Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan...

177
Ramanujan and asymptotic formulas Kathrin Bringmann University of Cologne This research was supported by the Alfried Krupp Prize April 19, 2013 Kathrin Bringmann Ramanujan and asymptotic formulas

Transcript of Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan...

Page 1: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Ramanujan and asymptotic formulas

Kathrin Bringmann

University of Cologne

This research was supported by the Alfried Krupp Prize

April 19, 2013

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 2: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Outline

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 3: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Outline

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 4: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Outline

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 5: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Outline

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 6: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Outline

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 7: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1

p(1) = 11

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 8: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1

p(1) = 11

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 9: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1

p(1) = 11

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 10: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1

p(1) = 11

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 11: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1

p(1) = 1

1

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 12: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 13: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 14: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2

p(2) = 2

2,

1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 15: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2

p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 16: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 17: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3

p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 18: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3

p(3) = 3

3,

2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 19: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3

p(3) = 3

3, 2 + 1,

1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 20: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3

p(3) = 3

3, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 21: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 22: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 23: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 5

4,

3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 24: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 5

4, 3 + 1,

2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 25: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 5

4, 3 + 1, 2 + 2,

2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 26: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 5

4, 3 + 1, 2 + 2, 2 + 1 + 1,

1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 27: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4

p(4) = 5

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 28: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Partitions

A partition of a positive integer n is a nonincreasing sequence ofpositive integers whose sum is n.

p(n) := # of partitions of n

Examples:

n = 1 p(1) = 11

n = 2 p(2) = 2

2, 1 + 1

n = 3 p(3) = 33, 2 + 1, 1 + 1 + 1

n = 4 p(4) = 54, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 29: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Fibonacci numbers

Fibonacci numbers:

Fn = Fn−1 + Fn−2

F0 = 0 F1 = 1

First elements:

1 1 2 3 5

but

p(5) = 7F6 = 8

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 30: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Fibonacci numbers

Fibonacci numbers:

Fn = Fn−1 + Fn−2

F0 = 0 F1 = 1

First elements:

1 1 2 3 5

but

p(5) = 7F6 = 8

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 31: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Fibonacci numbers

Fibonacci numbers:

Fn = Fn−1 + Fn−2

F0 = 0 F1 = 1

First elements:

1 1 2 3 5

but

p(5) = 7F6 = 8

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 32: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Fibonacci numbers

Fibonacci numbers:

Fn = Fn−1 + Fn−2

F0 = 0 F1 = 1

First elements:

1 1 2 3 5

but

p(5) = 7F6 = 8

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 33: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating functions

Euler:

P(q) :=∞∑n=0

p(n)qn =∞∏n=1

1

1− qn

Pentagonal Number Theorem:

∞∏n=1

(1− qn) =∑n∈Z

(−1)nqn(3n−1)

2

Recursion:

p(k) = p(k − 1) + p(k − 2)− p(k − 5)− p(k − 7)

+ p(k − 12) + p(k − 15)− p(k − 22)− . . .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 34: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating functions

Euler:

P(q) :=∞∑n=0

p(n)qn =∞∏n=1

1

1− qn

Pentagonal Number Theorem:

∞∏n=1

(1− qn) =∑n∈Z

(−1)nqn(3n−1)

2

Recursion:

p(k) = p(k − 1) + p(k − 2)− p(k − 5)− p(k − 7)

+ p(k − 12) + p(k − 15)− p(k − 22)− . . .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 35: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating functions

Euler:

P(q) :=∞∑n=0

p(n)qn =∞∏n=1

1

1− qn

Pentagonal Number Theorem:

∞∏n=1

(1− qn) =∑n∈Z

(−1)nqn(3n−1)

2

Recursion:

p(k) = p(k − 1) + p(k − 2)− p(k − 5)− p(k − 7)

+ p(k − 12) + p(k − 15)− p(k − 22)− . . .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 36: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Modularity

f : H→ C holomorphic is modular of weight k if for all(a bc d

)∈ SL2(Z)

f

(aτ + b

cτ + d

)= (cτ + d)k f (τ)

plus growth condition

Fourier expansion(q = e2πiτ

)f (τ) =

∑n∈Z

a(n)qn

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 37: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Modularity

f : H→ C holomorphic is modular of weight k if for all(a bc d

)∈ SL2(Z)

weight

f

(aτ + b

cτ + d

)=

↓(cτ + d)k f (τ)

plus growth condition

Fourier expansion(q = e2πiτ

)f (τ) =

∑n∈Z

a(n)qn

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 38: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Modularity

f : H→ C holomorphic is modular of weight k if for all(a bc d

)∈ SL2(Z)

weight

f

(aτ + b

cτ + d

)=

↓(cτ + d)k f (τ)

plus growth condition

Fourier expansion(q = e2πiτ

)f (τ) =

∑n∈Z

a(n)qn

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 39: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Modularity

f : H→ C holomorphic is modular of weight k if for all(a bc d

)∈ SL2(Z)

weight

f

(aτ + b

cτ + d

)=

↓(cτ + d)k f (τ)

plus growth condition

Fourier expansion(q = e2πiτ

)f (τ) =

∑n∈Z

a(n)qn

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 40: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Examples

1) Dedekind η-function

η(τ) := q1

24

∞∏n=1

(1− qn)

Modularity:

η (τ + 1) = eπi12 η(τ),

η

(−1

τ

)=√−iτη(τ).

2) Theta function

Θ(τ) :=∑n∈Z

qn2.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 41: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Examples

1) Dedekind η-function

η(τ) := q1

24

∞∏n=1

(1− qn)

Modularity:

η (τ + 1) = eπi12 η(τ),

η

(−1

τ

)=√−iτη(τ).

2) Theta function

Θ(τ) :=∑n∈Z

qn2.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 42: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Examples

1) Dedekind η-function

η(τ) := q1

24

∞∏n=1

(1− qn)

Modularity:

η (τ + 1) = eπi12 η(τ),

η

(−1

τ

)=√−iτη(τ).

