R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward...

285

Transcript of R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward...

Page 1: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å
Page 2: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

22 (2010 4 -2011 3 )

/

10 1

La

( )

22

22 ( ) Dr. Simone De Liberato Prix

Jeune Chercheur Daniel Guinier ( )

Best Student Poster Award ( )

3 22 ( )

83 Physics Lab. 2010 MF

1 MF 1 3

2 4

20

COE

21

2011 4 30

Page 3: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å
Page 4: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

I 2010 9

1 11

1.1 ( · · ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 33

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 CERN ISOLDE ( ) . 34

2.1.3 K ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.4 K ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.5 π ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.6 ( ) . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.7 ( ) . . . . . . . . . . . . . . . . 36

2.1.8 QGP . 37

2.1.9 φ . . . . . . . . . . . . . 38

2.1.10 ω · . . . . . . . . . . . . . 39

2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 ILC . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.3 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.4 BES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.1 PANDA – . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.2 Sumico, . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.3 hidden sector photon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 Belle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.2 Belle II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.3 HSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.4 T2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.5 . . . . . . . . . . . . . 58

2.4.6 – . . . . . . . . . 58

2.4.7 . . . . . . . . . . . . 59

2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.1 LHC ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.2 . . . . . . . . . . . . . . 66

3 71

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3

Page 5: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.3 Multiferroic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.6 . . . . . . . . . . . . . . . . . 87

3.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 96

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.4 Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.2 LEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.3 / . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.4 . . . . . . . . . . . . . . . . . . . . . . 126

4

Page 6: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 129

5.1 ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 149

6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.5 [3, 4, 10, 16, 55, 88] . . . . . . . . . . . . . . . . . . . . . 153

6.1.6 ASTRO-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.1 TST-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.2 DECIGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.4 . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.6.1 . . . . . . . . . . . . . . . . . . . . . . . 194

6.6.2 . . . . 195

6.6.3 196

6.6.4 3 . . . . . . . . . . . . . . . . . . . 196

6.6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.7.1 . . . . . . . . . . . . . . . . . . . . . . . 200

6.7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5

Page 7: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.7.3 . . . . . . . . . . . . . . . . . . . . 202

6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.9.1 1 . . . . . . . . . . . . . . . . . . . 213

6.9.2 1 . . . . . . . . . . . . . . . . . . . . 213

6.9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7 217

7.1 ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.2 ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.3 IT ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.4 ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

II Summary of activities in 2010 2191 Theoretical Nuclear Physics Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

2 Theoretical Particle and High Energy Physics Group . . . . . . . . . . . . . . . . . . . . . . 223

3 Hayano Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

4 Ozawa Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5 Komamiya group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6 Minowa-Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7 Aihara/Yokoama Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8 Asai group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9 Aoki Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10 Miyashita Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11 Ogata Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

12 Tsuneyuki Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

13 Fujimori Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

14 Uchida Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

15 Hasegawa Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

16 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

17 Okamoto Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

18 Shimano Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

19 Theoretical Astrophysics Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

20 Murao Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

21 Ueda Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

21.1 Quantum States of Ultracold Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

21.2 Quantum Information, Quantum Measurement, and Information thermodynamics . 246

22 Makishima Group & Nakazawa Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

23 Takase Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

24 Tsubono Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

25 Sano Harada Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

26 Yamamoto Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

27 Sakai (Hirofumi) Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

28 Gonokami Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6

Page 8: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

29 Nose Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

30 Higuchi Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

III 2010 259

1 261

1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

1.1 I : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

1.2 I . . . . . . . . . . . . . . . . . . . . . . 261

1.3 : . . . . . . . . . . . . . . . . . . . . . . . . . . 262

1.4 I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

1.5 II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

2 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

2.1 II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

2.2 II : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

2.3 I : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

2.4 I : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

2.5 I . . . . . . . . . . . . . . . 265

3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

3.1 III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

3.2 III : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

3.3 III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

3.5 II : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

3.6 II : . . . . . . . . . . . . . . . . . . . . . . . . . 267

3.7 I : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4.1 I : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4.2 I . . . . . . . . . . . . . . . . . . . . . 268

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4.4 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

4.5 I : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

4.6 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.1 : . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.2 II : . . . . . . . . . . . . . . . . . . . . . . 271

5.3 : . . . . . . . . . . . . . . . . . . . . . 271

5.4 II : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

5.6 II : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

2 273

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

4 ( ) 274

5 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6 15 . . . . . . . . . . . . . . . . . . . . . . . . . 275

7 . . . . . . . . . . . . . . . . . . . . . . 275

7

Page 9: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

8 5 . . . . . . . . . . . . . . . . . . 275

9 5 . . . . . . . . . . . . . . . . . . . 275

10 Dr. Simone De Liberato (Ueda group): Prix Jeune Chercheur Daniel Guinier . . . . . . . . 275

11 ( ): ( ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

12 ( ): 5 (2011 ) ( 11) 22( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

13 22 ( ) . . . . . . . . . . . 276

14 ( ) Best Student Poster Award . . . . . . . . . . . . . . . . . . . . . . 276

15 ( ) 22 ( ) . . . . . . . . . . . . 277

16 ( ) 22 ( ) . . . . . . . . . . . . . . 277

17 ( ) 22 ( ) . . . . . . . . . . . . . . . . 277

3 278

4 279

5 281

6 282

7 283

8

Page 10: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

I

2010

Page 11: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å
Page 12: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1

1.1 ( ·· )

1)

2)

3)( )

( )

2, 8, 20, 50, 82, 126(

) ()

2010 1 Phys. Rev. Lett.%

Viewpoint

[55, 107, 108, 109, 110, 111, 113, 158, 159]

[115, 116]

[157]

( )-

( )

[10, 107, 108, 109, 110, 111, 113]

(Continuum-Coupled ShellModel)

[111, 161]

Warburton Island of Inversion

42Si

[7, 9, 11, 12]

11

Page 13: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

[13, 160]

LL

[6, 14, 112, 114]

[5, 8]

pfg9 64Ge 1014

[13, 39, 117, 68, 69, 134, 135]

GutzwillerStochastic Recon-

figuration pf48Cr

[136, 137]

3 2JISP16(4He, 6He, 6Li, 7Li, 8Be, 10B,

12C)

[40, 70, 72, 73, 118, 138]

12

Page 14: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

In-medium SimilarityRenormalization Group (IM-SRG) IM-SRG Hamiltonian

Size extensivity

In-medium SRG

(4He,16O,40Ca)Coupled Cluster

IM-SRG

Q-box6Li

IM-SRG[60, 74, 75, 120, 139, 163]

Shell model on grids

The method I developed during my Ph.D. workuses mathematical theorems from complexity the-ory to design efficient many-dimensional grids forthe electronic structure problem. Using the formal-ism introduced in my Ph.D. thesis, I will gener-alise the grid-based formalism to provide accuratewave functions for the purposes of nuclear physics,that is solving the Schrodinger equation for nucleiwith realistic interactions. One of the central top-ics of research interest to Prof. Takaharu Otsuka’sgroup is performing efficient nuclear shell calcula-tions. They have developed the Monte-Carlo ShellModel method for solving this problem. Monte-Carlo is a successful method, but does not necessar-ily take advantage of the inherent smoothness of theproblem. The convergence for Monte-Carlo meth-ods is n−1/2 for n points. If one has a D-dimensional

function that is simultaneously m-times times dif-ferentiable with respect to every variable, then theconvergence for the grid algorithm in my thesis, theSmolyak algorithm, is n−m/D(log n)m(D−1)/(D+1).Mathematicians have proved that this is the mostefficient possible method up to a logarithmic factor.

Since I have come to Japan, and continuing intothe next year I anticipate formulating general ap-proaches for solving the Schrodinger equation fornuclei with realistic interactions on grids. Specif-ically, I want to explore how these methods andexploit the advantages of using efficient grids likethe ones I developed in my Ph.D. research.

BEC

(BEC)

BEC

BEC1 2 BEC

Bogoliubov2

ZeemanBogoliubov

Lee-Huang-Yang

BEC Nambu-Goldstone (NG)

NG 2 BECNG

NGmassNG

NG

[15, 16, 61, 76, 140, 141, 142, 172, 173]

No-core MCSM calculations for 10Be and 12Be

low-lying spectra

We performed no-core shell-model calculationsusing the Monte Carlo Shell Model (MCSM) andthe nucleon-nucleon potential provided by the Uni-tary Correlation Operator Method (UCOM) in or-der to discuss the nuclear structure of light nuclei

13

Page 15: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

theoretically. The excitation energies of the 2+1 and2+2 states and the B(E2; 2+1 → 0+g.s.) for 10Be inthe MCSM show good agreement with experimentaldata. The effect of the Lawson method, which wasapplied to remove the contamination of the spuriouscenter-of-mass motion, was discussed quantitativelyand shown in Fig. 1.1. The deformation propertiesof the 2+1 , 2+2 states for 10Be and the 2+1 state for12Be were studied in terms of quadrupole moments,E2 transitions and the occupations of single-particleorbits. The feature of triaxial deformation of 10Becan be seen in the B(E2) transition probabilities.[62, 17, 77]

Exci

ted e

ner

gy [

MeV

]

0

5

10

10Be

0+g.s.

2+1

2+2 1-1

1-1

2+2

2+1

0+g.s.0+g.s.

2+1

2+2

1-1

emax=3

Exp. βc.m. = 0 ℏω/A βc.m. = 10 ℏω/A

1.1.1: Excitation energies of 2+1 , 2+2 and 1−1 states

of 10Be. The black, red, and blue lines denote

the experimental values, the MCSM results with-

out Lawson method, and the MCSM results with

Lawson method, respectively.

(IBM)

[Otsuka et al. (1979)](DFT) [Nomura et al. (2008)]IBM

IBM

10(

)

( )

DFT( ) IBM

[18, 19, 41, 42, 121,164, 165, 78, 79, 80, 81, 174, 175]

IBMA.Bohr B.R.Mottelson

1980

( )

SkyrmeGogny (EDF)

EDFEDF

(IBM)

()

([14, 20, 41, 42, 121, 164, 165, 81])

EDF Gogny-D1S

( )( )

[14, 80, 81, 143]

N=60

IBM

14

Page 16: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

IBM

[43, 86, 83, 85]

[44, 144, 84]

[86]

( )

(QCD)QCD

QCDQCD

QCD

SU(3)

(QCD)SU(3)

QCD

SU(3)(H- )

[21]

QCD

QCDGinzburg-Landau

-Jona-Lasinio

15

Page 17: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

[22][23, 24]

2+1 QCD

2+1 QCD

( 2 fm3 fm )

330MeV

QCD

RI/MOM

1-loop

(QCD )

QCD1-loop

[26]

QCD

SU(3)

- -(CKM)

SU(3)

SU(3) 2+1QCD

RBC+UKQCD collaborations

2+1 QCD ( 0.11fm 3 fm )

CKM

Dirac f1(q2)

SU(3)330 MeV

QCD

SU(3)f1(0)

Nc

QCD

Nc

[88, 145]

QCD

:

QCD- S 0.3 fm1.5 fm

Brodsky

[45, 87]

3/2

QCD SU(Nf )R⊗SU(Nf )L

QCD

QCD1

3/2

42

A : (Δ(1600), Δ(1940), N(1520), N(1720)),B : (Δ(1920), Δ(1940), N(2080), N(1900))

Wilson

QCDQCD

16

Page 18: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

Wilson

1/N3t

Lee-Yang

QCD

RHIC

(QGP) 2010 11Large Hadron Collider (LHC)

QGP

Relativistic Heavy Ion Collider (RHIC)RHIC

[1][2]2

[1]

[2]

D

QCDAdS/CFT

[1][2] [63]

QCD

QCD

SU(3) SU(2)

SU(2) QCD

SU(2) QCDBCS

SU(2) QCDQCD

BCS

SU(3) QCD

QCD[29, 46, 58,

90, 127, 146, 147, 168, 169, 177, 178, 179, 180, 181]

[64]

Heavy Quark Potential from the thermal Wil-

son Loop in Lattice QCD

In this final year of the doctoral course we haveimproved and generalized our previous results onhow to non-perturbatively derive a spin-independentcomplex potential for the two-body system consist-ing of a heavy quark and anti-quark at any temper-ature. This non-relativistic description based onthe spectral functions of the thermal Wilson loopis obtained as an expansion solely in orders of theinverse rest mass of the heavy quarks.

