Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C....

22
Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos

Transcript of Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C....

Page 1: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Reach extension of passive optical networks using semiconductor optical

amplifiersA E Kelly, C. Michie, I. Andonovic, J. McGeough, S

Kariaganopoulos

Page 2: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Standard Passive Optical Networks

GPON 1:32Reach 10-20km

Page 3: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Extended Reach Passive Optical Networks

Electronic regeneration cannot be used as it results in Preamble erosion due to burst mode locking time

Page 4: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Passive Optical Networks 1300nm backhaul

transmitter 1310nm

VOA1 SOA VOA2

20 nmfilter

receiver 1310nm

•VOA1 represents access loss – split plus some link loss•VOA2 predominately trunk loss•1300 nm and 1.25/2.5 Gbit/s; dispersion neglected

insertion loss α

Significant ASE levels

Page 5: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Power BudgetSimple linear model

2

22

tot

inPRSNR

PinPIN or APD

.)(4)(2

22

2

2

BFRkT

BIRPe

PRISNR

NL

Drec

in

TOT

P

shot noise terms thermal noise

receiver Noise Figure

pin

Page 6: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Power BudgetSimple linear model

2

22

tot

inPRSNR

PinPIN or APD

shot noise termsthermal noise

receiver Noise Figure

APD

BFRkT

BIRPFeM

PRMISNR

NL

DinA

in

TOT

P

)(4)(2 2

222

2

2

APD Multiplication and Noise Factor

Page 7: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

SNR modified to account for ER of transmitter – at best 10 dB

Power Budget

e

eAVE

r

rPQ

1

120

21

Page 8: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Baseline calculations

APDNeo PhotonicsPTB3J88-5638T-SC/PC+

pin – OCP- TRXAG1M

data modelled for commercial pin/APD

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

-30.00 -28.00 -26.00 -24.00 -22.00 -20.00

Receiver Power, dBm

BE

R

BTB

10dB ER

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

-36.00 -34.00 -32.00 -30.00 -28.00 -26.00

Receiver Power, dBm

BE

R

BTB

BTB ER 10 dB

Page 9: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Inclusion of Amplifier

Build upon a model of the SNR to include the noise terms associated with amplifier

2222221 ASEASEASESASEST

22220 ASEASEASET

Page 10: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Extinction Ratio further degraded due to ASE

ASEASE PPP /)( 1

1

120

21

AVEPQ

transmitter 1310nm

VOA1SOA

VOA2

20 nmfilter

receiver 1310nm

insertion loss α

Significant ASE levels

0v

Page 11: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

APD based Receiver

Assumptions– -28 dBm sensitivity for BTB un amplified with 10 dB ER– M=10– thermal noise estimated to give sensitivity of -28dBm

for 10-10 BER (value specified on data sheets)– Psat of SOA +13 dBm– NF 7 dB

Page 12: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Amplified APD Receiver

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

-45.00 -40.00 -35.00 -30.00 -25.00

Signal Power, dBm

BE

R

BTB infinite ERBTB 10 dB ER0.8 nm filter10 nm filter20 nm filter20 nm no ER deg

Baseline0.8nm filter10 nm filter

20 nm filter

20 nm filterER not considered

Page 13: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Influence of Optical Filtering

-40.00

-39.00

-38.00

-37.00

-36.00

-35.00

-34.00

-33.00

-32.00

-31.00

-30.00

0 5 10 15 20

Optical Filter Bandwidth, nm

Rec

eive

r P

ower

, dB

m (

BE

R10

e-10

)

0

1

2

3

4

5

6

7

8

9

10

Ext

inct

ion

Ra

tio, d

B

Prec pin

Prec APD

pin ext dB

APD ext dB

Page 14: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Post Amplifier Losses

Position amplifier to compensate for splitting and reach lossesSOA Psat limited to +13 dBmGain adjusted accordingly max

max

1G

GPG

Gin

Splitter(Access)

lossSOA Backhaul

20 nmfilter

OLTreceiver 1310nm

insertion loss αONT

Page 15: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

System Power Margins

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

Loss into Amplifier, dB

Lo

ss

aft

er

am

plif

ier,

dB

0

1

2

3

4

5

6

7

8

9

10

Ex

tin

cti

on

Ra

tio

, Po

we

r p

en

alt

y, d

B

Post Amplifier Loss

Unamplified Signal

Ppenalty

ext dB

pre-amp margin

booster margin

mid span margin benefit

GPON

Page 16: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Margin Enhancement for Amplified GPON

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Loss into Amplifier, dB

Sys

tem

Ma

rgin

Enh

anc

emen

t, d

B

128 split

Page 17: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

-20

0

20

40

60

80

100

1 10 100 1000 10000

SplitRatio

Bac

khau

l Dis

tanc

e, k

m

Amplified Reach

Unamplified Signal

64 split128 split

32 Split64 Split512 Split

Psat limited

Gain limited

NF limitedGPON: 32 split

Distance versus number of users for each case

Page 18: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Experiment

VOA SOA VOAl

Channel DropOSA

(filter)

1300 nmreceiver

1300 tx

Page 19: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Experimental Validation

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

-40.00 -38.00 -36.00 -34.00 -32.00 -30.00 -28.00 -26.00

Signal Power, dBm

BE

R

BTB Theory10 nm theory20 nm theory20nmBTB10 nm

Page 20: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Constant BER curve with filter width

-40

-39

-38

-37

-36

-35

-34

-33

-32

-31

-30

0 5 10 15 20

Optical Filter Bandwidth, nm

Rec

eive

r P

ower

, dB

m (

BE

R10

e-10

)

0

1

2

3

4

5

6

7

8

9

Ext

inct

ion

Ra

tio, d

B

Prec APD

Sens

APD ext dB

Page 21: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Experimental Margin Enhancement

-30

-20

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

Loss into Amplifier, dB

Pos

t Am

plifi

er M

argi

n, d

B

-35

-30

-25

-20

-15

-10

-5

0

Po

wer

at

Rec

eive

r, d

Bm

Loss Post Amp TheoryLoss Post Amp ExptUnamplifiedP BER10-9 EXPTP 10-9 theory

Page 22: Reach extension of passive optical networks using semiconductor optical amplifiers A E Kelly, C. Michie, I. Andonovic, J. McGeough, S Kariaganopoulos.

Conclusions

• Number of users and backhaul distance can be considerably increased by using SOA based amplification

• Required SOA specification depends on placement within network

• A single SOA cannot meet these requirements • Variable gain clamping schemes?

Key PublicationsRussell P. Davey, Daniel B. Grossman, Michael Rasztovits-Wiech, David B. Payne, Derek Nesset, A. E. Kelly, Albert Rafel, Shamil Appathurai, and Sheng-Hui Yang “Long-Reach Passive Optical Networks” Journal of Lightwave Technology, Vol. 27, Issue 3, pp. 273-291 February 2009 (invited tutorial paper)High Performance Semiconductor Optical Amplifier Modules at 1300nm”A.E.Kelly, C.Michie, I.Armstrong, I.Andonovic, C. Tombling, J.McGeough and B.C.Thomsen, Photon.Tech.Lett, Vol.18, No.24, pp 2674-2676, 2006“The Dynamic Gain Modulation Performance of Adjustable Gain-Clamped Semiconductor Optical Amplifiers (AGC-SOA)” Liu, L. Michie, C. Kelly, A. E. Andonovic, I., Journal of Lightwave Technology , Volume: 29 Issue: 22 pp 3483 – 3489, 2011.