2) Theta function

Θ(τ) :=∑n∈Z

qn2.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 43: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Growth of p(n)

p(10) = 42

p(50) = 204226

p(100) = 190569292

Asymptotic behavior (Hardy–Ramanujan)

p(n) ∼ 1

4√

3neπ√

2n3 (n→∞)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 44: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Growth of p(n)

p(10) = 42

p(50) = 204226

p(100) = 190569292

Asymptotic behavior (Hardy–Ramanujan)

p(n) ∼ 1

4√

3neπ√

2n3 (n→∞)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 45: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Growth of p(n)

p(10) = 42

p(50) = 204226

p(100) = 190569292

Asymptotic behavior (Hardy–Ramanujan)

p(n) ∼ 1

4√

3neπ√

2n3 (n→∞)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 46: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Growth of p(n)

p(10) = 42

p(50) = 204226

p(100) = 190569292

Asymptotic behavior (Hardy–Ramanujan)

p(n) ∼ 1

4√

3neπ√

2n3 (n→∞)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 47: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Exact formula

Kloosterman sum:

Ak(n) =∑

h (mod k)∗

ωh,ke−2πihn

k

Bessel function of order α:

Iα(x) :=∞∑

m=0

1

m!Γ(m + α + 1)

(x

2

)2m+α

Rademacher formula:

p(n) =2π

(24n − 1)34

∞∑k=1

Ak(n)

kI 3

2

(π√

24n − 1

6k

)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 48: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Exact formula

Kloosterman sum:

some multiplier↓

Ak(n) =∑

h (mod k)∗

ωh,ke−2πihn

k

Bessel function of order α:

Iα(x) :=∞∑

m=0

1

m!Γ(m + α + 1)

(x

2

)2m+α

Rademacher formula:

p(n) =2π

(24n − 1)34

∞∑k=1

Ak(n)

kI 3

2

(π√

24n − 1

6k

)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 49: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Exact formula

Kloosterman sum:

some multiplier↓

Ak(n) =∑

h (mod k)∗

ωh,ke−2πihn

k

Bessel function of order α:

Iα(x) :=∞∑

m=0

1

m!Γ(m + α + 1)

(x

2

)2m+α

Rademacher formula:

p(n) =2π

(24n − 1)34

∞∑k=1

Ak(n)

kI 3

2

(π√

24n − 1

6k

)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 50: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Exact formula

Kloosterman sum:

some multiplier↓

Ak(n) =∑

h (mod k)∗

ωh,ke−2πihn

k

Bessel function of order α:

Iα(x) :=∞∑

m=0

1

m!Γ(m + α + 1)

(x

2

)2m+α

Rademacher formula:

p(n) =2π

(24n − 1)34

∞∑k=1

Ak(n)

kI 3

2

(π√

24n − 1

6k

)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 51: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Outline

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 52: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Ramanujan’s last letter

”I am extremely sorry for notwriting you a single letter up tonow. I recently discovered very

interesting functions which I call“Mock” ϑ-functions. Unlike the“False” ϑ-functions they enterinto mathematics as beautifully

as the theta functions. I amsending you with this letter some

examples.”

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 53: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Ramanujan’s last letter

”I am extremely sorry for notwriting you a single letter up tonow. I recently discovered very

interesting functions which I call“Mock” ϑ-functions. Unlike the“False” ϑ-functions they enterinto mathematics as beautifully

as the theta functions. I amsending you with this letter some

examples.”

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 54: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Ramanujan’s f (q)

Partition function:

P(q) =∑n≥0

qn2

(q; q)2n

with

(a)n = (a; q)n :=n−1∏j=0

(1− aqj

)

Ramanujan’s mock theta function:

f (q) =∑n≥0

qn2

(−q; q)2n

=∑n≥0

α(n)qn.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 55: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Ramanujan’s f (q)

Partition function:

P(q) =∑n≥0

qn2

(q; q)2n

with

(a)n = (a; q)n :=n−1∏j=0

(1− aqj

)

Ramanujan’s mock theta function:

f (q) =∑n≥0

qn2

(−q; q)2n

=∑n≥0

α(n)qn.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 56: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Ramanujan’s f (q)

Partition function:

P(q) =∑n≥0

qn2

(q; q)2n

with

(a)n = (a; q)n :=n−1∏j=0

(1− aqj

)

Ramanujan’s mock theta function:

f (q) =∑n≥0

qn2

(−q; q)2n

=∑n≥0

α(n)qn.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 57: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Dyson’s challenge for the future

”The mock theta-functions giveus tantalizing hints of a grandsynthesis still to be discovered.

Somehow it should be possible tobuild them into a coherentgroup-theoretical structure,

analogous to the structure ofmodular forms which Hecke builtaround the old theta functions ofJacobi. This remains a challenge

for the future. . . ”

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 58: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Dyson’s challenge for the future

”The mock theta-functions giveus tantalizing hints of a grandsynthesis still to be discovered.

Somehow it should be possible tobuild them into a coherentgroup-theoretical structure,

analogous to the structure ofmodular forms which Hecke builtaround the old theta functions ofJacobi. This remains a challenge

for the future. . . ”

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 59: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Harmonic Maass forms

Definition:

F : H→ C is a harmonic weak Maass form if it is modular ofweight k and

∆k(F) = 0

with (τ = x + iy)

∆k := −y 2

(∂2

∂x2+

∂2

∂y 2

)+ iky

(∂

∂x+ i

∂y

).

Moreover growth condition.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 60: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Harmonic Maass forms

Definition:

F : H→ C is a harmonic weak Maass form if it is modular ofweight k and

∆k(F) = 0

with (τ = x + iy)

∆k := −y 2

(∂2

∂x2+

∂2

∂y 2

)+ iky

(∂

∂x+ i

∂y

).

Moreover growth condition.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 61: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Harmonic Maass forms

Definition:

F : H→ C is a harmonic weak Maass form if it is modular ofweight k and

∆k(F) = 0

with (τ = x + iy)

∆k := −y 2

(∂2

∂x2+

∂2

∂y 2

)+ iky

(∂

∂x+ i

∂y

).

Moreover growth condition.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 62: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Examples

I weight 2 Eisenstein series

E2(τ) := E2(τ)− 3

πy

where

E2(τ) := 1− 24∑n≥1

σ(n)qn

with σ(n) :=∑

d |n d .

I Class number generating function

h(τ) :=∑n≥0

n≡0,3 (mod 4)

H(n)qn +i

8√

∫ i∞

−τ

Θ(w)

(−i(τ + w))32

dw

where H(n) is the Hurwitz class number.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 63: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Examples

I weight 2 Eisenstein series

E2(τ) := E2(τ)− 3

πy

where

E2(τ) := 1− 24∑n≥1

σ(n)qn

with σ(n) :=∑

d |n d .