We manage to go beyond perturbation theory andshed the dependence on scale hierarchies by com-bining the non-relativistic Schroedinger picture interms of Feynman path integrals with a space-timeregularized implementation of the strong interac-tions, i.e. lattice QCD. Utilizing the non pertur-bative results for the medium surrounding the QQobtained by finite temperature Monte-Carlo simu-lations, we are able to extract the spectral functionusing the Maximum Entropy Method and conse-quently the potential at any temperature, especiallyin the phenomenologically important region aroundthe deconfining phase transition.

A numerical evaluation of this potential in quenchedlattice QCD (T = 0.78, 1.17, 2.33TC) suggests that

17

Page 19: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

instead of Debye screening, the growth of the imag-inary part leads to a melting of bound states attemperatures above the deconfinement transition.

QCD

N1/N

BEC-BCS

N1/N

1/N

1/N

[30, 93, 130]

(QED) 300

()

(QCD)

-Goldstone

(U(1))

2

[31, 32, 47, 48, 49, 94, 95, 96, 148, 182, 183, 184, 185]

(Kekule distortion)

2

[97]

QCD

(cc)-

-

QED

--

-QCD

-

QCD ηc-J/ψ-

-r ∼ 1 fm

-QCD

PACS-CSCollaboration 2+1

QCD ( 0.091 fm3 fm)QCD

410 MeV-

[25, 45, 98, 99, 100, 101, 149]

18

Page 20: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

QCD

Bethe-Salpeter

--

(NG)NG

Lorentz( QCD) NG ( ) =

Lorentz( )

Type-II NG ( )

NG Type-IING Higgs

Higgs

[66, 33, 50, 150]

g

BEC-BCSFeschbach

-g

gresummed perturbation optimized

perturbation variational perturbation g

g

g

gg

g

Schrodinger[34]

(quark gluon plasma, QGP)

QGPQGP

[52]

[35, 53, 54, 102, 103,104, 106, 152, 154]

19

Page 21: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

(RHIC)(LHC)

[155, 156] LHC

[170]

QGP

LHC

LHC[36]

Bjorken

QGP QGP[38]

RHIC

[59, 105, 132, 133]

QCD

QCD

(CFL)

QCDCFL

CFLCFL

U(1)B

[37, 67, 153]

QGP

QGP QGPQGP

[131]

[1] :

From Quarks to Supernovae2010 11

[2] : 5 ( 12) 2011

[3] : 5 () 2011 3

[4] : 20113

( )

[5] Y. Iwata, T. Otsuka, J.A. Maruhn, et al., “Ge-ometric classification of nucleon transfer at mod-erate low-energies”, Nucl. Phys., A836, 108-118(2010)

[6] K. Nomura, N. Shimizu, T. Otsuka, “Formulatingthe interacting boson model by mean-field meth-ods”, Phys. Rev., C81, 044307 (2010)

[7] P. Fallon, E. Rodriguez-Vieitez, A.O. Macchiavelli,et al., “Two-proton knockout from Mg-32: In-truder amplitudes in Ne-30 and implications forthe binding of F-29, F-31”, Phys. Rev., C81,041302 (2010)

[8] Y. Iwata, T. Otsuka, J.A. Maruhn, et al., “Sup-pression of Charge Equilibration Leading to theSynthesis of Exotic Nuclei”, Phys. Rev. Lett., 104,252501 (2010)

[9] A. Gade, T. Baugher, D. Bazin, et al., “Collectiv-ity at N=50: Ge-82 and Se-84”, Phys. Rev., C81,064326 (2010)

[10] T. Otsuka, T. Suzuki, J.D. Holt, et al., “Three-Body Forces and the Limit of Oxygen Isotopes”,Phys. Rev. Lett., 105, 032501 (2010)

20

Page 22: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

[11] A.N. Deacon, J.F. Smith, S.J. Freeman, et al.,“Cross-shell excitations near the ”island of inver-sion”: Structure of Mg-30”, Phys. Rev., C82,034305 (2010)

[12] P. Vingerhoets, K.T. Flanagan, M. Avgoulea,et al., “Nuclear spins, magnetic moments, andquadrupole moments of Cu isotopes from N=28 toN=46: Probes for core polarization effects”, Phys.Rev., C82, 064311 (2010)

[13] N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka,T. Abe, M. Honma, “Novel extrapolation methodin the Monte Carlo shell model”, Phys. Rev., C82,061305 (2010)

[14] K. Nomura, T. Otsuka, R. Rodrıguez-Guzman,L. M. Robledo, and P. Sarriguren, “Structural evo-lution in Pt isotopes with the interacting bosonmodel hamiltonian derived from the Gogny en-ergy density functional”, Phys. Rev. C 83, 014309(2011). [arXiv:1010.1078]

[15] Shun Uchino, Michikazu Kobayashi, and MasahitoUeda: “Bogoliubov Theory and Lee-Huang-YangCorrections in Spin-1 and Spin-2 Bose-EinsteinCondensates in the Presence of the Quadratic Zee-man Effect”, Phys. Rev. A81, 630632 (2010).

[16] Shun Uchino, Michikazu Kobayashi, Muneto Nitta,and Masahito Ueda: “Quasi-Nambu-GoldstoneModes in Bose-Einstein Condensates”, Phys. Rev.Lett. 105, 230406 (2010).

[17] L. Liu, “No-Core MCSM calculation for 10Be and12Be low-lying spectra”, in preparation

[18] Kosuke Nomura, Takaharu Otsuka, NoritakaShimizu, and Lu Guo, “New formulation of the In-teracting Boson Model and the structure of exoticnuclei”, J. Phys.: Conf. Ser. 267, 012505 (2011).

[19] Kosuke Nomura, Takaharu Otsuka, NoritakaShimizu, and Lu Guo, “Microscopic formulationof the interacting boson model for rotational nu-clei”, Phys. Rev. C Rapid Communications

(preprint: arXiv:1011.1056 [nucl-th])

[20] K. Nomura, T. Otsuka, R. Rodrıguez-Guzman,L. M. Robledo, P. Sarriguren, P. H. Regan,P. D. Stevenson, and Zs. Podolyak, “Spectroscopiccalculations of low-lying structure in exotic Os andW isotopes”, Phys. Rev. C (preprint:arXiv:1101.1699 [nucl-th])

[21] T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda,Y. Ikeda, K. Murano, H. Nemura, K. Sasaki [HALQCD collaboration], “Baryon-baryon interactionsin the flavor SU(3) limit from full QCD simula-tions on the lattice”, Prog. Theor. Phys. 124, 591(2010).

[22] H. Abuki, G. Baym, T. Hatsuda and N. Ya-mamoto, “The NJL model of dense three-flavormatter with axial anomaly: the low temperaturecritical point and BEC-BCS diquark crossover”,Phys. Rev. D81, 125010 (2010).

[23] K. Fukushima and T. Hatsuda, “The phase di-agram of dense QCD”, Reports on Progress inPhysics 74, 014001 (2011).

[24] R. S. Hayano and T. Hatsuda, “Hadron proper-ties in the nuclear medium”, Reviews of ModernPhysics, 82, 2949 (2010).

[25] T. Kawanai and S. Sasaki, “Charmonium-nucleonpotential from lattice QCD”, Phys. Rev. D82(2010) 091501(R).

[26] Y. Aoki, T. Blum, H.-W. Lin, S. Ohta, S. Sasaki,R. Tweedie, T. Yamazaki, J. Zanotti, “Nucleonisovector structure functions in 2+1 flavor QCDwith domain-wall fermions”, Phys. Rev. D82(2010) 014501.

[27] K. Nagata, “Quartet of spin-3/2 baryons in chi-ral multiplet (1,1/2) ⊕ (1/2,1) with mirror assign-ment” Phys. Rev. D82 034007 (2010).

[28] K. Nagata , A. Nakamura, “Wilson fermion deter-minant in lattice QCD”, Phys. Rev. D82, 094027(2010).

[29] G. Akemann, T. Kanazawa, M.J. Phillips, T. Wet-tig, “Random matrix theory of unquenched two-colour QCD with nonzero chemical potential”,JHEP 1103, 066 (2011) (arXiv:1012.4461 [hep-lat])

[30] Kenji Maeda, “Large N expansion for Strongly-coupled Boson-Fermion Mixtures”, Ann. Phys.326, 1032-1052 (2011).

[31] Y. Araki and T. Hatsuda, “Chiral Gap and Col-lective Excitations in Monolayer Graphene fromStrong Coupling Expansion of Lattice Gauge The-ory”, Phys. Rev. B 82, 121403(R) (2010).

[32] Y. Araki, “Chiral Symmetry Breaking in Mono-layer Graphene by Strong Coupling Expansion ofCompact and Non-compact U(1) Lattice GaugeTheories”, arXiv:1010.0847 [cond-mat.str-el]. (tobe published in Ann. Phys.)

[33] Y. Hama, T. Hatsuda, S. Uchino: “Higgs Mecha-nism with Type-II Nambu-Goldstone Bosons at Fi-nite Chemical Potential”, arXiv:1102.4145v1 [hep-ph]

[34] T. Hayata, “Rescaled Perturbation Theory”, Prog.Theor. Phys., 124, 1097 (2010).

[35] A. Monnai and T. Hirano: “Relativistic Dissipa-tive Hydrodynamic Equations at the Second Orderfor Multi-Component Systems with Multiple Con-served Currents”, Nucl. Phys. A 847, 283 (2010).

[36] T. Hirano, P. Huovinen and Y. Nara: “Elliptic flowin U+U collisions at

√sNN = 200 GeV and in

Pb+Pb collisions at√sNN = 2.76 TeV: Predic-

tion from a hybrid approach”, Phys. Rev. C 83,021902(R) (2011).

[37] Y. Hirono, T. Kanazawa and M. Nitta: “Topo-logical Interactions of Non-Abelian Vortices withQuasi-Particles in High Density QCD”, to appearin Phys. Rev. D (arXiv:1012.6042[hep-ph]).

21

Page 23: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

[38] H. Song, S. A. Bass, U. W. Heinz, T. Hirano andC. Shen: “200 A GeV Au+Au collisions serve anearly perfect quark-gluon liquid”, to appear inPhys. Rev. Lett. (arXiv:1011.2783 [nucl-th]).

( )

[39] N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka,T. Abe, and M. Honma, AIP Conf. Proc. 1355, inpress.

[40] T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Utaka,and J. P. Vary, “Benchmark calculation of no-coreMonte Carlo shell model in light nuclei”, AIP Conf.Proc., Vol. 1355, in press (2011).

