Rainbow matchings Existence and countingweb.mat.bham.ac.uk/G.Perarnau/slides/budapest.pdf · 2015....

62
Rainbow matchings Existence and counting Guillem Perarnau Universitat Polit` ecnica de Catalunya Departament de Matem ` atica Aplicada IV 2nd September 2011 Budapest joint work with Oriol Serra

Transcript of Rainbow matchings Existence and countingweb.mat.bham.ac.uk/G.Perarnau/slides/budapest.pdf · 2015....

  • Rainbow matchingsExistence and counting

    Guillem Perarnau

    Universitat Politècnica de CatalunyaDepartament de Matemàtica Aplicada IV

    2nd September 2011Budapest

    joint work with Oriol Serra

  • Outline

    1 The problem

    2 Counting with the Local Lemma

    3 Our Approach

    4 Random Models

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 2 / 19

  • Outline

    1 The problem

    2 Counting with the Local Lemma

    3 Our Approach

    4 Random Models

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 3 / 19

  • Rainbow matchings and Latin transversals

    Edge coloring. C : E(Kn,n) −→ N

    Perfect matching: M = {ei indep}

    Rainbow matching:no repeated colors in M.

    Integer square matrix A = {aij}

    Transversal Tσ = {aiσ(i)}

    Latin Transversal:no repeated entries in Tσ.

    0BB@1 5 4 27 2 6 35 4 2 13 5 3 1

    1CCA

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  • Rainbow matchings and Latin transversals

    Edge coloring. C : E(Kn,n) −→ N

    Perfect matching: M = {ei indep}

    Rainbow matching:no repeated colors in M.

    Integer square matrix A = {aij}

    Transversal Tσ = {aiσ(i)}

    Latin Transversal:no repeated entries in Tσ.

    0BB@1 5 4 27 2 6 35 4 2 13 5 3 1

    1CCA

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  • Rainbow matchings and Latin transversals

    Edge coloring. C : E(Kn,n) −→ N

    Perfect matching: M = {ei indep}

    Rainbow matching:no repeated colors in M.

    Integer square matrix A = {aij}

    Transversal Tσ = {aiσ(i)}

    Latin Transversal:no repeated entries in Tσ.

    0BB@1 5 4 27 2 6 35 4 2 13 5 3 1

    1CCA

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  • Rainbow matchings and Latin transversals

    Edge coloring. C : E(Kn,n) −→ N

    Perfect matching: M = {ei indep}

    Rainbow matching:no repeated colors in M.

    Integer square matrix A = {aij}

    Transversal Tσ = {aiσ(i)}

    Latin Transversal:no repeated entries in Tσ.

    0BB@1 5 4 27 2 6 35 4 2 13 5 3 1

    1CCA

    0BB@1 5 4 27 2 6 35 4 2 13 5 3 1

    1CCA

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  • Rainbow matchings and Latin transversals

    Edge coloring. C : E(Kn,n) −→ N

    Perfect matching: M = {ei indep}

    Rainbow matching:no repeated colors in M.

    Integer square matrix A = {aij}

    Transversal Tσ = {aiσ(i)}

    Latin Transversal:no repeated entries in Tσ.

    0BB@1 5 4 27 2 6 35 4 2 13 5 3 1

    1CCA

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  • Rainbow matchings and Latin transversals

    Edge coloring. C : E(Kn,n) −→ N

    Perfect matching: M = {ei indep}

    Rainbow matching:no repeated colors in M.

    Integer square matrix A = {aij}

    Transversal Tσ = {aiσ(i)}

    Latin Transversal:no repeated entries in Tσ.

    0BB@1 5 4 27 2 6 35 4 2 13 5 3 1

    1CCA

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 4 / 19

  • Open problems on Latin squares - Existence

    Every latin square of odd order admits a latin transversal.

    Conjecture (Ryser, 1967)

    Every latin square admits a partial latin transversal of size n − 1.

    Conjecture (Brualdi, 1975)

    Every latin square admits a partial latin transversal of size n −O(log2 n).