I Class number generating function

h(τ) :=∑n≥0

n≡0,3 (mod 4)

H(n)qn +i

8√

∫ i∞

−τ

Θ(w)

(−i(τ + w))32

dw

where H(n) is the Hurwitz class number.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 64: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Examples

I weight 2 Eisenstein series

E2(τ) := E2(τ)− 3

πy

where

E2(τ) := 1− 24∑n≥1

σ(n)qn

with σ(n) :=∑

d |n d .

I Class number generating function

h(τ) :=∑n≥0

n≡0,3 (mod 4)

H(n)qn +i

8√

∫ i∞

−τ

Θ(w)

(−i(τ + w))32

dw

where H(n) is the Hurwitz class number.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 65: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Natural splitting

F harmonic Maass form

F = F+ + F−

with

F+(τ) :=∑

n�−∞a+(n)qn,

.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 66: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Natural splitting

F harmonic Maass form

F = F+ + F−↑

holomorphicpart

with

F+(τ) :=∑

n�−∞a+(n)qn,

.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 67: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Natural splitting

F harmonic Maass form

F = F+ + F−↑

holomorphicpart

↑non-holomorphic

part

with

F+(τ) :=∑

n�−∞a+(n)qn,

.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 68: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Natural splitting

F harmonic Maass form

F = F+ + F−↑

holomorphicpart

↑non-holomorphic

part

with

F+(τ) :=∑

n�−∞a+(n)qn,

F−(τ) :=∑n>0

a−(n)Γ(k − 1; 4π|n|y)qn.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 69: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Natural splitting

F harmonic Maass form

F = F+ + F−↑

holomorphicpart

↑non-holomorphic

part

with

F+(τ) :=∑

n�−∞a+(n)qn,

F−(τ) :=∑n>0

a−(n)Γ(k − 1; 4π|n|y)qn

↑incomplete gamma

function

.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 70: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Returning to f (q)

Ramanujan’s claim:

α(n) ∼ (−1)n+1

2√

neπ√

n6 (n→∞)

Andrews-Dragonette Conjecture:

α(n) =π

(24n − 1)14

∑k≥1

(−1)bk+1

2 c

kA2k

(n −

k(1 + (−1)k

)4

)

× I 12

(π√

24n − 1

12n

)Theorem (B-Ono)

The Andrews-Dragonette Conjecture is true.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 71: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Returning to f (q)

Ramanujan’s claim:

α(n) ∼ (−1)n+1

2√

neπ√

n6 (n→∞)

Andrews-Dragonette Conjecture:

α(n) =π

(24n − 1)14

∑k≥1

(−1)bk+1

2 c

kA2k

(n −

k(1 + (−1)k

)4

)

× I 12

(π√

24n − 1

12n

)

Theorem (B-Ono)

The Andrews-Dragonette Conjecture is true.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 72: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Returning to f (q)

Ramanujan’s claim:

α(n) ∼ (−1)n+1

2√

neπ√

n6 (n→∞)

Andrews-Dragonette Conjecture:

α(n) =π

(24n − 1)14

∑k≥1

(−1)bk+1

2 c

kA2k

(n −

k(1 + (−1)k

)4

)

× I 12

(π√

24n − 1

12n

)Theorem (B-Ono)

The Andrews-Dragonette Conjecture is true.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 73: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Key ingredient 1: (mock) modularity of f (q)

Build the vector-valued function

F (τ) = (F0(τ),F1(τ),F2(τ))T

:=(

q−1

24 f (q), 2q13ω(

q12

), 2q

13ω(−q

12

))T

with

ω(q) :=∑n≥0

q2n2+2n

(q; q2)2n+1

.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 74: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Key ingredient 1: (mock) modularity of f (q)

Build the vector-valued function

F (τ) = (F0(τ),F1(τ),F2(τ))T

:=(

q−1

24 f (q), 2q13ω(

q12

), 2q

13ω(−q

12

))Twith

ω(q) :=∑n≥0

q2n2+2n

(q; q2)2n+1

.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 75: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Non-holomorphic part

Period integral:

G (τ) :.

=

∫ i∞

−τ

(g1(z), g0(z),−g2(z))T√−i(τ + z)

dz ,

where

g0(z) :=∑n∈Z

(−1)n(

n +1

3

)e3πi(n+ 1

3 )2z ,

g1(z) := −∑n∈Z

(n +

1

6

)e3πi(n+ 1

6 )2z ,

g2(z) :=∑n∈Z

(n +

1

3

)e3πi(n+ 1

3 )2z .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 76: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Non-holomorphic part

Period integral:

G (τ) :.

=

∫ i∞

−τ

(g1(z), g0(z),−g2(z))T√−i(τ + z)

dz ,

where

g0(z) :=∑n∈Z

(−1)n(

n +1

3

)e3πi(n+ 1

3 )2z ,

g1(z) := −∑n∈Z

(n +

1

6

)e3πi(n+ 1

6 )2z ,

g2(z) :=∑n∈Z

(n +

1

3

)e3πi(n+ 1

3 )2z .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 77: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Non-holomorphic part

Period integral:

G (τ) :.

=

∫ i∞

−τ

(g1(z), g0(z),−g2(z))T√−i(τ + z)

dz ,

where

g0(z) :=∑n∈Z

(−1)n(

n +1

3

)e3πi(n+ 1

3 )2z ,

g1(z) := −∑n∈Z

(n +

1

6

)e3πi(n+ 1

6 )2z ,

g2(z) :=∑n∈Z

(n +

1

3

)e3πi(n+ 1

3 )2z .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 78: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Non-holomorphic part

Period integral:

G (τ) :.

=

∫ i∞

−τ

(g1(z), g0(z),−g2(z))T√−i(τ + z)

dz ,

where

g0(z) :=∑n∈Z

(−1)n(

n +1

3

)e3πi(n+ 1

3 )2z ,

g1(z) := −∑n∈Z

(n +

1

6

)e3πi(n+ 1

6 )2z ,

g2(z) :=∑n∈Z

(n +

1

3

)e3πi(n+ 1

3 )2z .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 79: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Non-holomorphic part

Period integral:

G (τ) :.