[41] Kosuke Nomura, “Microscopic derivation of IBMand structural evolution in nuclei”, AIP Confer-ence Proceedings

[42] Kosuke Nomura, “Derivation of the Interacting Bo-son Model from mean-field theory”, World Scien-tific

[43] N. Tsunoda, T. Otsuka, K. Tsukiyama andM. Hjorth-Jensen, “Tensor force in effective inter-action of nuclear force”, Journal of Physics: Con-ference Series, Vol. 267, No. 1, “10th InternationalSpring Seminar on Nuclear Physics: New Questsin Nuclear Structure 21-25 May 2010, Vietri sulMare, Italy” 012020 (2011)

[44] N. Tsunoda, T. Otsuka, N. Shimizu and T. Suzuki,“Antisymmetric spin-orbit force in the effective in-teraction for shell model and its effect on nuclearstructure”, accepted in AIP Proceedings Series forSymposium“New faces of Atomic Nuclei (Okinawa,Nov. 15-17, 2010)”

[45] T. Kawanai and S. Sasaki, “Charmonium-nucleoninteraction from lattice QCD with a relativisticheavy quark action”, PoS LAT2010 (2010) 156.

[46] T. Kanazawa, T. Wettig, N. Yamamoto, “Exactresults for two-color QCD at low and high density”,PoS LAT2010, 219 (2010) (arXiv:1101.0589 [hep-lat])

[47]118, A133

(2010).

[48] Y. Araki and T. Hatsuda, “Chiral symmetry ofgraphene and strong coupling lattice gauge the-ory”, PoS (Lattice 2010), 045 (2010).

[49] U(1)

Vol. 7, No. 2, 44 (2011).

[50] : “”, 118

4 (2011 2 )

[51] T. Hayata, “Rescaled Perturbation Theory”, Proc.TQFT2010, 118 , 4 (2011).

[52] : “On Viscous HydrodynamicDescription of a Multi-Component Hot QCD Mat-ter”, 118, A167 (2010).

[53] A. Monnai and T. Hirano: “Relativistic Vis-cous Hydrodynamics for Multi-Component Sys-tems with Multiple Conserved Currents”, J. Phys.:Conf. Ser. 270, 012042 (2011).

[54] : “Relativistic Dissipative Hy-drodynamics with Conserved Currents and On-sager Reciprocal Relations”, 118,D119 (2011).

( )

[55] ”” ( 2011 66

195-200) .

[56] ,“ .”, ( ), 8 ,

pp.27-33 (2010).

[57] “ .”, ( ), 9 ,

pp.14-20 (2010).

[58] : “ ”, (2011 55 No. 2)

[59] , , G. Zinovjev, , :“ ”,

, 66-4, 258 (2011).

( )

[60] Koshiroh Tsukiyama, “In-medium similarityrenormalization group for nuclear many-bodyproblems”,

[61] : “Phase structure and low-energy excita-tions in spinor Bose-Einstein condensates”,

.

[62] L. Liu, Ph. D. thesis, the University of Tokyo, 2010

[63] , “Transport properties of quark-gluonplasma”,

[64] : “Dirac spectra in dense QCD”,

[65] Rothkopf Alexander: “Heavy Quark Potentialfrom the thermal Wilson Loop in Lattice QCD”

[66] : “”,

[67] : “Dynamics of non-Abelian quantum vor-tices in dense QCD”,

( )

[68] N. Shimizu, “Extrapolation method in the MonteCarlo Shell Model”, 2nd EMMI-EFES workshopon neutron-rich nuclear matter, nuclear structureand nuclear astrophysics (EENEN-10), RIKEN,Wako-shi, Japan, Jun 16-18, 2010.

22

Page 24: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

[69] N. Shimizu, “Extrapolation method in the Monte-Carlo Shell Model and its applications”, Interna-tional Symposium “From Quarks to Supernovae”,Atagawa, Izu, Shizuoka, Japan, Nov. 28-30, 2010.

[70] T. Abe, “Benchmark calculation of “ab-initio”Monte Carlo shell model in light nuclei”, Uni-versity of Aizu-JUSTIPEN-EFES Symposium on“Cutting-Edge Physics of Unstable Nuclei”, Uni-versity of Aizu, Aizu-Wakamatsu, Japan, Nov. 10-13, 2010.

[71] T. Abe, “Pairing correlations in low-density neu-tron matter and unitary Fermi gas from latticeEFT calculations”, Halo2010 Symposium, ShonanVillage Center, Hayama, Japan, Dec. 6-9, 2010.

[72] T. Abe, “No-core Monte Carlo shell model in lightnucle”, EFES-Iowa mini workshop on the ab initioMonte Carlo Shell Model, Iowa State U., Ames,Iowa, U.S.A., Feb. 23, 2011.

[73] T. Abe, “No-Core Monte Carlo Shell Model inLight Nuclei”, The 5th LACM-EFES-JustipenWorkshop, Joint Institue for Heavy Ion Research,Oak Ridge National Laboratory, Oak Ridge, Ten-nesssee, USA, Mar. 15-17, 2011.

[74] K. Tsukiyama, S.K. Bogner and A. Schwenk, “In-medium Similarity Renormalization Group for Nu-clear many-body problems”, Cutting-Edge Physicsof Unstable Nuclei, University of Aizu, Oct. 10-13,2010.

[75] K. Tsukiyama, S.K. Bogner and A. Schwenk, “In-medium Similarity Renormalization Group for Nu-clei”, Second EMMI-EFES Workshop on Neutron-Rich Nuclei, RIKEN, Jun 16-18, 2010.

[76] Shun Uchino, Michikazu Kobayashi, Muneto Nitta,and Masahito Ueda: “Quasi-Nambu-GoldstoneModes in a spin-2 nematic Bose-Einstein Con-densates”, ERATO Macroscopic Quantum Con-trol Conference on Ultracold Atoms and Molecules,Tokyo, Japan, January 24, 2011.

[77] L. Liu, T. Otsuka, S. Shimizu, “Monte Carlo ShellModel calculation for light nuclei by using UCOMinteraction” , Second EMMI-EFES Workshopon Neutron-Rich Exotic Nuclei, RIKEN,Wako,Saitama, Japan

[78] K. Nomura: “New formulation of the InteractingBoson Model and the structure of exotic nuclei” (

), 10th International Spring Seminaron Nuclear Physics New Quests in Nuclear Struc-ture, , , 2010 6 21-25

[79] K. Nomura: “Derivation of IBM Hamiltonian andlow-lying states of heavy neutron-rich nuclei” (

), 2nd EMMI-EFES Workshop onNeutron-Rich Nuclei, , , 2010

6 16-18

[80] K. Nomura: “Mean-field derivation of IBM for de-formed nuclei” ( ), Pan-AmericanAdvanced Studies Institute on Rare Isotopes,

, , 2010 8 1-13

[81] K. Nomura: “Microscopic derivation of IBM andstructural evolution in nuclei”( ),International Symposium “New Faces of AtomicNuclei”, ,, 2010 11 15-17

[82] N. Tsunoda, 10th International Spring Seminar onNuclear Physics: New Quests in Nuclear Struc-ture,“Tensor force in effective interaction of nu-clear force”, Oral presentation, 22nd May, 2010

[83] N. Tsunoda, Second EMMI-EFES Workshopon Neutron-Roch Exotic Nuclei (EENEN 10),“Renormalization of the tensor force in the effec-tive interaction of nuclear force”, Oral presenta-tion, 17th June, 2010

[84] N. Tsunoda, University of Aizu-JUSTIPEN-EFESSymposium on “Cutting-Edge Physics of UnstableNuclei”, “Antisymmetric spin-orbit force in the ef-fective interaction to the nuclear structure”, 11thNov. 2010

[85] N. Tsunoda, Symposium “New faces of Atomic nu-clei”, “Anti-symmetric spin-orbit force in the effec-tive interaction for the shell model and its effecton nuclear strucure”, Poster presentation, 15-17thNov. 2010

[86] N. Tsunoda, Effective theories and the nuclearmany-body problem, “Effective interaction for theshell model in non-degenerate model space”, oralpresentation, 10th March, 2011

[87] T. Kawanai and S. Sasaki, “Low-energycharmonium-nucleon scattering with twistedboundary conditions.” The XXVIII InternationalSymposium on LATTICE FIELD THEORY(LATTICE 2010), June 14-19, Villasimius,Sardinia, Italy

[88] S. Sasaki, “Hyperon vector coupling f1(0) from2+1 flavor lattice QCD.” International Conferenceon the structure of baryons (BARYONS’10), De-cember 7-11, Osaka, Japan

[89] Y. Akamatsu, “Dielectron spectrum from full 3Dhydrodynamic model”, Strong and ElectroweakMatter, 22 6 29

[90] T. Kanazawa, T. Wettig, N. Yamamoto, “Chi-ral real Ginibre ensemble in high energy physics”(poster), Statphys24 satellite meeting “Combina-torics and Mathematical Physics”, Brisbane, Aus-tralia, July 12-14, 2010

[91] A. Rothkopf : “Proper Heavy Quark Potentialfrom the Thermal Wilson Loop” Lattice QCDconfronts experiment - Japanese German Seminar2010, Mishima, Japan, Nov. 4th - 6th 2010

[92] A. Rothkopf : “Proper Heavy Quark Potentialfrom the Thermal Wilson Loop” Symposium onnext generation lattice simulations, RIKEN, Wako,Japan Sep. 24th - 26th 2010

23

Page 25: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

[93] K. Maeda : “Large-N expansion for strongly cou-pled boson-fermion mixtures”, International Ad-vanced School of Theoretical Physics HIC for FAIRWorkshop and School, “Dense QCD phases inHeavy-Ion Collisions”, JINR, Dubna, Russia, Sep.2, 2010.

[94] Y. Araki: “Chiral Gap and Collective Excitationsin Monolayer Graphene from Strong Coupling Ex-pansion of Lattice Gauge Theory”, ECT* Work-shop ”New frontiers in graphene physics”, Torento,Italy, Apr. 12-14, 2010.

[95] Y. Araki and T. Hatsuda: “Chiral Symmetryof Graphene and Strong Coupling Lattice GaugeTheory”, Lattice2010 (The 28th international sym-posium on lattice field theory), Villasimius, Italy,Jun. 17, 2010.

[96] Y. Araki: “Chiral Gap and Collective Excitationsin Monolayer Graphene from Strong Coupling Ex-pansion of Lattice Gauge Theory”, “ElectronicProperties of Graphene: 2010”, Princeton Centerfor Theoretical Science, USA, Oct. 8-9, 2010.

[97] Y. Araki: “Spontaneous mass gap generation inmonolayer graphene with strong coupling expan-sion of square/honeycomb lattice gauge theory”,International Symposium “Nanoscience and Quan-tum Physics 2011” (nanoPHYS’11), InternationalHouse of Japan, Tokyo, Jan. 26-28, 2011.

[98] T. Kawanai and S. Sasaki, ”Charmonium-nucleonpotential from lattice QCD”, The XXVIII Interna-tional Symposium on LATTICE FIELD THEORY(LATTICE 2010), Villasimius, Sardinia, Italy,June 14-19, 2010.

[99] T. Kawanai, “Charmonium-nucleon potential fromlattice QCD” From Quarks to Supernovae, ata-gawa, Japan, Nov. 28-30, 2010.

[100] T. Kawanai and S. Sasaki, “Charmonium-Nucleon interaction from lattice QCD with 2+1flavors of dynamical quarks” International Confer-ence on the structure of baryons (BARYONS’10),Osaka, Japan, Dec 7-11, 2010.

[101] T. Kawanai, “Charmonium-nucleon interactionfrom lattice QCD”, Asian School on Lattice FieldTheory 2011, Tata Institute of Fundamental Re-search, Mumbai, India, Mar. 14-25, 2010.

