Radio&Pulse&Coincidence&...

36
Radio Pulse Coincidence Searches with LIGO Brennan Hughey October 22 nd 2013

Transcript of Radio&Pulse&Coincidence&...

Page 1: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Radio  Pulse  Coincidence  Searches  with  LIGO  

Brennan  Hughey  October  22nd  2013  

Page 2: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

2  

GravitaBonal  Waves:  Listening  to  the  Universe  

•   Predicted  by  Einstein’s  General  Theory  of  Rela6vity    •   When  massive  objects  rapidly  change  shape  or  orienta6on,  the  curvature  of  space-­‐6me  also  changes    •   The  change  propagates  as  a  wave  traveling  at  the  speed  of  light:  ripples  in  the  fabric  of  space    •   Amplitude  inversely  propor6onal  to  distance    •   2  polariza6ons:  “plus”  (+)  and    “cross”  (x)  (and  any  combina6on)  

+  polarizaBon  

Page 3: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

3  

How  “Loud”  Are  They?  •  Amplitude  is  described  by  dimensionless  strain:  stretching  of  

space  h  =  ΔL/L  •  Back-­‐of-­‐envelope  calculaBon:  

–  Laboratory  dumbbell  

 

   

Page 4: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

4  

How  “Loud”  Are  They?  •  Amplitude  is  described  by  dimensionless  strain:  stretching  of  

space  h  =  ΔL/L  •  Back-­‐of-­‐envelope  calculaBon:  

–  Laboratory  dumbbell  (1  ton,  2m,  1kHz)  h  =  10-­‐38  

   

Page 5: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

5  

How  “Loud”  Are  They?  •  Amplitude  is  described  by  dimensionless  strain:  stretching  of  

space  h  =  ΔL/L  •  Back-­‐of-­‐envelope  calculaBon:  

–  Laboratory  dumbbell  (1  ton,  2m,  1kHz)  h  =  10-­‐38  

–  Binary  neutron  star  system  (1.4  MO,  20km,  400  Hz)  =  10-­‐21  

 at  a  distance  of  15  Mpc  

•  So  the  search  for  gravitaBonal  waves  requires  objects  of  astrophysical  mass,  and  even  then  is  a  hugely  difficult  problem        

Page 6: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

6  

So  Are  GravitaBonal  Waves  Real?  Don’t  take  Einstein’s  word  for  it.  GravitaBonal  waves  haven’t    been  directly  detected,  but….    Indirect  evidence  from  binary    system  including  radio  pulsar    Shic  in  orbit  matches  GR    predicBons  exactly  

Dantor  2007  

Page 7: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

7  

The  GravitaBonal  Wave  Spectrum  

Figure  credit:  Hobbs  2008  

Interferometers and Bars

Lisa/NGO Pulsar Timing Arrays

Page 8: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

8  

Building  Ears:  LIGO  Laser  Interferometer  GravitaBonal-­‐Wave  Observatory    Lasers  split  at  90  degree  angle,  bounced  back  and  forth  along  detector  arms,  then  recombined  

Compression  and  contracBon  of  space-­‐Bme  due  to  passing  GravitaBonal  Waves  can  be  reconstructed  from  interference  pahern  of  the  two  laser  beams  

Page 9: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

9  

Beam  tube  

Vacuum  System  Vibra6on  Isola6on  

Mirror  in  situ   The  Hardware  

Page 10: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

10  

Background  •   There  are  a  huge  variety  of  Earth-­‐based  disturbances  that  cause  “glitches”  in  the  detector,  so  we  have  hundreds  of  internal  and  external  sensors  set  up  to  measure  non  GravitaBonal  wave  effects  

Examples  of  noise  sources:  Wind  Earthquakes  Waves  in  gulf  Power  Lines  Anthropogenic  etc…  

Extreme  example  of  an    anthropogenic  disturbance  

Page 11: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

So  how  do  we  look  for  needles  in  the  haystack?  