=

∫ i∞

−τ

(g1(z), g0(z),−g2(z))T√−i(τ + z)

dz ,

where

g0(z) :=∑n∈Z

(−1)n(

n +1

3

)e3πi(n+ 1

3 )2z ,

g1(z) := −∑n∈Z

(n +

1

6

)e3πi(n+ 1

6 )2z ,

g2(z) :=∑n∈Z

(n +

1

3

)e3πi(n+ 1

3 )2z .

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 80: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Modularity of f (q)

Completion:

F (τ) := F (τ)− G (τ)

Theorem (Zwegers)

We have

F (τ + 1) =

ζ−124 0 00 0 ζ3

0 ζ3 0

F (τ),

F

(−1

τ

)=√−iτ

0 1 01 0 00 0 −1

F (τ),

with ζn := e2πin . Moreover ∆ 1

2

(F)

= 0.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 81: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Modularity of f (q)

Completion:

F (τ) := F (τ)− G (τ)

Theorem (Zwegers)

We have

F (τ + 1) =

ζ−124 0 00 0 ζ3

0 ζ3 0

F (τ),

F

(−1

τ

)=√−iτ

0 1 01 0 00 0 −1

F (τ),

with ζn := e2πin .

Moreover ∆ 12

(F)

= 0.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 82: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Modularity of f (q)

Completion:

F (τ) := F (τ)− G (τ)

Theorem (Zwegers)

We have

F (τ + 1) =

ζ−124 0 00 0 ζ3

0 ζ3 0

F (τ),

F

(−1

τ

)=√−iτ

0 1 01 0 00 0 −1

F (τ),

with ζn := e2πin . Moreover ∆ 1

2

(F)

= 0.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 83: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Key ingredient 2: Maass Poincare series

General shape:

∑M=

(a bc d

)∈Γ∞\SL2(Z)

(cτ + d)−kφ

(aτ + b

cτ + d

)

with

Γ∞ :=

{±(

1 n0 1

); n ∈ Z

}.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 84: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Key ingredient 2: Maass Poincare series

General shape:

∑M=

(a bc d

)∈Γ∞\SL2(Z)

(cτ + d)−kφ

(aτ + b

cτ + d

)

with

Γ∞ :=

{±(

1 n0 1

); n ∈ Z

}.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 85: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Maass-Poincare series

Average

ϕs(τ) :=Ms

(−πy

6

)e−

πix12

with

Poincare series (Re(s) > 1):

P 12

(s; τ) :=∑

M∈Γ∞\Γ0(2)

χ(M)−1(cτ + d)−12ϕs(Mτ).

↑χ appropriate

multiplier

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 86: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Maass-Poincare series

Average

ϕs(τ) :=Ms

(−πy

6

)e−

πix12

with

Ms(u) := |u|−12 M 1

4sgn(u),s− 1

2(|u|)

Poincare series (Re(s) > 1):

P 12

(s; τ) :=∑

M∈Γ∞\Γ0(2)

χ(M)−1(cτ + d)−12ϕs(Mτ).

↑χ appropriate

multiplier

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 87: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Maass-Poincare series

Average

ϕs(τ) :=Ms

(−πy

6

)e−

πix12

with

Ms(u) := |u|−12 M 1

4sgn(u),s− 1

2(|u|)

↑M-Whittaker

function

Poincare series (Re(s) > 1):

P 12

(s; τ) :=∑

M∈Γ∞\Γ0(2)

χ(M)−1(cτ + d)−12ϕs(Mτ).

↑χ appropriate

multiplier

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 88: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Maass-Poincare series

Average

ϕs(τ) :=Ms

(−πy

6

)e−

πix12

with

Ms(u) := |u|−12 M 1

4sgn(u),s− 1

2(|u|)

↑M-Whittaker

function

Poincare series (Re(s) > 1):

P 12

(s; τ) :=∑

M∈Γ∞\Γ0(2)

χ(M)−1(cτ + d)−12ϕs(Mτ).

↑χ appropriate

multiplier

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 89: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Maass-Poincare series

Average

ϕs(τ) :=Ms

(−πy

6

)e−

πix12

with

Ms(u) := |u|−12 M 1

4sgn(u),s− 1

2(|u|)

↑M-Whittaker

function

Poincare series (Re(s) > 1):

P 12

(s; τ) :=∑

M∈Γ∞\Γ0(2)

χ(M)−1(cτ + d)−12ϕs(Mτ).

↑χ appropriate

multiplier

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 90: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Sketch of the proof

Idea:

I Analytically continue to s = 34

(via Fourier expansion)

I Show

F0(τ) = P 12

(3

4; τ

)

where

F0(τ) := F0(24τ)− G0(24τ).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 91: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Sketch of the proof

Idea:

I Analytically continue to s = 34

(via Fourier expansion)

I Show

F0(τ) = P 12

(3

4; τ

)

where

F0(τ) := F0(24τ)− G0(24τ).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 92: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Sketch of the proof

Idea:

I Analytically continue to s = 34

(via Fourier expansion)

I Show

F0(τ) = P 12

(3

4; τ

)

where

F0(τ) := F0(24τ)− G0(24τ).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 93: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Sketch of the proof

Idea:

I Analytically continue to s = 34

(via Fourier expansion)

I Show

F0(τ) = P 12

(3

4; τ

)where

F0(τ) := F0(24τ)− G0(24τ).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 94: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 95: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Combinatorics

Joint with K. Mahlburg

Definition:

A partition without sequences is a partition with no adjacent parts

s(n) := # partitions of n without sequences

Example:

6 + 6 + 4 + 1 + 1 + 1 is a partition without sequences of 19

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 96: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Combinatorics

Joint with K. Mahlburg

Definition:

A partition without sequences is a partition with no adjacent parts

s(n) := # partitions of n without sequences

Example:

6 + 6 + 4 + 1 + 1 + 1 is a partition without sequences of 19

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 97: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Combinatorics

Joint with K. Mahlburg

Definition:

A partition without sequences is a partition with no adjacent parts

s(n) := # partitions of n without sequences

Example:

6 + 6 + 4 + 1 + 1 + 1 is a partition without sequences of 19

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 98: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Combinatorics

Joint with K. Mahlburg

Definition:

A partition without sequences is a partition with no adjacent parts

s(n) := # partitions of n without sequences

Example:

6 + 6 + 4 + 1 + 1 + 1 is a partition without sequences of 19

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 99: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Andrews:

∑n≥0

s(n)qn =

(−q3; q3

)∞

(q2; q2)∞χ(q)

with

χ(q) :=∑n≥0

(−q; q)n(−q3; q3)n

qn2

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 100: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Andrews:

∑n≥0

s(n)qn =

(−q3; q3

)∞

(q2; q2)∞χ(q)

↑modular

with

χ(q) :=∑n≥0

(−q; q)n(−q3; q3)n

qn2

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 101: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Andrews:

∑n≥0

s(n)qn =

(−q3; q3

)∞

(q2; q2)∞χ(q)

↑modular

↑mock

with

χ(q) :=∑n≥0

(−q; q)n(−q3; q3)n

qn2

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 102: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Algebraic geometry

Joint with J. Manschot

Generating function for Euler numbers:

For j ∈ {0, 1}, we have

fj(τ) =∞∑n=0

αj(n)qn :=

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 103: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Algebraic geometry

Joint with J. Manschot

Generating function for Euler numbers:

For j ∈ {0, 1}, we have

fj(τ) =∞∑n=0

αj(n)qn :=1

η6(τ)

∞∑n=0

H(4n + 3j)qn+ 3j4

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 104: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Algebraic geometry

Joint with J. Manschot

Generating function for Euler numbers:

For j ∈ {0, 1}, we have

fj(τ) =∞∑n=0

αj(n)qn :=1

η6(τ)

∞∑n=0

H(4n + 3j)qn+ 3j4

↑modular

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 105: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Algebraic geometry

Joint with J. Manschot

Generating function for Euler numbers:

For j ∈ {0, 1}, we have

fj(τ) =∞∑n=0

αj(n)qn :=1

η6(τ)

∞∑n=0

H(4n + 3j)qn+ 3j4

↑modular

↑mock

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 106: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Lie superalgebras

Joint with K. Ono, K. Mahlburg

Character formula for s`(m|1)∧-modules (s ∈ Z)

2q−s2

(q2; q2

)2

∞(q; q)m+2

∑k=(k1,...,km−1)∈Zm−1

q12

∑m−1i=1 ki (ki+1)

1 + q∑m−1

i=1 ki−s

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 107: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Lie superalgebras

Joint with K. Ono, K. Mahlburg

Character formula for s`(m|1)∧-modules (s ∈ Z)

2q−s2

(q2; q2

)2

∞(q; q)m+2

∑k=(k1,...,km−1)∈Zm−1

q12

∑m−1i=1 ki (ki+1)

1 + q∑m−1

i=1 ki−s

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 108: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula

Recall generating function for Euler numbers:

fj(τ) =∞∑n=0

αj(n)qn

Notation:

For k ∈ N, g ∈ Z, u ∈ R

fk,g (u) :=

π2

sinh2(πuk −πig2k )

if g 6≡ 0 (mod 2k),

π2

sinh2(πuk )− k2

u2 if g ≡ 0 (mod 2k).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 109: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula

Recall generating function for Euler numbers:

fj(τ) =∞∑n=0

αj(n)qn

Notation:

For k ∈ N, g ∈ Z, u ∈ R

fk,g (u) :=

π2

sinh2(πuk −πig2k )

if g 6≡ 0 (mod 2k),

π2

sinh2(πuk )− k2

u2 if g ≡ 0 (mod 2k).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 110: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula (cont.)

Kloosterman sums:

Kj ,` (n,m; k) :=∑

0≤h<k(h,k)=1

ψj`

(h, h′, k

)e− 2πi

k

(hn+ h′n

4

)

Bessel function integral:

Ik,g (n) :=

∫ 1

−1fk,g

(u

2

)I 7

2

k

√(4n − (j + 1)) (1− u2)

)×(1− u2

) 74 du

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 111: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula (cont.)

Kloosterman sums:

Kj ,` (n,m; k) :=∑

0≤h<k(h,k)=1

ψj`

(h, h′, k

)↑

multiplier

e− 2πi

k

(hn+ h′n

4

)

Bessel function integral:

Ik,g (n) :=

∫ 1

−1fk,g

(u

2

)I 7

2

k

√(4n − (j + 1)) (1− u2)

)×(1− u2

) 74 du

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 112: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula (cont.)

Kloosterman sums:

Kj ,` (n,m; k) :=∑

0≤h<k(h,k)=1

ψj`

(h, h′, k

)↑

multiplier

e− 2πi

k

(hn+ h′n

4

)

Bessel function integral:

Ik,g (n) :=

∫ 1

−1fk,g

(u

2

)I 7

2

k

√(4n − (j + 1)) (1− u2)

)×(1− u2

) 74 du

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 113: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula (cont.)

Theorem (B-Manschot)

The coefficients αj(n) equal

− π

6 (4n − (j + 1))54

∑k≥1

Kj ,0 (n, 0; k)

kI 5

2

(πk

√4n − (j + 1)

)

+1

√2 (4n − (j + 1))

32

∑k≥1

Kj ,0 (n, 0; k)√k

I3(π

k

√4n − (j + 1)

)

− 1

8π (4n − (j + 1))74

∑k≥1

∑`∈{0,1}−k<g≤k

g≡` (mod 2)

Kj ,`

(n, g 2; k

)k2

Ik,g (n).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 114: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula (cont.)

Theorem (B-Manschot)

The coefficients αj(n) equal

− π

6 (4n − (j + 1))54

∑k≥1

Kj ,0 (n, 0; k)

kI 5

2

(πk

√4n − (j + 1)

)

+1

√2 (4n − (j + 1))

32

∑k≥1

Kj ,0 (n, 0; k)√k

I3(π

k

√4n − (j + 1)

)

− 1

8π (4n − (j + 1))74

∑k≥1

∑`∈{0,1}−k<g≤k

g≡` (mod 2)

Kj ,`

(n, g 2; k

)k2

Ik,g (n).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 115: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula (cont.)

Theorem (B-Manschot)

The coefficients αj(n) equal

− π

6 (4n − (j + 1))54

∑k≥1

Kj ,0 (n, 0; k)

kI 5

2

(πk

√4n − (j + 1)

)

+1

√2 (4n − (j + 1))

32

∑k≥1

Kj ,0 (n, 0; k)√k

I3(π

k

√4n − (j + 1)

)

− 1

8π (4n − (j + 1))74

∑k≥1

∑`∈{0,1}−k<g≤k

g≡` (mod 2)

Kj ,`

(n, g 2; k

)k2

Ik,g (n).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 116: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

An exact formula (cont.)