[102] A. Monnai: “Viscous Hydrodynamics for Rela-tivistic Systems with Multi-Components and Mul-tiple Conserved Currents”, Berkeley School ofCollective Dynamics in High Energy Collisions,Lawrence Berkeley National Laboratory, Califor-nia, USA, Jun. 7-11, 2010.

[103] A. Monnai: “Relativistic Viscous Hydrodynamicsfor Multi-Component Systems with Multiple Con-served Currents”, Hot Quarks 2010, La Londe-les-Maures, Cote d’Azur, France, Jun. 21-26, 2010.

[104] A. Monnai: “Causal Viscous Hydrodynamicsfor Relativistic Systems with Multi-Components

and Multi-Conserved Currents”, Strong and Elec-troweak Matter 2010, McGill University, Montreal,Canada, Jun. 29-Jul. 2, 2010.

[105] T. Hirano: “Current status of QGP ideal hy-dro + hadronic cascade model”, The sixth Work-shop on Particle Correlations and Femtoscopy(WPCF2010) Kiev, Ukraine, Sep. 2010.

[106] A. Monnai: “Viscous Hydrodynamics”, HeavyIon Meeting 2010-12, Yonsei University, Seoul,South Korea, Dec. 10-11, 2010.

[107] T. Otsuka: “Role of tensor and three-body forcesand exotic nuclei”, ECT* Workshop Reactions andNucleon Properties in Rare Isotopes, EuropeanCentre for Theoretical Studies in Nuclear Physicsand Related Areas (ECT*), Apr. 8 (5-9), 2010.

[108] T. Otsuka: “The nuclear three-body force and ex-otic nuclei”, Workshop of the Espace de StructureNucleare Theorique, Nuclear magic numbers: Newfeatures far from stability, Confronting theoreticalapproaches and experiment, Saclay, France, 2010,May 4 (3-5), 2010.

[109] T. Otsuka: “Nuclear forces and shell evolution inexotic nuclei”, Nuclear Structure 2010, Berkeley,USA, Aug. 9 (8-13), 2010.

[110] T. Otsuka: “Shell evolution in exotic nuclei”,3rd Int. Conference on Frontiers in Nuclear Struc-ture, Astrophysics and Reactions” (FINUSTAR 3),Rhodos, Greece, Aug. 23 (23-27), 2010.

[111] T. Otsuka: “Shell Evolution in Continuum”,Japan-Italy EFES workshop on Correlations in Re-actions and Continuum, Torino, Italy, Sept. 5 (5-7), 2010.

[112] T. Otsuka: “IKP - Japan”, Symposium 50 JahreInstitut fuer Kernphysik IKP, Koeln, Germany,Sept.30 (30-1), 2010.

[113] T. Otsuka: “Neutron-rich Exotic Nuclei and Nu-clear Forces”, EMMI Physics Days, GSI, Darm-stadt, November 3, 2010.

[114] T. Otsuka: “Some uture directions ofnuclearstructure theories”, 5th EFES-JUSTIPEN-LACMworkshop, ORNL, Oak Ridge, March 16 (15-17),2011.

[115] T. Otsuka: “Shell model and exotic nuclei”, Nu-clear Structure and Nuclear Astrophysics with Ra-dioactive Ion Beams Doctoral Training Program,European Centre for Theoretical Studies in Nu-clear Physics and Related Areas (ECT*), Trento,Italy, May 6-7 (April 12 - June 11), 2010.

[116] T. Otsuka: “The Structure of Rare Isotopes”,Pan-American Advanced Studies Institute on RareIsotopes conference (PASI) Joao Pessoa, Brazil,August 6 (2-13), 2010.

24

Page 26: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

[117] N. Shimizu, “Extrapolation method in the Monte-Carlo Shell Model and its applications”, Inter-national Symposium “New Faces of Atomic Nu-clei”, Okinawa Institute of Science and Technology(OIST), Okinawa, Japan, Nov. 15-17, 2010.

[118] T. Abe, “No-core Monte Carlo shell model in lightnuclei”, Perspectives of the Ab Initio No-Core ShellModel, TRIUMF, Vancouver, BC, Canada, Feb.10-12, 2011.

[119] T. Abe, “Lattice EFT calculation of thermalproperties of low-density neutron matter”, Interna-tional EFES-IN2P3 conference, “Many body corre-lations from dilute to dense nuclear systems”, In-stitut Henri Poincare, Paris, France, Feb. 15-18,2011.

[120] K. Tsukiyama, S. K. Bogner and A. Schwenk, “In-medium similarity renormalization group for nu-clear many-body problems” Effective theories andthe nuclear many-body problem, ECT* Italy, Mar.7-11, 2011.

[121] K. Nomura: “Derivation of the Interacting BosonModel from mean-field theory”, French-JapaneseSymposium on Nuclear Structure Problems,

, , 2011 1 5-8

[122] T. Hatsuda, “Nuclear Physics from LatticeQCD”, Lattice 2010: The XXVIII InternationalSymposium on Lattice Field Theory, (Sardinia,Italy, June 14-19, 2010).

[123] T. Hatsuda,“Baryon-Baryon Forces from LatticeQCD”, T(r)opical QCD 2010, (Cairns, Australia,Sep. 26 - Oct. 1, 2010).

[124] T. Hatsuda, “Nuclear Physics: Overview”, FromQuarks to Supernovae, (Atagawa, Japan, Nov. 28-30, 2010).

[125] T. Hatsuda,“From Yukawa and Nambu to LatticeNuclear Force”, Barytons 2010, (Osaka, Japan,Dec. 7-10, 2010).

[126] Y. Akamatsu, “Di-lepton production in heavyion collisions by full 3D hydrodynamic model”HESI10, 22 8 3

[127] T. Kanazawa, G. Akemann, M. J. Phillips, T.Wettig, “Random matrix theory for quark mat-ter”, International workshop “NonperturbativeAspects of QCD at Finite Temperature and Den-sity”, CCS, Univ. of Tsukuba, Tsukuba, Japan,November 8-9, 2010

[128] A. Rothkopf : “Recent Developments in LatticeQCD Calculations at Finite Temperature” Work-shop on recent developments in Hadron Physics,Tokyo Institute of Technology, Tokyo, Japan, Aug.2nd 2010

[129] A. Rothkopf : “Proper Heavy Quark Potentialfrom Lattice QCD” Strong interactions: Frommethods to structures, 474th International Wil-helm und Else Heraeus Seminar Bad Honnef, Ger-many, Feb. 12th - 16th 2011

[130] K. Maeda : “Simulating dense QCD matter withultracold atomic boson-fermion mixtures”, The Di-vision of Atomic, Molecular and Optical Physics(DAMOP) 2010, Hyatt Regency Hotel, Houston,Texas, USA, Mar. 28, 2010.

[131] T. Hirano: “Hydrodynamic evolution and jetpropagation in dense matter”, Symposium on Jetand Electromagnetic Tomography of Dense Mat-ter, LBNL, Berkeley, CA, USA, Jun. 18, 2010.

[132] T. Hirano: “Current status of QGP hydro+ hadronic cascade approach”, Quantifying theProperties of Hot QCD Matter, INT, Seattle, WA,USA, Jun. 14-18 (the 2nd hydro week), 2010.

[133] T. Hirano: “Hydrodynamic Modeling: A HybridApproach”, The Berkeley School, School of Collec-tive Dynamics in High Energy Collisions, LBNL,Berkeley, CA, USA, Jun. 7-11, 2010.

( )

[134] , , , , ,, “ ”,

2010 9

[135] , , , , ,, “

”, , 2011 3

[136] , , “”,

2010 9

[137] , , “”,

, 2011 3

[138] Pieter Maris,James P. Vary: “

”,2010 9

11-14 .

[139] K. Tsukiyama, S. K. Bogner and A. Schwenk In-medium SRG2010 (JPS meeting, 2010 autumn)

, 2010 9 11

[140] : “BEC ”

( 2010 9 1).

[141] : “ BECBogoliubov Lee-Huang-Yang

(2)”, 2010 (2010 9 24 ).

[142] : “-

”( 2010

12 19 ).

25

Page 27: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.1. ( · · ) 1.

[143] : “208Pb ”(),

2010 9 11 -14

[144] : 2010,

, 2010 9 11

[145]SU(3)

20109 24-26

[146] , G. Akemann, M.J. Phillips, T. Wettig,“Sign problem in the microscopic limit of two-colorQCD”, 2010

2010 9 11-14

[147] : “Recent progress in random matrix the-ory” (poster), 3

2010 12 11-13

[148] : U(1)

2010 8 30 -9 1

[149] “ QCD -” 2010

(KEK) 2010 122-4

[150] , : “” ( ) ,

,, 2010 8 30 -9 1

[151] ,2010

Panasonic2010 8 30

[152] : “Relativistic Dissipative Hydrodynam-ics with Conserved Currents and Onsager Recipro-cal Relations”, 2010,

, 2010 8 .

[153] : “”,

20108 30 - 9 1

[154] : “”, 2010

, , 2010 9 .

[155] : “Viscous Hydrodynamic Evolution forthe CGC at RHIC and LHC”, 17 Heavy IonCafe, , 2011 3 .

[156] : “QCD 1 ”, 2011

, , 2011 3 .

[157] , “ ”, 182010 11

7

[158] , “Exotic nuclei and modern shell model”,Workshop on exotic nuclei and modern shell mod-els, Tokyo Institute of Technology, Tokyo, Japan,2010 2 9

[159] , “ ”,, 2010 10 16

[160] , “Challenges of nuclear structure calcu-lations with peta and exa machines” (presentedby Nakatsukasa), Aizu-JUSTIPEN-EFES Sympo-sium ”Cutting-Edge Physics of Unstable Nuclei”,University of Aizu, Aizu-Wakamatsu, Japan, 2010

11 11(10-13)

[161] , “Halo nuclei and shell evolution by nu-clear forces”, Symposium of 25th Anniversary ofthe Discovery of Halo Nuclei (Halo2010), Hayama,Kanagawa, Japan, 2010 12 9(6-9)

[162] , “Nuclear EFT on the Lattice”,

2010 9 24-26 .

[163] K. Tsukiyama, S. K. Bogner and A. Schwenk In-medium similarity renormalization group for nu-clear many-body problems, “Nuclear Theory Sem-inar”, , 2011 3 3

[164] : “Low-lying states of medium-mass andheavy neutron-rich nuclei”, JPS “Newdirection in structure studies of unstable nucleiprobed by gamma-ray spectroscopy”,

2010 9 11 -14

[165] : “Microscopic IBM calculations on W,Os and Pt isotopes”, 2 KISS (KEK isotopeseparation system) , , ,2011 3 5

[166] , “ ”,(

2010 9 12 )

[167] , “ QCD ”,( 2011 1 29

-30 )

[168] : “” COE

20112 5

[169] : “ QCD” 5 (

) 662011 3 25

[170] : “”, , 2011 1

.

[171] : “”, ,

2011 2 .

( )

26

Page 28: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.1. ( · · )

[172] Shun Uchino, Michikazu Kobayashi, MunetoNitta, and Masahito Ueda: “Phase structure andlow-energy excitations in spinor Bose-Einstein con-densates”, Ueda group, the University of Tokyo,Japan, October 28, 2010.

[173] Shun Uchino, Michikazu Kobayashi, MunetoNitta, and Masahito Ueda: “Phase structure andlow-energy excitations in spinor Bose-Einstein con-densates”, APCTP, POSTECH, Korea, November16, 2010.

