Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta...

27
Rafael Bastos (1) , Paula Bevilacqua (2) , Richard Gelting (2) , Demétrius Viana (1) , João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for Disease Control and Prevention Seasonal fluctuations in source Seasonal fluctuations in source water quality and health related water quality and health related risks. risks. A QMRA approach applied to Water A QMRA approach applied to Water Safety Plans. Safety Plans. Water Safety Conference 2010

Transcript of Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta...

Page 1: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1) , João Pimenta (1)

(1) University of Viçosa, Brazil

(2) US Center for Disease Control and Prevention

Seasonal fluctuations in source Seasonal fluctuations in source water quality and health related water quality and health related

risks. risks. A QMRA approach applied to Water A QMRA approach applied to Water

Safety Plans.Safety Plans.

Water Safety Conference 2010

Page 2: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Water Safety Plans

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Davison et al. (2006)

Introduction

Page 3: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Frequency/likelihood consequence/severity

matrix

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Deere et al. (2006)

WSPWSP

Hazards / hazardous events identification

/ prioritization

Risk characterization

Control measures

Qualitative / semi-quantitative approach

subjective judgement

High risk

Page 4: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

WSP QMRAWSP QMRA

Quantitative Microbial Risk Assessment (QMRA)

Exposure model + Dose-response model

Risk estimates

Objective / quantitative input for risk assessment and management in WSP

(Smeets et al., 2010; Medema & Ashbolt 2006)

Page 5: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Quantitative Microbial Risk Assessment

Hazardous events Seasonal fluctuations in source water

quality (rainfall)Water treatment performance

Risk estimatesLong and shorter-

terms Annual, seasonal,

daily

Objectives

“provide opportunities for improved risk management, with an incentive to reduce the occurrence and impact of event-driven peaks” (Signor & Ashbot , 2009).

10-4 pppy

10-6 pppd

Page 6: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Methods

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

≈ 650 m; 20º 45' 14" S; 42º 52' 53" W

≈ 70,000 inhabitants (90% urban)

10º C (winter) - 30º C (summer)

rainy season (November – March); dry season (April - October)

Viçosa – Minas Gerais

(Southeast Brazil)

Page 7: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

UFV (1926)

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

DW supply system

WSP

Page 8: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

WTP 1 (100 L/s)

WTP UFV(50 L/s)

WTP 2(100 L/s)

São Bartolomeu Stream

Turvo River

Rainy season

70% SB + 30% TR

Dry season

70% TR + 30 SB

150 km

Viçosa DW water supply systemViçosa DW water supply system

Page 9: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Lagoa 1

Lagoa 2

WTP UFV(50 L/s)

Storage reservoir

WTP 1 (100 L/s)

8 km

Storage reservoir

UFV DW water supply systemUFV DW water supply system

Page 10: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Rainy season ≈ 200L/s

Dry season ≈ 100 L/s

SB Catchment

(≈ 2000 ha)

Page 11: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Conventional treatment

UFV WTPUFV WTP

coagulation (aluminum sulphate), hydraulic

rapid mixture and flocculation, conventional

sedimentation, rapid sand filtration, and

disinfection with chlorine. Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Page 12: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

QMRA model

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

d = dose

C =Cryptosporidium concentration in source water (oocysts /L)

r = recovery fraction of the oocysts enumeration method (%)

R = oocysts removal efficiency (log) (filtration)

V = volume of water consumed per day (L/d)

Exposure model

d = C x (1/r) x R x V

Page 13: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

QMRA model

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Dose – response model (exponential) (Haas et al. , 1999)pd = 1 - exp (-θd) (daily)

pΣ = 1- (1- pd)n [seasonal: prain and pdry; and annual)

risk of infection (pd) in an individual following

ingestion of a single pathogen dose d, i.e. per exposure event (daily risk)

total probability of infection over n exposures to the single pathogen dose d

Page 14: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Methods – Results

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Cryptosporidium concentration in source water (oocysts /L)