Theorem (B-Manschot)

The coefficients αj(n) equal

− π

6 (4n − (j + 1))54

∑k≥1

Kj ,0 (n, 0; k)

kI 5

2

(πk

√4n − (j + 1)

)

+1

√2 (4n − (j + 1))

32

∑k≥1

Kj ,0 (n, 0; k)√k

I3(π

k

√4n − (j + 1)

)

− 1

8π (4n − (j + 1))74

∑k≥1

∑`∈{0,1}−k<g≤k

g≡` (mod 2)

Kj ,`

(n, g 2; k

)k2

Ik,g (n).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 117: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Main term

Corollary

We have as n→∞

αj(n) =

(1

96n−

32 − 1

32πn−

74 + O

(n−2))

e2π√n.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 118: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Main term

Corollary

We have as n→∞

αj(n) =

(1

96n−

32 − 1

32πn−

74 + O

(n−2))

e2π√n.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 119: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Outline

1. Modular forms

2. Mock modular forms

3. Mixed mock modular forms

4. Non-modular objects

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 120: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 121: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 122: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 123: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:

4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 124: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4

3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 125: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1

1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 126: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3

2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 127: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 128: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1

1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 129: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1

1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 130: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2

1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 131: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 132: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Stacks

Definition:

A stack of size n ∈ N0 is a decomposition of n into positive integers

n = a1 + · · ·+ ar + c + bs + · · ·+ b1

such that

0 < a1 ≤ a2 ≤ · · · ≤ ar ≤ c < bs ≥ · · · ≥ b1 > 0.

s(n) := # stacks of size n

Example:

n = 4:4 3+1 1+3 2+2

2+1+1 1+2+1 1+1+2 1+1+1+1

Thus s(4) = 8.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 133: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Auluck:

S(q) :=∑n≥0

s(n)qn = 1 +∑n≥1

qn

(q)2n−1(1− qn)

(Non)-modularity:

S(q) = 1 +1

(q)2∞ϑ(q)

with the false theta function

ϑ(q) :=∑r≥1

(−1)r+1qr(r+1)

2

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 134: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Auluck:

S(q) :=∑n≥0

s(n)qn = 1 +∑n≥1

qn

(q)2n−1(1− qn)

(Non)-modularity:

S(q) = 1 +1

(q)2∞ϑ(q)

with the false theta function

ϑ(q) :=∑r≥1

(−1)r+1qr(r+1)

2

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 135: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Asymptotic behavior

Wright:

s(n) ∼ 2−33−34 n−

54 e2π√

n3

Key ingredients:

I Modularity of the infinite product

I Asymptotic behavior as q → 1 of the false theta function

ϑ(q) ∼ 1

2as q → 1

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 136: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Asymptotic behavior

Wright:

s(n) ∼ 2−33−34 n−

54 e2π√

n3

Key ingredients:

I Modularity of the infinite product

I Asymptotic behavior as q → 1 of the false theta function

ϑ(q) ∼ 1

2as q → 1

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 137: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Asymptotic behavior

Wright:

s(n) ∼ 2−33−34 n−

54 e2π√

n3

Key ingredients:

I Modularity of the infinite product

I Asymptotic behavior as q → 1 of the false theta function

ϑ(q) ∼ 1

2as q → 1

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 138: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Asymptotic behavior

Wright:

s(n) ∼ 2−33−34 n−

54 e2π√

n3

Key ingredients:

I Modularity of the infinite product

I Asymptotic behavior as q → 1 of the false theta function

ϑ(q) ∼ 1

2as q → 1

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 139: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Asymptotic behavior

Wright:

s(n) ∼ 2−33−34 n−

54 e2π√

n3

Key ingredients:

I Modularity of the infinite product

I Asymptotic behavior as q → 1 of the false theta function

ϑ(q) ∼ 1

2as q → 1

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 140: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1 1 + 1 + 2 1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 141: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1 1 + 1 + 2 1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 142: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1 1 + 1 + 2 1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 143: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1 1 + 1 + 2 1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 144: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1

1 + 1 + 2 1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 145: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1 1 + 1 + 2

1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 146: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1 1 + 1 + 2 1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 147: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Shifted stacks

Definition:

A shifted stack of size n ∈ N0 is a stack of size n with the extracondition that

aj ≥ aj+1 − 1 for 1 ≤ j ≤ r − 1,

bj ≤ bj+1 + 1 for 1 ≤ j ≤ s − 1.

ss(n) := #shifted stacks of size n

Example:

The shifted stacks of size 4 are

1 + 2 + 1 1 + 1 + 2 1 + 1 + 1 + 1

Thus ss(4) = 3.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 148: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Auluck:

Ss(q) :=∑n≥0

ss(n)qn = 1 +∑n≥1

qn(n+1)

2

(q)2n−1(1− qn)

(log) asymptotic behavior (Wright)

log(ss(n)) ∼ 2π

√n

5(n→∞)

Theorem (B-Mahlburg)

We have

ss(n) ∼ φ−1

2√

2534 n

e2π√

n5 (n→∞)

with φ the Golden Ratio.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 149: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Auluck:

Ss(q) :=∑n≥0

ss(n)qn = 1 +∑n≥1

qn(n+1)

2

(q)2n−1(1− qn)

(log) asymptotic behavior (Wright)

log(ss(n)) ∼ 2π

√n

5(n→∞)

Theorem (B-Mahlburg)

We have

ss(n) ∼ φ−1

2√

2534 n

e2π√

n5 (n→∞)

with φ the Golden Ratio.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 150: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Generating function

Auluck:

Ss(q) :=∑n≥0

ss(n)qn = 1 +∑n≥1

qn(n+1)

2

(q)2n−1(1− qn)

(log) asymptotic behavior (Wright)

log(ss(n)) ∼ 2π

√n

5(n→∞)

Theorem (B-Mahlburg)

We have

ss(n) ∼ φ−1

2√

2534 n

e2π√

n5 (n→∞)

with φ the Golden Ratio.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 151: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Key idea of the proof

I Embedding into the modular world

Ss(q) = 1 + coeff[x0]∑

r≥0

x−rqr2−r

2

(q)r

∑m≥1

xmqm

(q)m−1

= 1 + coeff[x0] (

qx(−x−1

)∞ (xq)−1

)I Use Jacobi triple product formula(

−x−1)∞ (−xq)∞ (q)∞ = −q−

18 x−

12ϑ

(u +

1

2;