    Theorem (Hatami and Shor, 2008)

    For every integer matrix, if no entry appears more than n4e times, then ithas a latin transversal.

    Proposition (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  • Open problems on Latin squares - Existence

    Every latin square of odd order admits a latin transversal.

    Conjecture (Ryser, 1967)

    Every latin square admits a partial latin transversal of size n − 1.

    Conjecture (Brualdi, 1975)

    Every latin square admits a partial latin transversal of size n −O(log2 n).

    Theorem (Hatami and Shor, 2008)

    For every integer matrix, if no entry appears more than n4e times, then ithas a latin transversal.

    Proposition (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  • Open problems on Latin squares - Existence

    Every latin square of odd order admits a latin transversal.

    Conjecture (Ryser, 1967)

    Every latin square admits a partial latin transversal of size n − 1.

    Conjecture (Brualdi, 1975)

    Every latin square admits a partial latin transversal of size n −O(log2 n).

    Theorem (Hatami and Shor, 2008)

    For every integer matrix, if no entry appears more than n4e times, then ithas a latin transversal.

    Proposition (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  • Open problems on Latin squares - Existence

    Every latin square of odd order admits a latin transversal.

    Conjecture (Ryser, 1967)

    Every latin square admits a partial latin transversal of size n − 1.

    Conjecture (Brualdi, 1975)

    Every latin square admits a partial latin transversal of size n −O(log2 n).

    Theorem (Hatami and Shor, 2008)

    For every integer matrix, if no entry appears more than n4e times, then ithas a latin transversal.

    Proposition (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 5 / 19

  • Open problems on Latin squares - Counting

    Let zn be the number of latin transversals of the cyclic group of order n.Then there exists two constants 0 < c1 < c2 < 1 such that

    cn1 n! < zn < cn2 n!

    Conjecture (Vardi, 1991)

    Let zn be the number of latin transversals of the cyclic group of order n.Then

    an < zn < bn√

    nn!

    where a = 3.246 and b = 0.614.

    Theorem (McKay, McLeod and Wanless, 2006 / Cavenagh and Wan-less, 2010)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 6 / 19

  • Open problems on Latin squares - Counting

    Let zn be the number of latin transversals of the cyclic group of order n.Then there exists two constants 0 < c1 < c2 < 1 such that

    cn1 n! < zn < cn2 n!

    Conjecture (Vardi, 1991)

    Let zn be the number of latin transversals of the cyclic group of order n.Then

    an < zn < bn√

    nn!

    where a = 3.246 and b = 0.614.

    Theorem (McKay, McLeod and Wanless, 2006 / Cavenagh and Wan-less, 2010)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 6 / 19

  • Outline

    1 The problem

    2 Counting with the Local Lemma

    3 Our Approach

    4 Random Models

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 7 / 19

  • Poisson Paradigm

    A1, . . . ,Am bad events Pr(Ai) = pi ,

    Pr

    m\

    i=1

    Ai

    !?

    1 If Ai are mutually independent

    Pr

    m\

    i=1

    Ai

    !=

    mYi=1

    (1− pi) ∼ e−µ µ =mX

    i=1

    pi expected numberof bad events

    2 If µ < 1, by the union bound

    Pr

    m\

    i=1

    Ai

    !≥ 1−

    mXi=1

    Pr(Ai) = 1− µ > 0

    Poisson paradigm: If the dependencies among Ai are rare.

    Pr

    m\

    i=1

    Ai

    != (1 + o(1))e−µ

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  • Poisson Paradigm

    A1, . . . ,Am bad events Pr(Ai) = pi ,

    Pr

    m\

    i=1

    Ai

    !?

    1 If Ai are mutually independent

    Pr

    m\

    i=1

    Ai

    !=

    mYi=1

    (1− pi) ∼ e−µ µ =mX

    i=1

    pi expected numberof bad events

    2 If µ < 1, by the union bound

    Pr

    m\

    i=1

    Ai

    !≥ 1−

    mXi=1

    Pr(Ai) = 1− µ > 0

    Poisson paradigm: If the dependencies among Ai are rare.