PDF : β distribution

Monitoring (five previous studies, 2002-2008)

r = recovery fraction of the oocysts enumeration method (%)

30-60% (uniform distribution)

Page 15: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Methods – Results

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

R = oocysts removal efficiency (log) (filtration)

log10 removal Cryptosporidium oocysts = 0.9631 log10

removal turbidity + 1.009(Nieminsky & Ongerth, 1990)

turbidity removal 0.29 to 3.79 logRdry = 0.29 to 2.72 log - Rrain = 0.5 to 3.8 log

Oocysts removal 1.38 to 4.76 logRdry = 1.38 to 3.72 log - Rrain = 1.58 to 4.76 log

Triangular distribution ≈ pilot experiment s

Page 16: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Methods – Results

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

θ = 0.042 ± 25% - variation in susceptibility (as most existing dose-response models derive from oral challenge data from healthy adult volunteers)

Uniform distributionV = volume of water consumed per day (L/d)

Poisson (λ=0.87 L/day) (Australian)

Page 17: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Methods – Results

Stochastic modelling –

Monte Carlo Simulation

50,000 iterations

Variability and Uncertainty

Page 18: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Methods – Results

0,0

00

00

,28

33

0,5

66

50

,84

98

1,1

33

01

,41

63

1,6

99

51

,98

28

2,2

66

0Valores em Milésimos

0,0%

14,3%

28,6%

42,9%

57,1%

71,4%

85,7%

100,0%

highly skewed risk probability distributions

typical of long-term variability in which the overall mean value is highly sensitive to the rarely occurring but relatively ‘extreme’ higher risk periods

Page 19: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Results – risk estimates (pooled data)

0,0

00

00

,28

33

0,5

66

50

,84

98

1,1

33

01

,41

63

1,6

99

51

,98

28

2,2

66

0

Valores em Milésimos

0,0%

14,3%

28,6%

42,9%

57,1%

71,4%

85,7%

100,0%

0,0

00

00

0,0

70

38

0,1

40

75

0,2

11

13

0,2

81

50

0,3

51

88

0,4

22

25

0,4

92

63

0,5

63

00

0,0%

14,3%

28,6%

42,9%

57,1%

71,4%

85,7%

100,0%

5.6x10-4 1.1x10-3 1.6x10-3 2.2x10-30

0 7x10-2 2.1x10-1 3.5x10-1 5.6x10-14.2x10-1

Pdaily

Pannual

50% = 2 x 10-6 (Signor & Ashbolt, 2009)

95% = 2.2 x 10-3

50% = 6.9 x 10-4

(EPA)

95% = 5.6 x 10-1

Page 20: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Results – risk estimates (dry season)

Pdaily

50% = 4.6 x 10-6

95% = 2 x 10-3

50% = 8.3 x 10-4

(EPA)

95% = 3.1 x  10-1

0,0

00

00

,33

45

0,6

69

01

,00

35

1,3

38

01

,67

25

2,0

07

0

Valores em Milésimos

0

2000

4000

6000

8000

10000

12000

14000

0,0%

14,3%

28,6%

42,9%

57,1%

71,4%

85,7%

100,0%

Pdaily

0,0

00

00

0,0

61

24

0,1

22

48

0,1

83

72

0,2

44

96

0,3

06

20

0

5

10

15

20

25

30

35

40

0,0%

12,5%

25,0%

37,5%

50,0%

62,5%

75,0%

87,5%

100,0%

6x10-2 1.2x10-1 1.8x10-1 2.5x10-1 3.1x10-10

3x10-4 6.7x10-4 1x10-3 1.4x10-3 1.7x10-3 2x10-30

Pseason

Page 21: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

0,0

00

0,0

47

0,0

94

0,1

41

0,1

88

0,2

35

0,2

82

0,3

29

0,3

76

0

5

10

15

20

25

30

0,0%

16,7%

33,3%

50,0%

66,7%

83,3%

100,0%

0,0

00

0,5

24

1,0

48

1,5

72

2,0

96

2,6

20

Valores em Milésimos

0,0%

16,7%

33,3%

50,0%

66,7%

83,3%

100,0%

Results – risk estimates (rainy season)