)with the Jacobi theta function

ϑ(u; τ) :=∑

n∈ 12

+Z

eπin2τ+2πin(u+ 1

2 )

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 152: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Key idea of the proof

I Embedding into the modular world

Ss(q) = 1 + coeff[x0]∑

r≥0

x−rqr2−r

2

(q)r

∑m≥1

xmqm

(q)m−1

= 1 + coeff

[x0] (

qx(−x−1

)∞ (xq)−1

)

I Use Jacobi triple product formula(−x−1

)∞ (−xq)∞ (q)∞ = −q−

18 x−

12ϑ

(u +

1

2;

)with the Jacobi theta function

ϑ(u; τ) :=∑

n∈ 12

+Z

eπin2τ+2πin(u+ 1

2 )

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 153: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Key idea of the proof

I Embedding into the modular world

Ss(q) = 1 + coeff[x0]∑

r≥0

x−rqr2−r

2

(q)r

∑m≥1

xmqm

(q)m−1

= 1 + coeff

[x0] (

qx(−x−1

)∞ (xq)−1

)I Use Jacobi triple product formula(

−x−1)∞ (−xq)∞ (q)∞ = −q−

18 x−

12ϑ

(u +

1

2;

)with the Jacobi theta function

ϑ(u; τ) :=∑

n∈ 12

+Z

eπin2τ+2πin(u+ 1

2 )

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 154: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Proof continued . . .

I Also use quantum dilogarithm

Li2(x ; q) := − log(x)∞

I Modular inversion

ϑ

(u +

1

2;

)= i

√2π

εe−

2π2

ε (u+ 12 )

2

ϑ

(2π(u + 1

2

)iε

;2πi

ε

)I Laurent expansion of Li2

Li2(

e−Bεx ; e−ε)

=1

εLi2(x) +

(B − 1

2

)log(1− x) + O(ε).

I Saddle point method

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 155: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Proof continued . . .

I Also use quantum dilogarithm

Li2(x ; q) := − log(x)∞

I Modular inversion

ϑ

(u +

1

2;

)= i

√2π

εe−

2π2

ε (u+ 12 )

2

ϑ

(2π(u + 1

2

)iε

;2πi

ε

)

I Laurent expansion of Li2

Li2(

e−Bεx ; e−ε)

=1

εLi2(x) +

(B − 1

2

)log(1− x) + O(ε).

I Saddle point method

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 156: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Proof continued . . .

I Also use quantum dilogarithm

Li2(x ; q) := − log(x)∞

I Modular inversion

ϑ

(u +

1

2;

)= i

√2π

εe−

2π2

ε (u+ 12 )

2

ϑ

(2π(u + 1

2

)iε

;2πi

ε

)I Laurent expansion of Li2

Li2(

e−Bεx ; e−ε)

=1

εLi2(x) +

(B − 1

2

)log(1− x) + O(ε).

I Saddle point method

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 157: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Proof continued . . .

I Also use quantum dilogarithm

Li2(x ; q) := − log(x)∞

I Modular inversion

ϑ

(u +

1

2;

)= i

√2π

εe−

2π2

ε (u+ 12 )

2

ϑ

(2π(u + 1

2

)iε

;2πi

ε

)I Laurent expansion of Li2

Li2(

e−Bεx ; e−ε)

=1

εLi2(x) +

(B − 1

2

)log(1− x) + O(ε).

I Saddle point method

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 158: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Proof continued . . .

I Also use quantum dilogarithm

Li2(x ; q) := − log(x)∞

I Modular inversion

ϑ

(u +

1

2;

)= i

√2π

εe−

2π2

ε (u+ 12 )

2

ϑ

(2π(u + 1

2

)iε

;2πi

ε

)I Laurent expansion of Li2

Li2(

e−Bεx ; e−ε)

=1

εLi2(x) +

(B − 1

2

)log(1− x) + O(ε).

I Saddle point method

I Tauberian Theorem

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 159: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Positive crank and rank moments

Definition: For a partition λ define

rank(λ) := largest part of λ− number of parts of λ,

crank(λ) :=

{largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0,

where

o(λ) := # of 1s in λ,

µ(λ) := #parts > o(λ).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 160: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Positive crank and rank moments

Definition: For a partition λ define

rank(λ) := largest part of λ− number of parts of λ,

crank(λ) :=

{largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0,

where

o(λ) := # of 1s in λ,

µ(λ) := #parts > o(λ).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 161: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Positive crank and rank moments

Definition: For a partition λ define

rank(λ) := largest part of λ− number of parts of λ,

crank(λ) :=

{largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0,

where

o(λ) := # of 1s in λ,

µ(λ) := #parts > o(λ).

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 162: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Rank and crank

Generating functions (basically)

M(m, n) := # of partitions of n, crank m

N(m, n) := # of partitions of n, rank m

Andrews–Garvan

C (w ; q) :=∑m∈Zn≥0

M(m, n)wmqn =1− w

(q)∞

∑n∈Z

(−1)nqn(n+1)

2

1− wqn,

Atkin–Swinnerton-Dyer

R(w ; q) :=∑m∈Zn≥0

N(m, n)wmqn =1− w

(q)∞

∑n∈Z

(−1)nqn(3n+1)

2

1− wqn.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 163: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Rank and crank

Generating functions (basically)

M(m, n) := # of partitions of n, crank m

N(m, n) := # of partitions of n, rank m

Andrews–Garvan

C (w ; q) :=∑m∈Zn≥0

M(m, n)wmqn =1− w

(q)∞

∑n∈Z

(−1)nqn(n+1)

2

1− wqn,

Atkin–Swinnerton-Dyer

R(w ; q) :=∑m∈Zn≥0

N(m, n)wmqn =1− w

(q)∞

∑n∈Z

(−1)nqn(3n+1)

2

1− wqn.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 164: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Rank and crank

Generating functions (basically)

M(m, n) := # of partitions of n, crank m

N(m, n) := # of partitions of n, rank m

Andrews–Garvan

C (w ; q) :=∑m∈Zn≥0

M(m, n)wmqn =1− w

(q)∞

∑n∈Z

(−1)nqn(n+1)

2

1− wqn,

Atkin–Swinnerton-Dyer

R(w ; q) :=∑m∈Zn≥0

N(m, n)wmqn =1− w

(q)∞

∑n∈Z

(−1)nqn(3n+1)

2

1− wqn.