    Pr

    m\

    i=1

    Ai

    != (1 + o(1))e−µ

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  • Poisson Paradigm

    A1, . . . ,Am bad events Pr(Ai) = pi ,

    Pr

    m\

    i=1

    Ai

    !?

    1 If Ai are mutually independent

    Pr

    m\

    i=1

    Ai

    !=

    mYi=1

    (1− pi) ∼ e−µ µ =mX

    i=1

    pi expected numberof bad events

    2 If µ < 1, by the union bound

    Pr

    m\

    i=1

    Ai

    !≥ 1−

    mXi=1

    Pr(Ai) = 1− µ > 0

    Poisson paradigm: If the dependencies among Ai are rare.

    Pr

    m\

    i=1

    Ai

    != (1 + o(1))e−µ

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  • Poisson Paradigm

    A1, . . . ,Am bad events Pr(Ai) = pi ,

    Pr

    m\

    i=1

    Ai

    !?

    1 If Ai are mutually independent

    Pr

    m\

    i=1

    Ai

    !=

    mYi=1

    (1− pi) ∼ e−µ µ =mX

    i=1

    pi expected numberof bad events

    2 If µ < 1, by the union bound

    Pr

    m\

    i=1

    Ai

    !≥ 1−

    mXi=1

    Pr(Ai) = 1− µ > 0

    Poisson paradigm: If the dependencies among Ai are rare.

    Pr

    m\

    i=1

    Ai

    != (1 + o(1))e−µ

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 8 / 19

  • Lovász Local Lemma

    dependency graph H,

    V (H) = {A1, . . . ,Am}

    E(H) = {dependencies among events}, Pr(Ai |T

    j∈S Aj) = Pr(Ai)

    ∃x1, . . . , xm ∈ (0, 1) such that

    Pr(Ai) ≤ xiY

    Aj∈N(Ai )

    (1− xj)

    Then,

    Pr

    m\

    i=1

    Ai

    !>

    mYi=1

    (1− xi) COUNTING (lower bound)

    Lopsided version (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  • Lovász Local Lemma

    dependency graph H,

    V (H) = {A1, . . . ,Am}E(H) = {dependencies among events}

    , Pr(Ai |T

    j∈S Aj) = Pr(Ai)

    ∃x1, . . . , xm ∈ (0, 1) such that

    Pr(Ai) ≤ xiY

    Aj∈N(Ai )

    (1− xj)

    Then,

    Pr

    m\

    i=1

    Ai

    !>

    mYi=1

    (1− xi) COUNTING (lower bound)

    Lopsided version (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  • Lovász Local Lemma

    dependency graph H,

    V (H) = {A1, . . . ,Am}E(H) = {dependencies among events}, Pr(Ai |

    Tj∈S Aj) = Pr(Ai)

    ∃x1, . . . , xm ∈ (0, 1) such that

    Pr(Ai) ≤ xiY

    Aj∈N(Ai )

    (1− xj)

    Then,

    Pr

    m\

    i=1

    Ai

    !>

    mYi=1

    (1− xi) COUNTING (lower bound)

    Lopsided version (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  • Lovász Local Lemma

    dependency graph H,

    V (H) = {A1, . . . ,Am}E(H) = {dependencies among events}, Pr(Ai |

    Tj∈S Aj) = Pr(Ai)

    ∃x1, . . . , xm ∈ (0, 1) such that

    Pr(Ai) ≤ xiY

    Aj∈N(Ai )

    (1− xj)

    Then,

    Pr

    m\

    i=1

    Ai

    !>

    mYi=1

    (1− xi) COUNTING (lower bound)

    Lopsided version (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  • Lovász Local Lemma

    dependency graph H,

    V (H) = {A1, . . . ,Am}E(H) = {dependencies among events}, Pr(Ai |

    Tj∈S Aj) = Pr(Ai)

