · bp) (hq · bp+1) · · · (hq · bq)

∈ R

(q−p+1)×(q−p+1) .

• A matrix is a Z -matrix if the off-diagonal elements are

non-positive.

• Because bi ∈ B ∩ C(vi), each Mp,q is a Z -matrix.

• A Z -matrix is a non-singular M -matrix if every real eigenvalue

is positive.

• Because B ∩ cone(S) = 0, certain Mp,q are non-singular

M -matrices.

Reach Control Indices 24

Page 27: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Indices

Theorem. There exist integers r1, . . . , rp ≥ 2 such that w.l.o.g.

B ∩ C(vi) ⊂ sp{bm1 , . . . , bm1+r1−1} , i = m1, . . . ,m1 + r1 − 1 ,

.

.

.

.

.

.

B ∩ C(vi) ⊂ sp{bmp , . . . , bmp+rp−1} , i = mp, . . . ,mp + rp − 1 ,

where bi ∈ B ∩ C(vi) and

mk := r1 + · · ·+ rk−1 + 1 , k = 1, . . . , p. Moreover, for each

k = 1, . . . , p, {bmk, . . . , bmk+rk−2} are linearly independent and

bmk+rk−1 = cmkbmk

+ · · ·+ cmk+rk−2bmk+rk−2 , ci < 0 .

{r1, . . . , rp} are called the reach control indices of system (1).

[BG12] M.E. Broucke and M. Ganness. IEEE TAC, in revision 2012.

Reach Control Indices 25

Page 28: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Reach Control Indices

For k = 1, . . . , p define

Gk := conv{vmk

, . . . , vmk+rk−1

}.

Theorem. Let u(x) be a continuous state feedback satisfying the

invariance conditions. Then each Gk contains an equilibrium of the

closed-loop system.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Reach Control Indices 26

Page 29: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Piecewise Affine Feedback

Piecewise Affine Feedback 27

Page 30: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Piecewise Affine Feedback

(a) (b)

S

S1

S2

x

v′

v0v0

v1v1 v2v2

y0y0

b1b1

b2b2

F0F0

F1F2

O

cone(S)cone(S1)

• As we slide v′ from v0 to v1, cone(S1) widens at v2 until b1 points into cone(S1). For

such v′, S1 S1

−→ F0 by affine feedback.

• S2 is not “underactuated” since G2 = {v2}. Thus, S2 S2

−→ S1 ∩ S2 by affine feedback.

Piecewise Affine Feedback 28

Page 31: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Recursive Subdivision Algorithm

Subdivision Algorithm:

1. Set k = 1.

2. Select v′ ∈ (v0, vmk) such that B ∩ cone(Sk) 6= 0, where

Sk := conv{v′, v1, . . . , vn}.

3. Set S := conv{v0, v1, . . . , vmk−1, v′, vmk+1, . . . , vn}.

4. If k < p, set k := k + 1 and go to step 2.

5. Set Sp+1 := S.

v0 v0v0

v1v1

v1

v2 v2v2

v′

F0 F10

h′SS

S1

Piecewise Affine Feedback 29

Page 32: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Piecewise Affine Feedback

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

F0

O

(a) Affine feedback

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

F0’

F0

(b) PWA feedback

Piecewise Affine Feedback 30

Page 33: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A Third Result

Theorem. Suppose the triangulation assumption holds. For a

somewhat stronger version of RCP, TFAE:

1. SS

−→ F0 by piecewise affine feedback.

2. SS

−→ F0 by open-loop controls.

[BG12] M.E. Broucke and M. Ganness. IEEE TAC, in revision 2012.

Piecewise Affine Feedback 31

Page 34: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Time-varying Affine Feedback

Piecewise Affine Feedback 32

Page 35: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Time-varying Affine Feedback

Equilibria are such a drag...

v0v0

v1 v1v2v2xx

Piecewise Affine Feedback 33

Page 36: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

A Fourth Result

Theorem. Suppose the triangulation assumption holds and the

invariance conditions are solvable. There exists c > 0 sufficiently small

such that SS

−→ F0 using the time-varying affine feedback

u(x, t) = e−ctu0(x) + (1− e−ct)u∞(x)

where u0(x) = K0x+ g0 places closed-loop equilibria at

vm1 , . . . , vmp

and u∞(x) = K∞x+ g∞ places closed-loop equilibria at

vm1+r1−1, . . . , vmp+rp−1 .

[AB12] G. Ashford and M. Broucke. Automatica, accepted 2012.

Piecewise Affine Feedback 34

Page 37: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Motivating Example

Motivating Example 35

Page 38: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Preferred Approach

B

O

B ∩ cone(S) 6= 0

S ∩ O = ∅ [B10]

B ∩ cone(S) 6= 0 [B10]

[AB12] or [BG12]

Motivating Example 36

Page 39: ReachControlProblemonSimplicesbroucke/Webpapers/toronto12_talk.pdf · – Marcus Ganness, MASc – Dr. Zhiyun Lin, Postdoc – Bartek Roszak, MASc • Current Students – Mohamed

Final Design

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Motivating Example 37