•  AcBvely  work  to  characterize  noise  in  data  streams  

•  Look  for  specific  signal  shapes  •  Look  for  consistent  signals  across  mulBple  detectors  

frequ

ency

time

Page 12: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

12  

The  Worldwide  Network  of  GravitaBonal  Wave  Interferometers  

LIGO    Livingston  

LIGO  Hanford  

4  km  2  km  

4  km  

Page 13: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

13  

The  Worldwide  Network  of  GravitaBonal  Wave  Interferometers  

VIRGO  LIGO    Livingston  

LIGO  Hanford  

4  km  2  km  

4  km  3  km  

Page 14: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

14  

The  Worldwide  Network  of  GravitaBonal  Wave  Interferometers  -­‐  Someday  

VIRGO  LIGO    Livingston  

LIGO  Hanford  

4  km  

4  km  3  km  

Geo600  

LIGO  India  

Kagra  

Page 15: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

So  how  do  we  look  for  needles  in  the  haystack?  

•  AcBvely  work  to  characterize  noise  in  data  streams  

•  Look  for  specific  signal  shapes  •  Look  for  consistent  signals  across  mulBple  detectors  

•  Look  in  the  same  Bme  and  place  as  an  external  electromagneBc  trigger  

Page 16: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

ElectromagneBc  Follow-­‐Up  Program  Localize  the  most  likely  locaBon  of  a  marginal  event  and  send  to  astronomical  partners  for  follow-­‐up    Prototype  program  in  previous  science  run,  expanded  in  next  

Page 17: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Telescope  Network  Used in winter and autumn run autumn run only

17  

Page 18: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

The  Big  Dog  Ø  Received alert 8 minutes after event (in middle of night)

Ø  Sent to telescopes 45 minutes after event

Ø  Visually identified as inspiral shortly after trigger generated

Ø  Demonstrates that we’re identifying “signal” with very low latency

18  

Page 19: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Externally  Triggered  Searches  

•  Joint  emission  from  Gamma-­‐ray  Bursts,  Soc  Gamma  Repeaters,  Supernovae          Use  both  Bme  and  locaBon  to  dramaBcally  reduce  the  background  with  respect  to  all-­‐sky  searches  

Page 20: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Externally  Triggered  Searches  

•  Joint  emission  from  Gamma-­‐ray  Bursts,  Soc  Gamma  Repeaters,  Supernovae          Use  both  Bme  and  locaBon  to  dramaBcally  reduce  the  background  with  respect  to  all-­‐sky  searches  

Page 21: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Joint  Radio/Gravita6onal  Wave  Search  Looking  for  gravitaBonal  waves  (GWs)  in  coincidence  with    idenBfied  radio    transients  of  unknown  origin    External  trigger  approach  -­‐  Increase  GW  detecBon    confidence  and  learn  more  about  astrophysical  system  than  by  a  single  messenger  alone    Radio  is  specifically  interesBng  for  a  number  of  reasons:  ª   Scenarios  where  opBcal  emission  is  much  more  strongly  beamed  than  radio  or  GW  emission,  ª   Dispersion  measure  plus  direcBon  provide  a  built-­‐in  distance  esBmate    We  focus  here  on  GWs  in  coincidence  with  short  duraBon    radio  transients  idenBfied  in  pulsar  surveys,  other  radio-­‐coincident  studies  are  also  possible  at  longer  duraBons  and  lower  frequencies                  

GW  

Radio  21  

Page 22: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

So  what’s  a  pulsar?  A  pulsar  is  a  parBcular  sub-­‐class  of  neutron  star.    (So  what’s  a  neutron  star?)  A  neutron  star  is  a  very  dense  remnant  of  an  old  star  in  which  a  star  a  bit  heavier  than  our  sun  has  collapsed  to  something  with  a  radius  of  a  few    kilometers    It’s  a  less  extreme  version  of  what  happens  when  a  more  massive  star  makes  a  black  hole    

Page 23: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

So  what’s  a  pulsar?  It’s  called  a  neutron  star  because  the  inner  layers  are  primarily  an  ultra-­‐dense  ball  of  neutrons  rather  than  regular  atomic  maher      However,  there’s  a  layer  of  ions  &  electrons  on  the  outside  that  produces  radiaBon  as  a  result  of  the  star’s  rapid  rotaBon,  leading  to  radio  emission  at  the  poles  