    ∃x1, . . . , xm ∈ (0, 1) such that

    Pr(Ai) ≤ xiY

    Aj∈N(Ai )

    (1− xj)

    Then,

    Pr

    m\

    i=1

    Ai

    !> 0 EXISTENCE

    Then,

    Pr

    m\

    i=1

    Ai

    !>

    mYi=1

    (1− xi) COUNTING (lower bound)

    Lopsided version (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  • Lovász Local Lemma

    dependency graph H,

    V (H) = {A1, . . . ,Am}E(H) = {dependencies among events}, Pr(Ai |

    Tj∈S Aj) = Pr(Ai)

    ∃x1, . . . , xm ∈ (0, 1) such that

    Pr(Ai) ≤ xiY

    Aj∈N(Ai )

    (1− xj)

    Then,

    Pr

    m\

    i=1

    Ai

    !>

    mYi=1

    (1− xi) COUNTING (lower bound)

    Lopsided version (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  • Lovász Local Lemma

    dependency graph H,

    V (H) = {A1, . . . ,Am}E(H) = {dependencies among events}, Pr(Ai |

    Tj∈S Aj) = Pr(Ai)

    ∃x1, . . . , xm ∈ (0, 1) such that

    Pr(Ai) ≤ xiY

    Aj∈N(Ai )

    (1− xj)

    Then,

    Pr

    m\

    i=1

    Ai

    !>

    mYi=1

    (1− xi) COUNTING (lower bound)

    Lopsided version (Erdős and Spencer, 1991)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 9 / 19

  • Upper bound using local Lemma (Lu and Szekely, 2009)

    ε-near dependency graph H,

    V (H) = {A1, . . . ,Am}

    Pr(Ai ∩ Aj) = 0 if (i , j) ∈ E(H)

    for any S ⊆ [m] \ N(Ai)

    Pr(Ai |\j∈S

    Aj) ≥ (1− ε) Pr(Ai)

    Then,

    Pr

    m\

    i=1

    Ai

    !≤Y

    i

    (1− (1− ε) Pr(Ai)) COUNTING (upper bound)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 10 / 19

  • Upper bound using local Lemma (Lu and Szekely, 2009)

    ε-near dependency graph H,

    V (H) = {A1, . . . ,Am}Pr(Ai ∩ Aj) = 0 if (i , j) ∈ E(H)

    for any S ⊆ [m] \ N(Ai)

    Pr(Ai |\j∈S

    Aj) ≥ (1− ε) Pr(Ai)

    Then,

    Pr

    m\

    i=1

    Ai

    !≤Y

    i

    (1− (1− ε) Pr(Ai)) COUNTING (upper bound)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 10 / 19

  • Upper bound using local Lemma (Lu and Szekely, 2009)

    ε-near dependency graph H,

    V (H) = {A1, . . . ,Am}Pr(Ai ∩ Aj) = 0 if (i , j) ∈ E(H)

    for any S ⊆ [m] \ N(Ai)

    Pr(Ai |\j∈S

    Aj) ≥ (1− ε) Pr(Ai)

    Then,

    Pr

    m\

    i=1

    Ai

    !≤Y

    i

    (1− (1− ε) Pr(Ai)) COUNTING (upper bound)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 10 / 19

  • Upper bound using local Lemma (Lu and Szekely, 2009)

    ε-near dependency graph H,

    V (H) = {A1, . . . ,Am}Pr(Ai ∩ Aj) = 0 if (i , j) ∈ E(H)

    for any S ⊆ [m] \ N(Ai)

    Pr(Ai |\j∈S

    Aj) ≥ (1− ε) Pr(Ai)

    Then,

    Pr

    m\

    i=1

    Ai

    !≤Y

    i

    (1− (1− ε) Pr(Ai)) COUNTING (upper bound)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 10 / 19

  • Matchings of Kn,n

    LetM be a collection of matchings of Kn,n (or Kn).Choose a perfect matching F u.a.r..