Pdaily

50% = 1.9 x 10-5

95% = 2.6 x 10-3

50% = 3.4 x 10-3

95% = 3.8 x 10-1

Pseason

5.2x10-4 1.1x10-3 1.6x10-3 2.1x10-3 2.6x10-30

9.4x10-2 1.9x10-1 2.8x10-1 3.8x10-10

Page 22: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Results – sensitivity analysis

Variable

Spearman rank correlation coefficient (rs)

Dry seasonRain

seasonPolled data

Occurrence of Cryptosporidium in source water – C (oocysts/L)

+0.30 +0.20 +0.23

Recovery of the oocysts enumeration method – r (%)

-0.02 -0.01 -0.02

Cryptosporidium oocysts removal in the WTP – R (log)

-0.16 -0.27 -0.20

Drinking-water consumption – V (L/day) +0.84 +0.85 +0.84Dose response parameter - θ +0.03 +0.02 +0.02

Sensitivity of probability of infection to variation in input random variables

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

need of data collection on drinking-water consumption in Brazil the importance of reliable data on oocysts occurrence/removal and properly specifying statistical distributions for these variables.

Page 23: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Results – sensitivity analysis

VariableDaily/annual risks

(polled data)

Daily/seasonal risks

Rainy season Dry season

Occurrence of Cryptosporidium in source water

Highest + 1.8 + 0.9 + 2.2

Lowest- 0.8

-0.9 -1.0

Cryptosporidium oocysts removal in the WTP

Highest - 1.7 - 1.5 -1.1

Lowest + 1.7 + 1.7 + 1.3

Sensitivity analysis : log10- values of the decreased or increased median risk compared to when the total distribution is used

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Page 24: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Results – Scenario analysis

Variable

Annual risks Seasonal risks

>10-1 <10-2 <10-3 <10-4

Dry season Rain season

>10-1 <10-2 <10-3 <10-4 >10-1 <10-2 <10-3 <10-4

C +1.28 83.3%

+0.6874.6%

R -0.84 17.9%

-0.63 26.6%

-0.81 18.5%

V +1.07 94.2%

-1.07 41.8%

-1.07 41.8%

+1.07 94.2%

-1.07 41.8%

Scenario analysis results: combinations of inputs which lead to risk of infection targets

Figures within parenthesis: percentile of the subset median of the input variable in the

complete distribution; figures outside parenthesis difference between the subset and the

overall medians divided by the standard deviation of the original simulation; the higher

this number, the more significant is the input variable in achieving the output target value.

Water Safety ConferenceNovember 2-4 2010, Kuching, Malaysia

Page 25: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Conclusions

Seasonal fluctuations in source water quality

(rainfall) and treatment performance ►

Hazardous events ► WSP (Signor et al., 2005;

Signor & Ashbolt, 2009; Smeets et al., 2010).

Seasonal risk fluctuations seems to be

attenuated over the annualized estimates.

Case for shorter-term risk estimates (seasonal,

daily) ►acceptable targets (Signor & Ashbolt,

2009).

Page 26: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Conclusions

QMRA ► objective quantitative input ► WSP

(Smeets et al., 2010).

QMRA models :

pathogens in source water : reliable data,

PDF (variability & uncertainty)

pathogens removal : indicators (turbidity) ???

Critical limits

Page 27: Rafael Bastos (1), Paula Bevilacqua (2), Richard Gelting (2), Demétrius Viana (1), João Pimenta (1) (1) University of Viçosa, Brazil (2) US Center for.

Thank you !!!!!!!!Thank you !!!!!!!!

[email protected]

Water Safety Conference 2010