Ramji Venkataramanan Sekhar rv285/itw13_sparc_talk.pdf · PDF file Ramji Venkataramanan...
date post
25-May-2020Category
Documents
view
12download
0
Embed Size (px)
Transcript of Ramji Venkataramanan Sekhar rv285/itw13_sparc_talk.pdf · PDF file Ramji Venkataramanan...
Sparse Regression Codes: Recent Results & Future Directions
Ramji Venkataramanan Sekhar Tatikonda
University of Cambridge Yale University
(Acknowledgements: A. Barron, A. Joseph, S. Cho, T. Sarkar)
1 / 21
GOAL : Efficient, rate-optimal codes for
Point-to-point communication
Lossy Compression
Multi-terminal models:
Wyner-Ziv, Gelfand-Pinsker, Multiple-access, broadcast, multiple descriptions, . . .
2 / 21
Achieving the Shannon limits
Textbook Constructions
Random codes for point-to-point source & channel coding
Random Binning, Superposition
High Coding and Storage Complexity
- exponential in block length n
WANT: Compact representation + fast encoding/decoding
‘Fast’ ⇒ polynomial in n LDPC/LDGM codes, Polar codes
- For finite input-alphabet channels & sources
3 / 21
Achieving the Shannon limits
Textbook Constructions
Random codes for point-to-point source & channel coding
Random Binning, Superposition
High Coding and Storage Complexity
- exponential in block length n
WANT: Compact representation + fast encoding/decoding
‘Fast’ ⇒ polynomial in n LDPC/LDGM codes, Polar codes
- For finite input-alphabet channels & sources
3 / 21
SParse Regression Codes (SPARC)
Introduced by Barron & Joseph [ISIT ’10, Arxiv ’12]
- Provably achieve AWGN capacity with efficient decoding
Also achieve Gaussian R-D function [RV-Sarkar-Tatikonda ’13]
Codebook structure facilitates binning, superposition [RV-Tatikonda, Allerton ’12]
Overview of results and open problems
4 / 21
Codebook Construction
Block length n, rate R , construct enR codewords
Gaussian source/channel coding
5 / 21
Codebook Construction
A:
β: 0, c1, 0, c2, 0, cL, 0, , 00, T
n rows
A: design matrix or ‘dictionary’ with ind. N (0, 1) entries Codewords Aβ - sparse linear combinations of columns of A
5 / 21
SPARC Codebook
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
n rows, ML columns
Choosing M and L:
For rate R codebook, need ML = enR
Choose M polynomial of n ⇒ L ∼ n/log n Storage Complexity ↔ Size of A: polynomial in n
6 / 21
SPARC Codebook
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
n rows, ML columns
Choosing M and L:
For rate R codebook, need ML = enR
Choose M polynomial of n ⇒ L ∼ n/log n Storage Complexity ↔ Size of A: polynomial in n
6 / 21
SPARC Codebook
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
n rows, ML columns
Choosing M and L:
For rate R codebook, need ML = enR
Choose M polynomial of n ⇒ L ∼ n/log n Storage Complexity ↔ Size of A: polynomial in n
6 / 21
Point-to-point AWGN Channel
Noise
+ X Z
M̂M
Z = X + Noise ‖X‖2
n ≤ P, Noise ∼ Normal(0,N)
GOAL: Achieve rates close to C = 12 log ( 1 + PN
)
7 / 21
SPARC Construction
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
How to choose c1, c2, . . . for efficient decoding?
Think of sections as L users of a MAC (L ∼ n/log n) If rate of each user CL , for successive decoding,
c2i = κ · exp(−2Ci/L), i = 1, . . . , L
c2i ∼ Θ(1/L), κ determined by ∑
i c 2 i = P
8 / 21
SPARC Construction
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
How to choose c1, c2, . . . for efficient decoding?
Think of sections as L users of a MAC (L ∼ n/log n) If rate of each user CL , for successive decoding,
c2i = κ · exp(−2Ci/L), i = 1, . . . , L
c2i ∼ Θ(1/L), κ determined by ∑
i c 2 i = P
8 / 21
SPARC Construction
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
How to choose c1, c2, . . . for efficient decoding?