    For any M ∈M define,

    AM = {M ⊆ F}

    V (H) = {AM}M∈ME(H) between AM and AN if M and N are in conflict (M ∪ N is not amatching)

    LetM be a sparse set of matchings of Kn,n (or Kn).

    Then H is both a negative dependency graph and an ε-near dependencygraph.

    Theorem (Lu and Szekely, 2009)

    • k -cycle free permutations • Latin rectangles n × r • d-regular graphs (configuration model)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 11 / 19

  • Matchings of Kn,n

    LetM be a collection of matchings of Kn,n (or Kn).Choose a perfect matching F u.a.r..

    For any M ∈M define,

    AM = {M ⊆ F}

    V (H) = {AM}M∈ME(H) between AM and AN if M and N are in conflict (M ∪ N is not amatching)

    LetM be a sparse set of matchings of Kn,n (or Kn).

    Then H is both a negative dependency graph and an ε-near dependencygraph.

    Theorem (Lu and Szekely, 2009)

    • k -cycle free permutations • Latin rectangles n × r • d-regular graphs (configuration model)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 11 / 19

  • Matchings of Kn,n

    LetM be a collection of matchings of Kn,n (or Kn).Choose a perfect matching F u.a.r..

    For any M ∈M define,

    AM = {M ⊆ F}

    V (H) = {AM}M∈ME(H) between AM and AN if M and N are in conflict (M ∪ N is not amatching)

    LetM be a sparse set of matchings of Kn,n (or Kn).

    Then H is both a negative dependency graph and an ε-near dependencygraph.

    Theorem (Lu and Szekely, 2009)

    • k -cycle free permutations • Latin rectangles n × r • d-regular graphs (configuration model)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 11 / 19

  • Matchings of Kn,n

    LetM be a collection of matchings of Kn,n (or Kn).Choose a perfect matching F u.a.r..

    For any M ∈M define,

    AM = {M ⊆ F}

    V (H) = {AM}M∈ME(H) between AM and AN if M and N are in conflict (M ∪ N is not amatching)

    LetM be a sparse set of matchings of Kn,n (or Kn).

    Then H is both a negative dependency graph and an ε-near dependencygraph.

    Theorem (Lu and Szekely, 2009)

    • k -cycle free permutations • Latin rectangles n × r • d-regular graphs (configuration model)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 11 / 19

  • Matchings of Kn,n

    LetM be a collection of matchings of Kn,n (or Kn).Choose a perfect matching F u.a.r..

    For any M ∈M define,

    AM = {M ⊆ F}

    V (H) = {AM}M∈ME(H) between AM and AN if M and N are in conflict (M ∪ N is not amatching)

    LetM be a sparse set of matchings of Kn,n (or Kn).

    Then H is both a negative dependency graph and an ε-near dependencygraph.

    Theorem (Lu and Szekely, 2009)

    • k -cycle free permutations • Latin rectangles n × r • d-regular graphs (configuration model)

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 11 / 19

  • Outline

    1 The problem

    2 Counting with the Local Lemma

    3 Our Approach

    4 Random Models

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 12 / 19

  • Setting the bad events

    Set the following bad events

    Given an edge coloring

    Ae,f if e and f independent andsame color

    In this matching A(11),(34) holds

    If no event holds, we have arainbow matching

    M = {Ae,f : e, f ∈ E(Kn,n), c(e) = c(f ), e and f independent}

    but...

    M is not sparse

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 13 / 19

  • Setting the bad events

    Set the following bad events

    Given an edge coloring

    Ae,f if e and f independent andsame color

    In this matching A(11),(34) holds

    If no event holds, we have arainbow matching

    M = {Ae,f : e, f ∈ E(Kn,n), c(e) = c(f ), e and f independent}

    but...

    M is not sparse

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 13 / 19

  • Setting the bad events

    Set the following bad events

    Given an edge coloring

    Ae,f if e and f independent andsame color

    In this matching A(11),(34) holds

    If no event holds, we have arainbow matching

    M = {Ae,f : e, f ∈ E(Kn,n), c(e) = c(f ), e and f independent}

    but...