Page 24: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

So  what’s  a  pulsar?  This  emission  from  the  poles  shows  up  at  the  Earth  as  a  radio  pulse  every  few  milliseconds  to  seconds,    depending  on  how  fast  the  neutron  star  is  spinning  

If  there’s  a  radio  source  with  less  regular  emission  (because  it  is  near  the  end  of  It’s  life  as  a  pulsar  or  is  parBally  obscured  from  view)  it  is  called  an  RRAT  –  A  RotaBng  RAdio  Transient  

Once  you  average  out  Bme  delays  from  the  stuff  between  the  pulsar  and  the  Earth,  Pulsars  are  among  the  most  accurate  clocks  in  the  known  universe    

Page 25: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Radio  Pulsar  Surveys  

100  X  110  meter  fully  steerable  scope  at  NRAO  site  in  West  Virginia    (world’s  largest  of  its  kind)    Surveys:  ª   Green  Bank  DriV-­‐scan  survey:  Summer  2007,  telescope  fixed  as  Earth  rotates    ª   Green  Bank  survey  of  northern  celes6al  cap:  2009-­‐2012.    will  cover  sky  north  of  38  declinaBon  Both  GBT  surveys  have  350  MHz  central  frequency  

25  

Page 26: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Radio  Propaga6on  Time  Delay  Dispersion  measure  (electron  density  integrated  over  distance  to  source)  used  to  calculate  frequency  dependent  Bme  delay  1/f2  of  radio  signal  with  respect  to  GW    (or  light  in  vacuum).    PropagaBon  delays  at  most  extreme  dispersion  measure  and  lowest  frequency  for  this  analysis  are  not  more  than  46  seconds.    

Each  of  7  ALFA  beams  

124  different    trial  DM  channels  

SNR  determines  Best  DM  

radio  pulse  From  “An  Arecibo  Search  for  Pulsars  and  Transient  Sources  in  M33”  by  N.D.R.  Bhat  et  al.,    APJ  732  (2011)  14  

26  

Page 27: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Sources  of  Joint  Emission:  Single  Neutron  Stars  

We  already  know  that  neutron  stars  can  emit  radio  waves    They  can  also  emit  gravitaBonal  waves  any  Bme  there’s  a  deviaBon  from  spherical  symmetry    

Asteroseismology:    Starquakes  and  crustal  shics  can  cause  temporary  change  in  shape  of  the  neutron  star    These  same  disturbances  can  affect  the  radio  emission,  either  bumping  the  pole  Into  our  line  of  site  or  increasing  amplitude  

Page 28: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Sources  of  Joint  Emission:  Binary  Neutron  Star  Coalescence  

28  NASA

The  merger  of  two  neutron  stars  or  a  neutron  star  and  a  black  hole  is  our  most  promising  GravitaBonal  wave  source  since  it  is  “loud”  enough  to  hear  from  other  galaxies        

There  are  a  few  (theoreBcal)  ways  to  get  short  radio  pulses  at  the  same  Bme  as  the  merger  ²  The  pulsar  emission  of  one  of  the  neutron  stars  could  get  “spun  up”  as  part  Of  the  merger  process  ²   An  intermediate  state  called  a  hypermassive  neutron  star  could  act  as  a    Pulsar  ²  GravitaBonal  waves  moving  through  the  right  medium  can  actually  induce  RadiaBon  in  the  radio  regime  through  magnetohydronamics  

Page 29: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Sources  of  Joint  Emission:  Cosmic  Strings  

Joint  sources  for  emission  don’t  have  to  relate  directly  to  neutron  stars  at  all    One  of  the  more  exoBc  theories  comes  from  string  theory    

A  cosmic  string  can  bend  and  form  a  “cusp”  or  “kink”,  which  can  lead  to  several  Kinds  of  emission,  including  radio  and  gravitaBonal  waves  

Ken Olum

Page 30: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Our  Search  for  GWs  in  Coincidence  with  Radio  Pulses  from  Green  Bank  