[174] K. Nomura: “Mean-field Derivation of the In-teracting Boson Model for Deformed Nuclei”, Eu-ropean Center for Theoretical Studies in NuclearPhysics and Related Areas, ECT* Doctoral train-ing Program “Nuclear structure and nuclear astro-physics with radioactive ion beams”, ,

, 2010 4 12 -6 11

[175] K. Nomura: “Microscopic Formulation of IBM byMean-Field Theory”, Institut fur Kernphysik, Uni-versitat zu Koln ( )

2010 3 16

[176] Y. Akamatsu, “Heavy quarks in heavy ion colli-sions”, Heavy Ion Pub, 22 8 17

[177] : “Exact results for two-color QCD atlow and high density”, (

2010 5 25 )

[178] : “A matrix-model description of densepseudo-real matter”, (

2010 6 30 )

[179] T. Kanazawa, “Random matrix theory for densetwo-color QCD”, High energy physics group, Re-gensburg University, Germany, October 26, 2010

[180] : “Dirac spectra in dense QCD”, (KEK 2011 1 6 )

[181] : “Dirac spectra in dense QCD”, (2011 2 23 )

[182] :( 2010 4

28 )

[183] :(

2010 10 20 )

[184] U(1)

( 2010 12 10 )

[185] U(1)

( 2010 12 17 )

27

Page 29: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.2. 1.

1.2

2010

1.2.1

LHC

LHC

LHC

[2]

(LSP)(NLSP)

LHC[19]

O(1) eV

SUSY

LHC[14]

LHC

[16]

ATIC PAMELA FERMI

( )

PAMELA[15]

[1]

[4]

O(1) eV

[24]

[6]

R-symmetryGauge Mediation

keV

[17]

MEGSin Kyu Kang(Seoul, Nat. U. Technol.)

( )

[3]

B

Tevatron like-sign dimuon chargeasymmetry B CP

B CP

[5]

split generation model

28

Page 30: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.2.

Tevatron like-sign dimuoncharge asymmetry

[21]

[7]

IPMUAsymmetric Dark Matter Sneutrino Inflation

[18]

QCD

[64, 65, 66, 67]

Wilson 1974

QCDQCD WS

Ginsparg-Wilson GW Dirac

Overlap

1990 2000Overlap

GW

UnitarityReflection Positivity

Reflection PositivityOverlap fermion Reflection

PositivityUnitarity

Overlap Diracreflection positivity

[8]

Overlap fermion Wess-Zumino U(1)R Freelimit N = 1 manifest

Reflection posi-tivity

Reflection positivity[9]

1.2.2

F

(IPMU)

F[12] F

[12]

(IPMU)

[13]

U(1)

U(1)

[25]

4

Seiberg-Witten

Gaiotto

SU(2) Liouville SU(3)Toda

SU(3)

29

Page 31: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.2. 1.

SU(3)

[10]

[28]Nekrasov

Toda

Toda

Seiberg-Witten

AdS/CFT Kerr/CFT

AdS/CFT AdS

QCD AdS/CFT

Lifshitz

[20] LifshitzIIB

IIB

Kerr/CFT[27]

[26]

( )

[1] K. Ishiwata, S. Matsumoto and T. Moroi, “De-caying Dark Matter in Supersymmetric Modeland Cosmic-Ray Observations,” JHEP 1012, 006(2010).

[2] T. Ito and T. Moroi, “Spin and Chirality Determi-nation of Superparticles with Long-Lived Stau at

the LHC,” Phys. Lett. B 694, 349 (2011).

[3] S. K. Kang, T. Morozumi and N. Yokozaki, “Ef-fects of Large Threshold Corrections in Supersym-metric Type-I Seesaw Model,” JHEP 1011, 061(2010) [arXiv:1005.1354 [hep-ph]].

[4] K. Hamaguchi and N. Yokozaki, “Soft Lepto-genesis and Gravitino Dark Matter in GaugeMediation,” Phys. Lett. B 694, 398 (2011)[arXiv:1007.3323 [hep-ph]].

[5] M. Endo and N. Yokozaki, “Large CP Viola-tion in Bs Meson Mixing with EDM constraintin Supersymmetry,” JHEP 1103, 130 (2011)[arXiv:1012.5501 [hep-ph]].

[6] T. T. Yanagida, K. Yonekura, “A ConformalGauge Mediation and Dark Matter with Only OneParameter,” Phys. Lett. B693, 281-286 (2010).[arXiv:1006.2271 [hep-ph]].

[7] K. Yonekura, “Notes on Operator Equations of Su-percurrent Multiplets and Anomaly Puzzle in Su-persymmetric Field Theories,” JHEP 1009, 049(2010). [arXiv:1004.1296 [hep-th]].

[8] Y. Kikukawa and K. Usui, “Reflection Positivity ofFree Overlap Fermions,” Phys. Rev. D 82, 114503(2010) [arXiv:1005.3751 [hep-lat]].

[9] Y. Kikukawa and K. Usui, “Reflection Positivity ofN=1 Wess-Zumino model on the lattice with exactU(1)R symmetry,” arXiv:1012.5601 [hep-lat].

[10] S. Kanno, Y. Matsuo and S. Shiba, “Analysis ofcorrelation functions in Toda theory and AGT-W relation for SU(3) quiver,” Phys. Rev. D 82,066009 (2010) [arXiv:1007.0601 [hep-th]].

[11] “a-Maximization in N =1 Supersymmetric Spin(10) Gauge Theories,”Int. J. Mod. Phys. A25, 5595 (2010).

[12] H. Hayashi, T. Kawano, Y. Tsuchiya and T.Watari, ”Flavor Structure in F-theory Compact-ifications,” JHEP 1008, 036 (2010).

[13] H. Hayashi, T. Kawano, Y. Tsuchiya, T. Watari,“More on Dimension-4 Proton Decay Problem inF-theory -Spectral Surface, Discriminant Locusand Monodromy-,” Nucl. Phys. B840, 304-348(2010).

[14] R. Sato, S. Shirai, ”LHC Reach of Low Scale GaugeMediation with Perturbatively Stable Vacuum,”Phys.Lett.B692:126-129, 2010.

[15] R. Saito, S. Shirai, ”Primordial Black Hole as aSource of the Boost Factor,” Phys.Lett.B697:95-100,2010.

[16] E. Nakamura, S. Shirai, ”Discovery Potential forLow-Scale Gauge Mediation at Early LHC,” JHEP1103:115, 2011.

[17] M. Ibe, R. Sato, T. T. Yanagida and K. Yonekura,“Gravitino Dark Matter and Light Gluino inan R-invariant Low Scale Gauge Mediation,”arXiv:1012.5466 [hep-ph].

[18] N. Haba, S. Matsumoto and R. Sato, “Sneu-trino Inflation with Asymmetric Dark Matter,”arXiv:1101.5679 [hep-ph].

30

Page 32: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 1.2.

[19] M. Endo, K. Hamaguchi, K. Nakaji, “ProbingHigh Reheating Temperature Scenarios at the LHCwith Long-Lived Staus,” JHEP 1011, 004 (2010).[arXiv:1008.2307 [hep-ph]].

[20] T. Nishioka, H. Tanaka, “Lifshitz-like Janus Solu-tions,” JHEP 02 (2011) 023

[21] M. Endo, S. Shirai and T. T. Yanagida, “Split Gen-eration in the SUSY Mass Spectrum and Bs − Bs

Mixing,” to appear in PTP. [arXiv:1009.3366 [hep-ph]].

( )

[22] Y. Kikukawa and K. Usui, “Reflection positivity ofthe free overlap fermions,” PoS LATTICE2010,267 (2010).

[23] “ Overlap FermionReflection Positivity ”

118(3), C90, 2010-11-20.

( )

( )

[24] S. Shirai, “Low energy scale gauge me-diation and composite dark matter.”

[25] H. Hayashi, “F-theory and its Applica-tions to Phenomenology.”

[26] Attempts toward field theoryfor multiple M5-branes

[27] “3

[28] “N = 2 Gauge Theories, TodaField Theories, and Quiver Matrix Models

( )

( )

[29] S. Shirai, “Aspects of Non-minimal Gauge Media-tion,” SUSY10, Bonn University, August 2010

[30] , “Leptogenesis and Gravitino Darkmatter in Gauge Mediation”, “Summer Institute2010“, Calm, 2010 8 14

[31] , “Large CP violation in Bs meson mix-ing with EDM constraint in SUSY” “XXIII Work-shop Beyond the Standard Model”, PhysikzentrumBad Honnef, 2011 3 16

[32] K. Usui, “Reflection Positivity of Free OverlapFermions”, The XXVIII International Symposiumon Lattice Field Theory, Lattice2010 June 14-19,2010, Villasimius, Italy.

[33] S. Iwamoto, “Cosmological Constraints on R-parity violating SUSY”, 2nd Bethe Center Work-shop, Bad Honnef, Germany, 4 October 2010.

[34] H. Hayashi, “More on Dimension-4 Proton DecayProblem in F-theory,” Summer Institute 2010, FujiCalm, August 2010

[35] H. Hayashi, “More on Dimension-4 Proton DecayProblem in F-theory,” SUSY10, Physikalisches In-stitut Bonn, August 2010

[36] Yutaka Matsuo, “Applications of Nambu bracketin M-theory”, RIMS International Conference”Perspectives in Deformation Quantization andNoncommutative Geometry”, November 1-12,2010, RIMS Kyoto University

[37] R. Sato, “Low Scale Gauge Mediation at EarlyLHC,” SUSY10, University of Bonn, August 2010

[38] K.Nakaji, “Probing the reheating temperature atthe LHC” Summer Institute 2010 Phenomenology,August 2010

[39] K.Nakaji, “Identifying the origin of longevityof Stau at LHC” Beyond the Standard Model,Physikzentrum Bad Honnef, March 2011

[40] “Non-thermal right-handed sneutrino ascold dark matter” Non-thermal cosmological his-tory of the universe, University of Michigan, AnnArbor, U.S.A. , 2010 10

[41] “SuperWIMP dark matter candidates”TeV Particle Astrophysics 2010, Paris, France,2010 7

[42] K. Hamaguchi, “Probing Reheating Temper-ature at the LHC with Long-Lived Staus”,COSMO/CosPA 2010, October 1, 2010, Tokyo.

[43] K. Hamaguchi, “Probing reheating temperatureat the LHC with long-lived staus.”, Non-ThermalCosmological Histories of the Universe Workshop,October 20, 2010, University of Michigan.

[44] , “Soft Leptogenesis and Gravitino Darkmatter in Gauge Mediation”, “2nd InternationalWorkshop on Dark Matter, Dark Energy andMatter-Antimatter Asymmetry”, Department ofPhysics, National Tsing Hua University, Hsinchu,Taiwan, 2010 11 6

[45] , “An introduction to F-theory GUTs,”Taiwan String Workshop 2011, Tung-Hai Univer-sity, Taichung, 2010 12 15 18

[46] H. Hayashi, “Phenomenological Aspects of GlobalF-theory Compactifications,” KEK Workshop onString Phenomenology 2010, KEK, December 2010

( )

[47] , “Aspects of Non-minimal Gauge Media-tion,” , , 2010 9 .

[48] , “Gauge Mediation at Early Stage LHC,”2011, , 2011 3 .

31

Page 33: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1.2. 1.

[49] , “ ”,“ 2010 ”, ,2010 9 13

[50] , “CP Violation in Bs-Bs bar mixing andthe EDM constraint in MSSM” “2011 II”,

, 2011 1 7

[51] , “Large CP Violation in Bs Meson Mix-ing with EDM constraint in Supersymmetry”, “

2011”,, 2011 3 9

[52] “Single scale model of SUSY breaking,gauge mediation and dark matter”,

[53] “ Overlap FermionReflection Positivity ”

2010 7

[54] “ U(1)R N = 1WessZumino Reflection Positivity ”

2011 3

[55] , “Phenomenology of R-parity violatingSUSY”, ,

, 2010 8 8 .