    M is not sparse

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 13 / 19

  • Setting the bad events

    Set the following bad events

    Given an edge coloring

    Ae,f if e and f independent andsame color

    In this matching A(11),(34) holds

    If no event holds, we have arainbow matching

    M = {Ae,f : e, f ∈ E(Kn,n), c(e) = c(f ), e and f independent}

    but...

    M is not sparse

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 13 / 19

  • Setting the bad events

    Set the following bad events

    Given an edge coloring

    Ae,f if e and f independent andsame color

    In this matching A(11),(34) holds

    If no event holds, we have arainbow matching

    M = {Ae,f : e, f ∈ E(Kn,n), c(e) = c(f ), e and f independent}

    but...

    M is not sparse

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 13 / 19

  • Setting the bad events

    Set the following bad events

    Given an edge coloring

    Ae,f if e and f independent andsame color

    In this matching A(11),(34) holds

    If no event holds, we have arainbow matching

    M = {Ae,f : e, f ∈ E(Kn,n), c(e) = c(f ), e and f independent}

    but...

    M is not sparse

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 13 / 19

  • Counting rainbow matchings

    Fix an edge–coloring of Kn,n such that no color appears more than n/ktimes. Let µ = |M|/n(n − 1).If k ≥ 12 then there exist two constants γ1(k) < 1 < γ2(k), such that

    e−γ2(k)µ ≤ Pr(M rainbow) ≤ e−γ1(k)µ

    for a random matching M.

    Theorem

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 14 / 19

  • Counting rainbow matchings

    Fix an edge–coloring of Kn,n such that no color appears more than n/ktimes. Let µ = |M|/n(n − 1).If k ≥ 12 then there exist two constants γ1(k) < 1 < γ2(k), such that

    e−γ2(k)µ ≤ Pr(M rainbow) ≤ e−γ1(k)µ

    for a random matching M.

    Theorem

    If zn is the number of latin transversals in a latin square of size n whereeach entry appear at most n/k times (k ≥ 12), then there exist 0 < c1 <c2 < 1 constants such that

    cn1 n! ≤ zn ≤ cn2 n!

    Corollary

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 14 / 19

  • Outline

    1 The problem

    2 Counting with the Local Lemma

    3 Our Approach

    4 Random Models

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 15 / 19

  • Ryser conjecture whp

    Ryser conjecture is difficult −→ Is it true for almost all latin squares?

    First step: settle a model for random latin squares DIFFICULT!Jacobson, M. T. and Matthews, P., Generating uniformly distributed random Latin squares,

    Journal of Combinatorial Designs, 4, 1996, 6, 405–437.

    McKay, B. D. and Wanless, I. M., Most Latin squares have many subsquares, Journal of

    Combinatorial Theory. Series A, 86, 1999, 2, 322–347.

    Cavenagh, N. J. and Greenhill, C. and Wanless, I. M., The cycle structure of two rows in a

    random Latin square, Random Structures & Algorithms, 33, 2008, 3, 286–309.

    Given integer matrix A

    Pr(@ latin transversal)� Pr(A latin square) ∼ e−n2

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 16 / 19

  • Ryser conjecture whp

    Ryser conjecture is difficult −→ Is it true for almost all latin squares?

    First step: settle a model for random latin squares

    DIFFICULT!

    Jacobson, M. T. and Matthews, P., Generating uniformly distributed random Latin squares,

    Journal of Combinatorial Designs, 4, 1996, 6, 405–437.

    McKay, B. D. and Wanless, I. M., Most Latin squares have many subsquares, Journal of

    Combinatorial Theory. Series A, 86, 1999, 2, 322–347.

    Cavenagh, N. J. and Greenhill, C. and Wanless, I. M., The cycle structure of two rows in a

    random Latin square, Random Structures & Algorithms, 33, 2008, 3, 286–309.