Think of sections as L users of a MAC (L ∼ n/log n) If rate of each user CL , for successive decoding,
c2i = κ · exp(−2Ci/L), i = 1, . . . , L
c2i ∼ Θ(1/L), κ determined by ∑
i c 2 i = P
8 / 21
Efficient Decoder
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
Z = Aβ + Noise
Each section has rate R/L
Successive decoding efficient, but does poorly
– Section errors propagate!
9 / 21
Efficient Decoder
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
Z = Aβ + Noise
Adaptive Successive Decoder [Barron-Joseph]
Set R0 = Y. In Step k = 1, 2, . . .
1 Compute inner product of each column with Rk−1 2 Pick columns whose test statistic crosses threshold τ
3 Rk = Rk−1 − Fitk 4 Complexity O(ML log M)
9 / 21
Efficient Decoder
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
Z = Aβ + Noise
Adaptive Successive Decoder [Barron-Joseph]
Set R0 = Y. In Step k = 1, 2, . . .
1 Compute inner product of each column with Rk−1 2 Pick columns whose test statistic crosses threshold τ
3 Rk = Rk−1 − Fitk 4 Complexity O(ML log M)
9 / 21
Performance
How many sections are decoded correctly?
Test statistics in each step are dependent on prev. steps
A variant of the adaptive successive decoder is analyzable
Theorem ([Barron-Joseph ’10])
Let δM = 1√
π log M and R = C(1− δM −∆).
The probability that the section error rate is more than δM2C is at most
Pe = exp(−cL∆2)
(Use outer R-S code of rate (1− δM/C) to get block error prob Pe)
10 / 21
Performance
How many sections are decoded correctly?
Test statistics in each step are dependent on prev. steps
A variant of the adaptive successive decoder is analyzable
Theorem ([Barron-Joseph ’10])
Let δM = 1√
π log M and R = C(1− δM −∆).
The probability that the section error rate is more than δM2C is at most
Pe = exp(−cL∆2)
(Use outer R-S code of rate (1− δM/C) to get block error prob Pe)
10 / 21
Open Questions
Better decoding algorithms
- Different power allocation across sections
- [Cho-Barron ISIT ’12]: Adaptive Soft-decision Decoder
- Connections to message passing
Codebook has good structural properties
- With ML decoding, SPARC attains capacity
- Error-exponent same order as random coding exponent [Barron-Joseph IT ’12]
Low-complexity dictionaries
- ML Performance with ±1 matrix [Takeishi et al ISIT ’13]
11 / 21
Open Questions
Better decoding algorithms
- Different power allocation across sections
- [Cho-Barron ISIT ’12]: Adaptive Soft-decision Decoder
- Connections to message passing
Codebook has good structural properties
- With ML decoding, SPARC attains capacity
- Error-exponent same order as random coding exponent [Barron-Joseph IT ’12]
Low-complexity dictionaries
- ML Performance with ±1 matrix [Takeishi et al ISIT ’13]
11 / 21
Lossy Compression
Source Coding with SPARCs . . .
12 / 21
Lossy Compression
Codebook R bits/sample
S = S1, . . . , Sn
enR
Ŝ = Ŝ1, . . . , Ŝn
Distortion criterion: 1n ∑
k(Sk − Ŝk)2
For i.i.d N (0, σ2) source, min distortion σ2e−2R
GOAL: achieve this with low-complexity algorithms?
- Computation & Storage
12 / 21
Compression with SPARC
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
ML codewords of form Aβ (ML = enR)
With L ∼ n/log n, can we efficiently find β̂ s.t. 1 n‖S− Aβ̂‖2 < σ2e−2R + ∆
13 / 21
Compression with SPARC
A:
β: 0, c2, 0, cL, 0, , 00,
M columns M columnsM columns Section 1 Section 2 Section L
T
n rows
0, c1,
ML codewords of form Aβ (ML = enR)
With L ∼ n/log n, can we efficiently find β̂ s.t. 1 n‖S− Aβ̂‖2 < σ2e