[56] , “More on Dimension-4 Proton Decay Prob-lem in F-theory, ” 2010

9

[57] “More on Dimension-4 Proton DecayProblem in F-theory -Spectral Surface, Discrimi-nant Locus and Monodromy-,”

20107

[58] “Low Scale GMSB and early LHCreach ” LHC 2010

6

[59] “ 7TeVLHC ” 2010 9

[60] “Sneutrino Inflation and AsymmetricDark Matter ” 2011

2011 3

[61] , “LHC signatures with high reheatingtemperature in long-lived stau scenario” Atlas

, 2010 12

[62] , “LHC signatures with high reheatingtemperature in long-lived stau scenario”

, 2011 1

[63] , “dentifying the Origin of Longevity ofMetastable Stau at the LHC”

,2011 3

[64] “Transverse Structure of Hadrons inHolographic QCD”

2010 7

[65] “High-Energy Photon-Hadron Scatter-ing in Holographic QCD” KEKPH2011 KEK2011 3

[66] “High-Energy Photon-Hadron Scatter-ing in Holographic QCD”

2011 3

[67] “High-Energy Photon-Hadron Scatter-ing in Holographic QCD”2011 3

[68] “LHC ”2010 2010

9

[69] “Analysis of correlation functions inToda theory and AGT-W relation for SU(3)quiver,”2011 1 5 6

( )

32

Page 34: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2

2.1

(2010)

()

(20082012 ) CERN

J-PARC DAΦNE KRIBF π

QGP

2010CERN QGP

J-PARC

φω2

KEKGas Electron

Multiplier GEM

2.1.1 ( )

CERN ASACUSAAtomic Spectroscopy and Collisions Using Slow

Antiprotons

CPT

pHe+

1sn �

∼ 38

2010108

T = 1.5K9

T−1/2

pHe+

T = 1.5K

7000m3/h

12T = 1.5K P = 1

mb V = 3000 cm3

pHe+

100 ns

Nd:YAG

pHe+

pHe+

JINR Korobov QED

(σann ∝ A2/3)

(Ep < 100 keV) A2/3

33

Page 35: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.1. 2.

100 keV -2010

2011100 keV -

( )

2.1.2 CERN ISOLDE

( )

(10−6

)

2

CERN ISOLDE Manchester, Leuven, Birm-ingham, Orsay, ,

( ) CRIS

Collinear resonant ionization spec-troscopy (CRIS)ISOLDE

α

2011

CERN ASACUSA

kW 100 MHz

( / )(10 GHz ) (100 MHz )

2010 2011( )

2.1.3 K (

)

K

DAΦNE J-PARCK

0 K -

K

DAΦNE K X

K K−

1sK − p K

DAΦNESIDDHARTA

φ φ → K+K−K−

KX 1 cm2

(SDD) 6 keV 150 eV(FWHM) < 1 μs

SDD 144S/N 2010

3K

1s

2011K− − p

K−

3 2.1.1( [15])K 3 X

2p

K3 X J-PARC

(E17) ( )

J-PARC K 3 X

(E17)

2005 K 4KEK-PS E570 K

K

K 32010 SIDDHARTA

K 3

34

Page 36: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.1.

2.1.1: 3 X

( SDD ) 6.4 keV 150

eV (FWHM) K

3 Lα X (3d 2p X )

K 42p

( )

E17K 3 K

2010 KEKX SDD

J-PARC E17K1.8BR

E170.9 GeV/c K1.8BR

CDS CylindricalDetector System, 2

SDD2.1.2 SDDX

R&D

E17

Energy (keV)4 5 6 7 8 9

Cou

nts

/ 25

eV

0

1000

2000

3000

4000

5000

6000

αTi K

βTi K

αFe K

βFe K

αNi K

βNi K

EnergyαHe L3K-

EnergyαHe L4K-

2.1.2: 2010 11 SDD

in-situ

Ti Ni He

Fe X

K Lα ( 6

keV) 150 eV(FWHM)

2.1.4 K (

)

KK

J-PARC K−pp/K−pn (E15)

/K−pp J-PARC K1.8BR

E15E17 31.0GeV/c (K−, N) K−pp/K−pn

K−pp ΛpCDS (Cylindrical Drift-chamber System)

2010E17 CDS 3He

2.9 kW K−A(K−,ΛK0

s ) CDS

35

Page 37: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.1. 2.

2.1.3: 3He

p d p d double hit

2.1.5 π (

)

ππ

RIBF250 MeV/u 122Sn(d,3He)

π 1s2010

RIBF GSI 101012/s

GSI 3

2s1s

250MeV/u 14N

∼4 1011/smulti-wire

drift chamber (MWDC)

3He

3He3He 90% MWDC

2.1.6 (

)

0.5∼30keV 4MeV

()

RAL1.3 106/s

15∼20 /s

3%10−3

TRIUMF

7

2011RAL

( )

2.1.7

( )

(ΔS) (ΔT ) (ΔL)ΔS = ΔT = ΔL = 0

( )

( )

(ΔT = 1)(ΔS = 1) (ΔL = 0)

(Δn = 1)(IVSMR) β−

β+

36

Page 38: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.1.

β− IVSMR

12N 90Zrβ−

90Zr(12N, 12C)90Nb , 90NbIVSMR

(q),

(ω) q ∼ 0ω > q

IVSMR90Zr(12N, 12C)90Nb

IVSMRRIBF

SHARAQ

2010 10250MeV/u 14N

Be RIBigRIPS

175MeV/u 1.4Mcps 90%12N 12N 90Zr

12C SHARAQ90Nb

(1)

(2) NaI DALI2γ 12C

[79]( )

(t , 3He) β+ IVSMR

β+ IVSMR (t , 3He)

t

(t , 3He) (12N, 12C)β+ IVSMR

(t , 3He) β+

SHARAQ300 MeV/u

90Zr, 208Pb(t , 3He)

β+ IVSMR

2.1.4[ ] 90Zr(t , 3He)

(ΔL)(ΔL = 0)

ΔL = 0 IVSMR2.1.4[ ]

(n, p)(t , 3He)

(t , 3He) (n, p)IVSMR

(t , 3He)IVSMR IVSMR

2.1.4[ ]

208Pb(t , 3He)β+ IVSMR

β+ IVSMR( )

2.1.4: [ ] 90Zr(t , 3He)

[ ] (t , 3He) (n, p)

[ ] β+ IVSMR

2.1.8 QGP

Rela-tivistic Heavy Ion Collider (RHIC

) PHENIXQCD

QGP

·

2000

37

Page 39: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.1. 2.

- - - -200 GeV

Ring ImageCerenkov Counter (RICH)

(ρ, ω, φ) J/ψ

[3, 5, 7, 8, 9, 10, 16, 17, 18, 19]

CERN Large HadronCollider (LHC) (ALICE )

LHC2.76TeV

( ) [21, 22, 23, 24, 25, 26, 27, 28,29, 30]

PHENIX

(ρ, ω, φ)

RHIC ·

2009 2010

π0 Dalitz

Hadron Blind Detector, HBD2009

2010

HBD

1. HBD HBD

2. HBD π0 Dalitz

1.HBD 2.

1.CF4

CF4

HBD

1.

HBD

HBDHBD

2.

( )

2.1.9 φ

MeV

1 GeV

J-PARCE16φ

E16 J-PARC(30 GeV)

φE325 10

1010Hz 0.1% interaction107Hz2

5

(2 ) 100

38

Page 40: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.1.

GEM

E16 φ

3107Hz

Gas Electron Multiplier (GEM)

25kHz GEM

GEM 10 cm 20 cm30 cm 3 GEM

10 cm GEM 0 1530 100 μm

5MeV/c2(KEK)

20 cm 30 cm GEMGEM

GEM 104

11

0 GEM100 μm, 95%

GEM2.1.5

GEM x, ystrip y strip

x 1/3x strip y

strip

y strip

2011 3GeVγ

∼14 kHz/mm2 GEM

( )

h18Entries 7121

Mean 0.0006484

RMS 0.129

/ ndf 2χ 12.08 / 13

Constant 11.6± 696.2

Mean 0.001337± -0.003676

Sigma 0.00127± 0.09401

GEM_hit-Si_hit[mm]-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

700

h18Entries 7121

Mean 0.0006484

RMS 0.129

/ ndf 2χ 12.08 / 13

Constant 11.6± 696.2

Mean 0.001337± -0.003676

Sigma 0.00127± 0.09401

residual adc200 420V

h18Entries 9292Mean 0.01621RMS 0.1561

/ ndf 2χ 54.63 / 14Constant 14.2± 971.2 Mean 0.000992± -0.004127 Sigma 0.00090± 0.08557

GEM_hit-Si_hit[mm]-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000h18

Entries 9292Mean 0.01621RMS 0.1561

/ ndf 2χ 54.63 / 14Constant 14.2± 971.2 Mean 0.000992± -0.004127 Sigma 0.00090± 0.08557

residual adc300 420V

2.1.5: ) 20 cm 0 residual

)30 cm 0

2.1.10 ω ·

KEK

J-PARC ωω

ωMissing

mass ωπ0γ

ω

39

Page 41: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.1. 2.

J-PARCK1.8

π ωp(π−, n)ω

π0 π

ωω

50 MeVπ 1.8 GeV/c

ω ωπ0 γ π0 2γ

3γγ

γCsI

γ 0

J-PARCJ-PARC E26

J-PARC E26

γ

γ KEK E246J-PARC T-violation (E06)

CsI(Tl)CsI(Tl) E246

Pin Photo Diode shaper PADCJ-PARC

E06 kHz/moduleE246

kHzAvalanche Photo Diode

(APD) FADC

kHzFADC

2.1.6 kHzMHz FADC

FADC

Fast Monte Carloω

21 MeV/c2

1MHz 200 MeV0.5%

1MHz/module

6

4 80 ps30%

Saint Gobain CrystalsBC408 H2431-50

1.8 GeV/c

Spring-8 LEPSLEPS TOF wall LEPS

Physics run60 ps

Positron beam Energy[MeV]0 50 100 150 200 250 300 350 400 450 500

Res

olut

ion[

%]

0

2

4

6

8

10

12

14

2.1.6: APD FADC CsI(Tl)

( )

[1] R.S. Hayano, “Antihydrogen formation dynamicsin a multipolar neutral anti-atom trap”, Phys.Lett. B 685, 18 (2010).

[2] M. Cargnelli et al., “Kaonic atoms studies atDAFNE by the SIDDHARTA experiment”, Nucl.Phys. A 835, 27 (2010).

[3] A. Adare et al., (PHENIX collaboration), “De-tailed measurement of the e+e− pair continuum inp+p and Au+Au collisions at

√sNN=200 GeV and

implications for direct photon production”, Phys.Rev. C 81, 034911 (2010).

[4] H. Yim et al., “Search for strange tribaryons inthe 4He(K−

stop, nπ±) reaction”, Phys. Lett. B 688,

43–49 (2010).

[5] A. Adare et al. (PHENIX collaboration), “Tran-sition in Yield and Azimuthal Shape Modificationin Dihadron Correlations in Relativistic Heavy IonCollisions”, Phys. Rev. Lett. 104, 252301 (2010).

[6] G.B. Andresen et al., “Evaporative Cooling of An-tiprotons to Cryogenic Temperatures”, Phys. Rev.Lett. 105, 013003 (2010).

40

Page 42: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.1.

[7] A. Adare et al. (PHENIX collaboration), “Trans-verse momentum dependence of J/Ψ polarizationat midrapidity in p+p collisions at

√s = 200 GeV”,

Phys. Rev. D 82, 012001 (2010).