    Given integer matrix A

    Pr(@ latin transversal)� Pr(A latin square) ∼ e−n2

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 16 / 19

  • Ryser conjecture whp

    Ryser conjecture is difficult −→ Is it true for almost all latin squares?

    First step: settle a model for random latin squares DIFFICULT!

    Jacobson, M. T. and Matthews, P., Generating uniformly distributed random Latin squares,

    Journal of Combinatorial Designs, 4, 1996, 6, 405–437.

    McKay, B. D. and Wanless, I. M., Most Latin squares have many subsquares, Journal of

    Combinatorial Theory. Series A, 86, 1999, 2, 322–347.

    Cavenagh, N. J. and Greenhill, C. and Wanless, I. M., The cycle structure of two rows in a

    random Latin square, Random Structures & Algorithms, 33, 2008, 3, 286–309.

    Given integer matrix A

    Pr(@ latin transversal)� Pr(A latin square) ∼ e−n2

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 16 / 19

  • Ryser conjecture whp

    Ryser conjecture is difficult −→ Is it true for almost all latin squares?

    First step: settle a model for random latin squares DIFFICULT!Jacobson, M. T. and Matthews, P., Generating uniformly distributed random Latin squares,

    Journal of Combinatorial Designs, 4, 1996, 6, 405–437.

    McKay, B. D. and Wanless, I. M., Most Latin squares have many subsquares, Journal of

    Combinatorial Theory. Series A, 86, 1999, 2, 322–347.

    Cavenagh, N. J. and Greenhill, C. and Wanless, I. M., The cycle structure of two rows in a

    random Latin square, Random Structures & Algorithms, 33, 2008, 3, 286–309.

    Given integer matrix A

    Pr(@ latin transversal)� Pr(A latin square) ∼ e−n2

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 16 / 19

  • Ryser conjecture whp

    Ryser conjecture is difficult −→ Is it true for almost all latin squares?

    First step: settle a model for random latin squares DIFFICULT!Jacobson, M. T. and Matthews, P., Generating uniformly distributed random Latin squares,

    Journal of Combinatorial Designs, 4, 1996, 6, 405–437.

    McKay, B. D. and Wanless, I. M., Most Latin squares have many subsquares, Journal of

    Combinatorial Theory. Series A, 86, 1999, 2, 322–347.

    Cavenagh, N. J. and Greenhill, C. and Wanless, I. M., The cycle structure of two rows in a

    random Latin square, Random Structures & Algorithms, 33, 2008, 3, 286–309.

    Given integer matrix A

    Pr(@ latin transversal)� Pr(A latin square) ∼ e−n2

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 16 / 19

  • Ryser conjecture whp

    Ryser conjecture is difficult −→ Is it true for almost all latin squares?

    First step: settle a model for random latin squares DIFFICULT!Jacobson, M. T. and Matthews, P., Generating uniformly distributed random Latin squares,

    Journal of Combinatorial Designs, 4, 1996, 6, 405–437.

    McKay, B. D. and Wanless, I. M., Most Latin squares have many subsquares, Journal of

    Combinatorial Theory. Series A, 86, 1999, 2, 322–347.

    Cavenagh, N. J. and Greenhill, C. and Wanless, I. M., The cycle structure of two rows in a

    random Latin square, Random Structures & Algorithms, 33, 2008, 3, 286–309.

    Given integer matrix A

    Pr(@ latin transversal)� Pr(A latin square) ∼ e−n2

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 16 / 19

  • Ryser conjecture whp

    Ryser conjecture is difficult −→ Is it true for almost all latin squares?

    First step: settle a model for random latin squares DIFFICULT!Jacobson, M. T. and Matthews, P., Generating uniformly distributed random Latin squares,

    Journal of Combinatorial Designs, 4, 1996, 6, 405–437.

    McKay, B. D. and Wanless, I. M., Most Latin squares have many subsquares, Journal of

    Combinatorial Theory. Series A, 86, 1999, 2, 322–347.