We’ve  taken  32  “single  pulse”  sources  from  Green  Bank’s  2007  dric-­‐scan  survey  And  looked  for  gravitaBonal  waves  in  coincidence  with  them    We  did  this  by  starBng  with  an  externally  triggered  search  program  designed  for  Gamma-­‐ray  Bursts  and  tuned  it  for  the  physics  described  in  the  last  few  slides  ² Changed  the  search  window  size  in  Bme  and  locaBon  ²  Increased  the  upper  end  of  the  frequency  range  over  which  we  are  searching  ² Account  for  various  Bming  issues  –  for  example,  Green  Bank  supplies  Bmes    with  respect  to  the  center  of  the  solar  system  ² Measure  efficiency  based  on  the  waveforms  we  expect  from  our  sources  

Page 31: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Our  Search  for  GWs  in  Coincidence  with  Radio  Pulses  from  Green  Bank  

21  of  the  single  pulse  triggers  had  good  data  in  at  least  2  LIGO/Virgo  detectors    We  tuned  searches  for  each  trigger  using  data  close  to  the  on-­‐source  window  and  “Bme-­‐shiced”  between  the  detectors,  then  looked  at  the  real  data    

H1  

L1  

Page 32: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Our  Search  for  GWs  in  Coincidence  with  Radio  Pulses  from  Green  Bank  

21  of  the  single  pulse  triggers  had  good  data  in  at  least  2  LIGO/Virgo  detectors    We  tuned  searches  for  each  trigger  using  data  close  to  the  on-­‐source  window  and  “Bme-­‐shiced”  between  the  detectors,  then  looked  at  the  real  data    

H1  

L1  

Time-­‐shics  must  be  greater  than  10s  of  ms  travel  Bme  of  a  real  GW  signal  

Page 33: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Our  Search  for  GWs  in  Coincidence  with  Radio  Pulses  from  Green  Bank  

We  (David  SBles  and  I)  verified  results  for  each  trigger  and  made  correcBons  We  then  “opened  the  box”  and  looked  at  real  zero-­‐lag  results      

(Technically  I  can’t  tell  you  what  we’ve  found  since  the  results  aren’t  public)  

Page 34: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

So  What’s  Next?  

²  Hopefully  we’ll  soon  get  more  data  from  Green  Bank  –  northern  celesBal  cap    ²  Working  on  beher  ways  to  analyze  combinaBons  of  two  detectors  (with  undergraduate  researcher  David  SBles)    ²  Working  on  geung  a  memorandum  of  understanding  with  Parkes  telescope  to  get  unpublished  radio  triggers  from  2011.      ²  PublicaBon  once  we  get  more  results.  

Page 35: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Parkes  Pulses  The  Parkes  Telescope  is  a  prolific  radio  telescope  in  New  South  Wales,  Australia    Published  4  distant  radio  bursts  from  2011  this  summer  These  are  exciBng  because  they  look  like  they  are  from  outside  our  galaxy    They  have  more  unpublished  triggers,  and  they  want  LIGO/Virgo  to  look  at  them  (unfortunately  only  European  detectors    were  on  at  the  Bme)    PresenBng  science  case  to  LIGO’s  data    analysis  council  on  Friday……  

Page 36: Radio&Pulse&Coincidence& Searches&with&LIGO&mercury.pr.erau.edu/~hugheyb/presentations/erauseminar.pdf · 2 Gravitaonal&Waves:& Listening&to&the&Universe& •&PredictedbyEinstein

Prospects  for  DetecBon  in  Advanced  Era  

36  

Predicted Advanced Detector CBC detection rates per year at design sensitivity Low   Realis6c   High  

NS-­‐NS   0.4   40   400  

NS-­‐BH   0.2   10   300  

BH-­‐BH   0.4   20   1000  

Low   Realis6c   High  

NS-­‐NS   2X10-­‐4   0.02   0.2  

NS-­‐BH   7X10-­‐5   0.004   0.1  

BH-­‐BH   2X10-­‐4   0.007   0.5  

Compared to initial detectors

Class. Quant. Grav. 27: 173001 (2010)

Order of magnitude improvement in sensitivity Order of magnitude improvement in range 3 orders of magnitude more volume