[8] A. Adare et al. (PHENIX collaboration), “Trans-verse momentum dependence of η meson suppres-sion in Au+Au collisions at

√sNN = 200 GeV”,

Phys. Rev. C 82, 011902(R) (2010).

[9] A. Adare et al. (PHENIX collaboration), “Ellip-tic and Hexadecapole Flow of Charged Hadrons inAu+Au Collisions at

√sNN = 200 GeV”, Phys.

Rev. Lett. 105, 062301 (2010).

[10] A. Adare et al. (PHENIX collaboration), “Az-imuthal Anisotropy of π0 Production in Au+AuCollisions at

√sNN = 200 GeV: Path-Length De-

pendence of Jet Quenching and the Role of InitialGeometry”, Phys. Rev. Lett. 105, 142301 (2010).

[11] A. Adare et al. (PHENIX collaboration), “High pTdirect photon and π0 triggered azimuthal jet corre-lations and measurement of kT for isolated directphotons in p+p collisions at

√s = 200 GeV”, Phys.

Rev. D 82, 072001 (2010).

[12] Ryugo S. Hayano and Tetsuo Hatsuda, “Hadronproperties in the nuclear medium”, Rev. Mod.Phys. 82, 2949–2990 (2010).

[13] R.S. Hayano, “EXOTIC HELIUM ATOMS”, Int.J. Mod. Phys. E 19, 2586–2593 (2010)

[14] G.B. Andresen et al., “Search for trapped antihy-drogen”, Phys. Lett. B 695, 95–105 (2011).

[15] M. Bazzi et al., “First measurement of kaonichelium-3 X-rays”, Phys. Lett. B 697, 199–202(2011).

[16] A. Adare et al. (PHENIX collaboration), “Mea-surement of neutral mesons in p + p collisions at√s = 200 GeV and scaling properties of hadron

production”, Phys. Rev. D 83, 052004 (2011).

[17] A. Adare et al. (PHENIX collaboration), “CrossSection and Parity-Violating Spin Asymmetries ofW± Boson Production in Polarized p+p Collisionsat

√s = 500 GeV”, Phys. Rev. Lett. 106, 062001

(2011).

[18] A. Adare et al. (PHENIX collaboration), “Crosssection and double helicity asymmetry for ηmesons and their comparison to π0 production inp + p collisions at

√s = 200 GeV”, Phys. Rev. D

83, 032001 (2011).

[19] A. Adare et al. (PHENIX collaboration), “Nuclearmodification factors of φmesons in d+Au, Cu+Cu,and Au+Au collisions at

√sNN = 200 GeV”, Phys.

Rev. C 83, 024909 (2011).

[20] R.G.T. Zegers, et al. “34P(7Li, 7Be+γ) reaction at100AMeV in inverse kinematics”, Phys. Rev. Lett.104, 212504 (2010).

[21] K. Aamodt et al. (ALICE collaboration), “Firstproton-proton collisions at the LHC as observed

with the ALICE detector: Measurement of thecharged particle pseudorapidity density at

√s =

900-GeV”, Eur. Phys. J. C65, 111–125 (2010).

[22] K. Aamodt et al. (ALICE collaboration),“Charged-particle multiplicity measurementin proton-proton collisions at

√s = 0.9 and 2.36

TeV with ALICE at LHC”, Eur. Phys. J. C68,89–108 (2010).

[23] K. Aamodt et al. (ALICE collaboration),“Charged-particle multiplicity measurementin proton-proton collisions at

√s = 7 TeV with

ALICE at LHC”, Eur. Phys. J. C68, 345–354(2010).

[24] K. Aamodt et al. (ALICE collaboration), “Midra-pidity antiproton-to-proton ratio in pp collisionsat

√s = 0.9 and 7 TeV measured by the ALICE

experiment”, Phys. Rev. Lett. 105, 072002 (2010).

[25] K. Aamodt et al. (ALICE collaboration), “Trans-verse momentum spectra of charged particles inproton-proton collisions at

√s = 900 GeV with

ALICE at the LHC”, Phys. Lett. B693, 53–68(2010).

[26] K. Aamodt et al. (ALICE collaboration), “Two-pion Bose-Einstein correlations in pp collisions at√s = 900 GeV”, Phys. Rev. D 82, 052001 (2010).

[27] K. Aamodt et al. (ALICE collaboration),“Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at

√sNN =

2.76 TeV”, Phys. Rev. Lett. 105, 252301 (2010).

[28] K. Aamodt et al. (ALICE collaboration), “Central-ity dependence of the charged-particle multiplic-ity density at mid-rapidity in Pb-Pb collisions at√sNN = 2.76 TeV”, Phys. Rev. Lett. 106, 032301

(2011).

[29] K. Aamodt et al. (ALICE collaboration), “Sup-pression of Charged Particle Production at LargeTransverse Momentum in Central Pb–Pb Colli-sions at

√sNN = 2.76 TeV”, Phys. Rev. B 696,

30–39 (2011).

[30] K. Aamodt et al. (ALICE collaboration), “Two-pion Bose-Einstein correlations in central Pb-Pbcollisions at

√sNN = 2.76 TeV”, Phys. Lett. B

696, 328–337 (2011).

[31] K. Aoki et al., “A development of HBD for theJ-PARC E16 experiment”, Nucl. Instrum. Meth.A628, 300–303 (2011).

( )

[32] T. Suzuki, J. Esmaili, and Y. Akaishi, “The inves-tigation of Λ(1405) state in the stopped K− re-action on deuterium”, EPJ Web of Conferences,07014 (2010).

[33] M. Iliescu et al., “Kaon-nucleon strong interactionin kaonic atoms”, Nucl. Phys. B – ProceedingsSupplements, 207–208, 208–211 (2010).

41

Page 43: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.1. 2.

[34] M. Bazzi et al., “Performance of silicon-drift de-tectors in kaonic atom X-ray measurements”, Nuc.Instr. Meth. A 628, 264–267 (2011).

[35] A. Vidal et al., “X-RAY SPECTROSCOPY OFKAONIC ATOMS AT DAΦNE”, Int. J. Mod.Phys. A 26, 432–437 (2011).

[36] T. Hiraiwa et al., “THE SEARCH FOR DEEPLYBOUND KAONIC NUCLEAR STATES AT J-PARC”, Int. J. Mod. Phys. A 26, 561–563 (2011).

[37] D. Sirghi et al., “KAONIC HELIUM MEASURE-MENTS IN THE SIDDHARTA EXPERIMENT”,Int. J. Mod. Phys. A 26, 601–603 (2011).

[38] B. Wuenschek et al., “STATUS AND PLANS OFEXPERIMENT E17 AT J-PARC”, Int. J. Mod.Phys. A 26, 604–606 (2011).

[39] T. Uesaka et al., “Current status and future exper-imental program of the SHARAQ spectrometer”,AIP Conf. Proc. 1235, 308–314 (2010).

[40] T. Uesaka et al., “SHARAQ Spectrometer—Current status and future experimental plans—”,AIP Conf. Proc. 1224, 573–581 (2010).

[41] K. Ozawa, “omega meson in nucleus, experimentalstudy”, Prog. Theor. Phys. Suppl. 186, 325–330(2010).

( )

[42] K. Todoroki, “Development of Beam Profile Moni-tor for Antiproton Annihilation Cross Section Mea-surements”, ( ), 2011.

[43] T. Kobayashi, “Laser spectroscopy of radioactivefrancium isotopes far from stability”, (

), 2011.

[44] T. Hashimoto, “Performance Evaluation of Sili-con Drift Detectors for a Precision Spectroscopy ofKaonic Helium-3 X-rays” ( ), 2011.

[45] S. Masumoto, “Performance of γ-ray calorimeterand neutron TOF detector for measurements of ωmeson mass in nuclear medium”, ( ),2011.

[46] Y. Komatsu, “Development of GEM tracker for in-medium φ → e+ e− measurement”, (), 2011.

( )

[47] H. Shi, “Kaonic helium X-ray measurement in theSIDDHARTA experiment , International NuclearPhysics Conference 2010 (INPC 2010), Vancouver,Canada, July 2010.

[48] K. Todoroki, “Development of a Beam ProfileMonitor for Antiproton Annihilation Cross Sec-tionMeasurement at ASACUSA Collaboration ,International Nuclear Physics Conference 2010(INPC 2010), Vancouver, Canada, July 2010.

[49] T. Hashimoto, “Performance Evaluation of Sili-con Drift Detectors for a Precision X-ray Spec-troscopy of Kaonic Helium-3”, International Nu-clear Physics Conference 2010 (INPC2010), Van-couver, Canada, July 2010.

[50] M. Sato, “Precision spectroscopy of kaonic 3He X-rays at J-PARC”, International Nuclear PhysicsConference 2010 (INPC2010), Vancouver, Canada,July 2010.

[51] S. Itoh, “Precision Pionic Atom Spectroscopyat RIKEN-RIBF”, International Nuclear PhysicsConference 2010 (INPC2010), Vancouver, Canada,July 2010.

[52] T. Kobayashi, A. Soter, S. Agha, and M. Hori,“Development of a titanium-sapphire laser forspectroscopy of radioactive isotopes at ISOLDE”,The 9th CNS-EFES International Summer School2010.

[53] T. Suzuki, “Strange tribaryons studied in the4He(K−

stopped,ΛN) reaction”, 12th InternationalConference on Meson-Nucleon Physics and theStructure of the Nucleon, College of William andMary, Williamsburg, Virginia, USA, May 31, 2010.

[54] M. Sato, “Precision spectroscopy of kaonic 3He X-rays at J-PARC”, 12th International Conferenceon Meson-Nucleon Physics and the Structure of theNucleon, College of William and Mary, Williams-burg, Virginia, USA, June 1, 2010.

[55] T. Suzuki, “Strange multibaryons studied in the4He(K−

stopped,ΛN) reaction”, 11th InternationalWorkshop on Meson Production, Properties andInteraction, Krakow, Poland, June 10, 2010.

[56] T. Suzuki, “Strange multibaryons studied in the4He(K−

stopped,ΛN) reaction”, Chiral10 Workshop,Valencia, Spain, June 22, 2010.

[57] T. Suzuki, “Strange multibaryons studied in the4He(K−

stopped,ΛN) reaction”, 2010 InternationalNuclear Physics Conference, Vancouver, Canada,July 8, 2010.

[58] T. Hashimoto, “Precision Spectroscopy of KaonicHelium-3 X rays at J-PARC”, The Korean Physicalsociety meeting (Korea-Japan Exchange Session),Pyeong-Chang, Korea, Oct 2010.

[59] T. Hashimoto, “Precision Spectroscopy of KaonicHelium-3 X rays at J-PARC”, International con-ference on the structure of baryons (Baryons’10),Osaka, Japan, Dec 2010.

[60] R.S. Hayano, “Kaonic atom experiments”, 12th In-ternational Conference on Meson-Nucleon Physicsand the Structure of the Nucleon, Williamsburg,USA, May 31, 2010.

42

Page 44: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.1.

[61] R.S. Hayano, “Kaonic atoms and nuclei”, Chiral10Workshop, Valencia, Spain, June 21, 2010.

[62] R.S. Hayano, “Kaonic-Helium X-Rays”, 2010 In-ternational Nuclear Physics Conference, Vancou-ver, Canada, July 5, 2010.

[63] R.S. Hayano, “Kaonic-Helium X-rays”, NAPP2010 - 3rd International Conference on Nuclear andParticle Physics with CEBAF at Jefferson Lab,Dubrovnik, Croatia, Oct 3, 2010.