    Cavenagh, N. J. and Greenhill, C. and Wanless, I. M., The cycle structure of two rows in a

    random Latin square, Random Structures & Algorithms, 33, 2008, 3, 286–309.

    Given integer matrix A

    Pr(@ latin transversal)� Pr(A latin square) ∼ e−n2

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 16 / 19

  • Random models of colorings

    Let s = nk the number of colors.

    Random Model 1: Uniform modelChoose a color for each edge u.a.r.Prob space: [s]n

    2

    Random Model 2: Regular model

    Uniformly among s-edge-colorings, each color appearing n/k times.

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 17 / 19

  • Random models of colorings

    Let s = nk the number of colors.

    Random Model 1: Uniform modelChoose a color for each edge u.a.r.Prob space: [s]n

    2

    Random Model 2: Regular model

    Uniformly among s-edge-colorings, each color appearing n/k times.

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 17 / 19

  • Random models of colorings

    Let s = nk the number of colors.

    Random Model 1: Uniform modelChoose a color for each edge u.a.r.Prob space: [s]n

    2

    Random Model 2: Regular model

    Uniformly among s-edge-colorings, each color appearing n/k times.

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 17 / 19

  • Random models of colorings

    Let s = nk the number of colors.

    Random Model 1: Uniform modelChoose a color for each edge u.a.r.Prob space: [s]n

    2

    Random Model 2: Regular model

    Uniformly among s-edge-colorings, each color appearing n/k times.

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 17 / 19

  • Random models of colorings

    Let s = nk the number of colors.

    Random Model 1: Uniform modelChoose a color for each edge u.a.r.Prob space: [s]n

    2

    Random Model 2: Regular model

    Uniformly among s-edge-colorings, each color appearing n/k times.

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 17 / 19

  • Results

    Let C be a random edge coloring of Kn,n in the URM with s ≥ n colors.Then,

    Pr(M rainbow) = e−c(k)µ,

    where µ ∼ n2k and c(k) = 2k“

    1− (k − 1) log“

    kk−1

    ””.

    Let C be a random edge-coloring of Kn,n in the RRM with s ≥ n colors.Then

    Pr(M rainbow) = e−(c(k)+o(1))µ.

    Proposition

    Every random edge–coloring of Kn,n with s ≥ n colors in the URM (RRM)has a rainbow matching with high probability.

    Theorem

    In particular

    Pr(@ latin transversal) ≤ 1n

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 18 / 19

  • Results

    Let C be a random edge coloring of Kn,n in the URM with s ≥ n colors.Then,

    Pr(M rainbow) = e−c(k)µ,

    where µ ∼ n2k and c(k) = 2k“

    1− (k − 1) log“

    kk−1

    ””.

    Let C be a random edge-coloring of Kn,n in the RRM with s ≥ n colors.Then

    Pr(M rainbow) = e−(c(k)+o(1))µ.

    Proposition

    Every random edge–coloring of Kn,n with s ≥ n colors in the URM (RRM)has a rainbow matching with high probability.

    Theorem

    In particular

    Pr(@ latin transversal) ≤ 1n

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 18 / 19

  • Results

    Let C be a random edge coloring of Kn,n in the URM with s ≥ n colors.Then,

    Pr(M rainbow) = e−c(k)µ,

    where µ ∼ n2k and c(k) = 2k“

    1− (k − 1) log“

    kk−1

    ””.

    Let C be a random edge-coloring of Kn,n in the RRM with s ≥ n colors.Then

    Pr(M rainbow) = e−(c(k)+o(1))µ.

    Proposition

    Every random edge–coloring of Kn,n with s ≥ n colors in the URM (RRM)has a rainbow matching with high probability.

    Theorem

    In particular

    Pr(@ latin transversal) ≤ 1n

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 18 / 19

  • Results

    Thanks for your attention.

    Guillem Perarnau MA4-UPC Rainbow matchings: Existence and counting 19 / 19

    The problemCounting with the Local LemmaOur ApproachRandom Models