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 165: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Moments

Crank and Rank moments (r ∈ N) (Atkin–Garvan)

Mr (n) :=∑m∈Z

mrM(m, n)

Nr (n) :=∑m∈Z

mrN(m, n)

Note: N2r+1(n) = M2r+1(n) = 0.

Theorem (B-Mahlburg, B-Mahlburg-Rhoades, Garvan)

(i) As n→∞M2k(n) ∼ N2k(n)

(ii) For all n > 0M2k(n) > N2k(n)

Important tool: modularity

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 166: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Moments

Crank and Rank moments (r ∈ N) (Atkin–Garvan)

Mr (n) :=∑m∈Z

mrM(m, n)

Nr (n) :=∑m∈Z

mrN(m, n)

Note: N2r+1(n) = M2r+1(n) = 0.

Theorem (B-Mahlburg, B-Mahlburg-Rhoades, Garvan)

(i) As n→∞M2k(n) ∼ N2k(n)

(ii) For all n > 0M2k(n) > N2k(n)

Important tool: modularity

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 167: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Moments

Crank and Rank moments (r ∈ N) (Atkin–Garvan)

Mr (n) :=∑m∈Z

mrM(m, n)

Nr (n) :=∑m∈Z

mrN(m, n)

Note: N2r+1(n) = M2r+1(n) = 0.

Theorem (B-Mahlburg, B-Mahlburg-Rhoades, Garvan)

(i) As n→∞M2k(n) ∼ N2k(n)

(ii) For all n > 0M2k(n) > N2k(n)

Important tool: modularity

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 168: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Moments

Crank and Rank moments (r ∈ N) (Atkin–Garvan)

Mr (n) :=∑m∈Z

mrM(m, n)

Nr (n) :=∑m∈Z

mrN(m, n)

Note: N2r+1(n) = M2r+1(n) = 0.

Theorem (B-Mahlburg, B-Mahlburg-Rhoades, Garvan)

(i) As n→∞M2k(n) ∼ N2k(n)

(ii) For all n > 0M2k(n) > N2k(n)

Important tool: modularity

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 169: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Moments

Crank and Rank moments (r ∈ N) (Atkin–Garvan)

Mr (n) :=∑m∈Z

mrM(m, n)

Nr (n) :=∑m∈Z

mrN(m, n)

Note: N2r+1(n) = M2r+1(n) = 0.

Theorem (B-Mahlburg, B-Mahlburg-Rhoades, Garvan)

(i) As n→∞M2k(n) ∼ N2k(n)

(ii) For all n > 0M2k(n) > N2k(n)

Important tool: modularity

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 170: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Positive moments

Positive crank and rank moments (r ∈ N) (Andrews–Chan–Kim)

M+r (n) :=

∑m∈N

mrM(m, n)

N+r (n) :=

∑m∈N

mrN(m, n)

Note: M+2k(n) = 1

2 M2k(n)

N+2k(n) = 1

2 N2k(n)

Theorem (B-Mahlburg, Andrews-Chan-Kim)

(i) As n→∞M+

r (n) ∼ N+r (n)

(ii) For all n > 0M+

r (n) > N+r (n)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 171: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Positive moments

Positive crank and rank moments (r ∈ N) (Andrews–Chan–Kim)

M+r (n) :=

∑m∈N

mrM(m, n)

N+r (n) :=

∑m∈N

mrN(m, n)

Note: M+2k(n) = 1

2 M2k(n)

N+2k(n) = 1

2 N2k(n)

Theorem (B-Mahlburg, Andrews-Chan-Kim)

(i) As n→∞M+

r (n) ∼ N+r (n)

(ii) For all n > 0M+

r (n) > N+r (n)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 172: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Positive moments

Positive crank and rank moments (r ∈ N) (Andrews–Chan–Kim)

M+r (n) :=

∑m∈N

mrM(m, n)

N+r (n) :=

∑m∈N

mrN(m, n)

Note: M+2k(n) = 1

2 M2k(n)

N+2k(n) = 1

2 N2k(n)

Theorem (B-Mahlburg, Andrews-Chan-Kim)

(i) As n→∞M+

r (n) ∼ N+r (n)

(ii) For all n > 0M+

r (n) > N+r (n)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 173: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Positive moments

Positive crank and rank moments (r ∈ N) (Andrews–Chan–Kim)

M+r (n) :=

∑m∈N

mrM(m, n)

N+r (n) :=

∑m∈N

mrN(m, n)

Note: M+2k(n) = 1

2 M2k(n)

N+2k(n) = 1

2 N2k(n)

Theorem (B-Mahlburg, Andrews-Chan-Kim)

(i) As n→∞M+

r (n) ∼ N+r (n)

(ii) For all n > 0M+

r (n) > N+r (n)

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 174: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Idea of proof

Difficulty: non-modularity

I Relate generating functions to “false Lerch sums” (` ∈ {1, 3})

1

(q)∞

∑n≥1

(−1)n+1q`n2

2+ rn

2

(1− qn)r

I Understand the asymptotic behavior near q = 1

I Use Circle Method

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 175: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Idea of proof

Difficulty: non-modularity

I Relate generating functions to “false Lerch sums” (` ∈ {1, 3})

1

(q)∞

∑n≥1

(−1)n+1q`n2

2+ rn

2

(1− qn)r

I Understand the asymptotic behavior near q = 1

I Use Circle Method

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 176: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Idea of proof

Difficulty: non-modularity

I Relate generating functions to “false Lerch sums” (` ∈ {1, 3})

1

(q)∞

∑n≥1

(−1)n+1q`n2

2+ rn

2

(1− qn)r

I Understand the asymptotic behavior near q = 1

I Use Circle Method

Kathrin Bringmann Ramanujan and asymptotic formulas

Page 177: Ramanujan and asymptotic formulas - IRIFsteiner/jifp/bringmann.pdf · Kathrin Bringmann Ramanujan and asymptotic formulas. Outline 1.Modular forms 2.Mock modular forms 3.Mixed mock

Idea of proof

Difficulty: non-modularity

I Relate generating functions to “false Lerch sums” (` ∈ {1, 3})

1

(q)∞

∑n≥1

(−1)n+1q`n2

2+ rn

2

(1− qn)r

I Understand the asymptotic behavior near q = 1

I Use Circle Method

Kathrin Bringmann Ramanujan and asymptotic formulas