[64] T. Suzuki, “Strange multibaryons studied in the4He(K−

stopped,ΛN) reaction”, Strangeness in Nu-clei, ECT*. Trento, Italy, Oct 5, 2010.

[65] K. Ozawa, “Experimental Activities at Universityof Tokyo”, International Symposium on NuclearPhysics in Asia, Convention Center of BeihangUniversity, Beijing, China, Oct 15, 2010.

( )

[66] , “4He K−

–(3)”, 2010 ,, 2010 9 11 .

[67] , “K 3He X(II)”,

, 2010 9 12 .

[68] , “J-PARC E06 P26CsI(Tl) ”,

, 2010 9 11 .

[69] , “ GEM GEM”, 7 Micro Pattern Gas Detector

, , 2010 11 27 .

[70] , “K 3 X”, KEK , , 2010

12 4 .

[71] , “ GEM Tracker ”,, , 2011 2 28 .

[72] , “J-PARC E16 GEMTracker ”, 66 ,

, 2011 3 25 .

[73] , “J-PARC E16 GEM Tracker”, 66

, , 2011 3 25 .

[74] , “’, 66 , ,

2011 3 25 .

[75] , “K 3He X(III)”,

66 , , 2011 325 .

[76] , “(d,3He) π(4)”, 66 , ,

2011 3 26 .

[77] , “ASACUSA”, 66 ,

, 2011 3 27 .

[78] , “”, 66 ,

, 2011 3 28 .

[79] , “200 MeV/u90Zr(12N, 12C)90Nb

”, 66, , 2011 3 28 .

[80] , “”, 66 , ,

2011 3 28 .

[81] , “GEM”,

, , 2010 6 4 .

[82] , “Hadron Blind Detector”, PHENIXUpgrade Mini workshop, , 2011 1

21 .

[83] , “ ”, 4, KEK, 2011 2 28 .

( )

[84] , “ ”,, , 2010 7 3 .

[85] , “ ”, KEK (), KEK, 2010 8 27 .

[86] , “ ”, ,, 2010 9 29–30 .

[87] , “ ”, ,, 2010 9 30 .

[88] , “ ”, ,2010 10 6 .

[89] R.S. Hayano, “Antiproton experiments at CERN”,University of Giessen, Nov 11, 2010.

[90] , “Experimental study of hadron mass”,Weizmann Institute, Israel, 2010 5 24 .

43

Page 45: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.2. 2.

2.2

LHCTeV 1012

ILC( 2.2.7)LHC

CERN LEP-IIOPAL

LEPILC

ILCCERN LHC

ATLAS

BEPC-IIBES-III TOF

BES-II

2.2.1 ILC

e+ e−

e+ e−

e+e−

LEP e+e−

e+e−

ICFAInternational Committee for Future Accelerators)

2.2.7: ILC

2004 82007

3 ICFA2012

LHC

ILC

LEP

130 GeV

TeVLHC

LHCILC

ILC

ILCKEK

ILC ATF2

ICFA ILCSC (InternationalLinear Collider Steering Committee) KEK

44

Page 46: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.2.

ATF2

ILC (i)

(ii)

KEK (ATF)(ATF2)

ILC

ILC Scaled down model 2008

1010 37nm (1σ)

2nm

ATF2

ATF2 (

)

Laser

Optical Delay Line

Laser Interference Fringe

Gamma Detector

Bending Magnet

Scattered Photon

Electron Beam

Laser Light

z

yx

Virtual IP

2.2.8:

ATF2

γ

FFTB1064nm

65nm

37nm

532nm

γ

2010 5

100 nm

310 ±30 (stat.)

−10−70 (sys.) nm (stat.)

(sys.)

(BG)

BGBG

ATF237 nm

2.2.2

10 μm

45

Page 47: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.2. 2.

2.2.9:

10 μm

0.3 μm

20

CCD

CCD

10BCCD

40% 3 μm

CCD

1 μm2009

ILL(InstitutLaue-Langevin)

μm

2

4570

2.5

1.6

2011 ILL

2 15

2.2.3 LHC

LHCCERN

2010 3 7 TeVATLAS

e+e−LHC

e+e−

(E/m)4 Em

LHC

ATLASTeV

LHC

LEP114 GeV LEP

200 GeVLHC

Wγγ ττ

LHC

46

Page 48: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.2.

ATLAS

2010LHC 35 pb−1 ATLAS

2.2.10 1)2) 3 3) 1

4)

effective mass (

mSUGRA tanβ = 40, A0 = 0, μ > 0550GeV/c2

2.2.10:

effective mass

2.2.4 BES

Beijing Spectrometer(BES)(IHEP) Beijing Electron-Positron

Collider(BEPC)1989 12

BES-I 1996 upgrade

BES-II ( 2.2.11) BEPC1.5 GeV 2.8 GeV

2.2.11: BES II detector

BEPC c- τJ/ψ BES-I

7.8× 106 BES-II 5.77×107BEPC-II

upgrade 20081.89 GeV

1033cm−2s−1 upgradeBES-III

BES-III 1109 J/ψ

BES-III TOFIHEP USTC

BES-III τ → μγBES-III BES-II

J/ψ

[1] J. Yan, 2010 Distinguished Performance Award,5th International Accelerator School for LinearColliders, Villars-sur-Ollon, Nov. 2010

( )

[2] OPAL Collaboration, G.Abbiendi et al. : Searchfor Invisibly Decaying Higgs Bosons in e+e− →

47

Page 49: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.2. 2.

Z0h0 Production at√s = 183-209 GeV,

Phys.Lett. B682 (2010) 381-390

[3] BESIII Collaboration, M.Ablikim et al. : De-sign and Cosnstruction of the BES-III Detector,Nucl.Instrum.Meth. A614 (2010) 345-399

[4] BESIII Collaboration, M.Ablikim et al. : Branch-ing Fraction Measurements of χc0 and χc2 to π0π0and ηη, Phys.Rev. D81 (2010) 052005

[5] BESIII Collaboration, M.Ablikim et al. : Measure-ment of hc(

1P1) in ψ′ Decays, Phys.Rev.Lett. 104(2010) 132002

[6] BESIII Collaboration, M.Ablikim et al. : Evidencefor ψ′ Decay into γπ0 and γη, Phys.Rev.Lett. 105(2010) 261801

[7] BESIII Collaboration, M.Ablikim et al. : FirstObservation of the Decay χcJ → π0π0π0π0,Phys.Rev. D83 (2011) 012006

[8] ILD-Concept Group-Linear Collider Collabora-tion, T. Abe et al.: The International Large De-tector: Letter of Intent, FERMILAB-LOI-2010-03

[9] B. Bambade et al., Present Status and First Re-sults of the Final Focus Beam Line at the KEK Ac-celerator Test Facility, Phys.Rev.ST Accel.Beams13 (2010) 042801

[10] T. Suehara et al., A Nanometer Beam Size Monitorfor ATF Nucl.Instru.Meth.A616 (2010) 1-8

[11] The ATLAS Collaboration : “Search for super-symmetry in pp collisions at

√s = 7TeV in final

states with missing transverse momentum and b-jets”, arXiv:1103.4344

[12] J. Yan et al. : “Measurement of nanometer scalebeam size by Shintake Monitor (IPBSM)” ICFABD Newsletter No.54

( )

[13] Y. Kamiya, S. Komamiya, M. Oroku, S. Suehara,Y. Yagamuchi, T. Yamanaka, S. Araki, T. Okugi,T. Tauchi, N. Terunuma, J. Urakawa: Develop-ment of Shintake Beam Size Monitor for ATF2,Proceedings of the 1st International Particle Ac-celerator Conference, Kyoto, Japan (2010)

[14] Y.Yamaguchi :“Evaluation of Expected Perfor-mance of Shintake Beam Size Monitor for ATF2”IPAC 10, Kyoto, Japan, 1014-1016, (2010)

[15] M.Oroku :“The nanometer beam size monitor(Shintake monitor) at ATF2” IEEE proceeding,2010 Nov

( )

[16] Development of a Pixel Detector forUltra-Cold Neutrons and Measurement of Quan-tum States in the Earth Gravitational Field

, 2010 6

[17](

), 2011 3

( )

( )

[18] Y.Yamaguchi : “Evaluation of Expected Perfor-mance of Shintake Beam Size Monitor for ATF2”IPAC 10 (May 2010), Kyoto, Japan

[19] T. Yamanaka for the ATLAS Collaboration: “The ATLAS Fast Calorimeter SimulationFastCaloSim”, CHEP 2010, (October 2010),Taipei, Taiwan

[20] M.Oroku :“The nanometer beam size moni-tor (Shintake monitor) at ATF2” IEEE NSS,Knoxville, Tennessee, USA, 2010 Nov

[21] M.Oroku :“IP-BSM status and plan: beamtime re-sult in 2010 Nov & Dec”, ATF project meeting,SLAC, California, USA, 2011 Jan

[22] J. Yan : “IPBSM Status and Plan” 11th ATF2Project Meeting, Jan 13-14 2011, SLAC

( )

[23] :”Emittance Measurement in theATF2 Beamline”, ILC (2010 8 ) ,

,

[24] : LHC-ATLAS

, (2010 9 ),,

[25] :1 , (2010 9 ),

,

[26] :2 (2010 9 ),

,

[27] :- (2011 3), ,

[28] : LHC-ATLAS

, , (2011 3 ), ,

[29] :(2011

3 ), ,

[30] :,

(2011 3 ), ,

48

Page 50: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.2.

[31] :, (2011 3 ) ,

,

[32] :,

(2010 5 )

[33] :,

(2011 1 )

( )

[34] : ,(2010 6 )

49

Page 51: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.3. 2.

2.3

2.3.1 PANDA –

(Plastic AntiNeutrino Detectyor Array – PANDA)

IAEA NPT

IAEA

feasibility study

(νe)(p) β (e+)(n)

2 γ60μs

(Gd)8MeV γ

2 ( )

2.3.12 100 10cm×10cm×100cm

1

22 16

Gd

PlasticScintillator

Gd

Detector

10cm x 10cm x 100cm

1m x 1m x 1m

2.3.12:

(lesser PANDA)

PMT

live time

lesser PANDA

6mm

PCWeb

Web

50

Page 52: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.3.

2.3.13:

PC

lesser PANDA 2t2

( 2.3.13)

lesser PANDA3

40m 3

2.3.2 Sumico,

(QCD)CP

CP(axion)

1 eV

4 T 2.3 m PINX ±28◦

(Tokyo Axion Helioscope)

( )PIN

He

ma < 0.27 eV 0.84 ev < ma < 1.00 eV

gaγγ < 5.6 − 13.4 × 10−10 GeV−1

2.3.141 eV

HeHe

HeX

XX

GMX

(CERN)CAST

2002

1.2 eV

Sumico

2.3.3 hidden sector photon

U(1)hOkun

hidden sector photon hiddensector photon

mγ′

hidden sector photonχ

hidden

51

Page 53: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.3. 2.

2.3.14:

sector photon

hid-den sector photoneV hidden sector photon

hidden sector photonhidden sector photon

hidden sector photon

(PMT(R3550P))

( 2.3.15 )hidden sector photon

eV hiddensector photon

Parabolic Mirror

Sun

PMT

Photon Hidden Photon

Sumico(Axion Helioscope)

Vacuum Chamber

2.3.15: hidden sector photon

2.3.16: Sumico hidden sector

photon

eV hidden sector photon

hidden sector photon

22( 2.3.16 )

10

hidden sector photon

PMT

0.1◦C

PMT

hidden sector photon

hidden sector photon

52

Page 54: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.3.

hidden sector photonχ χ

hidden sector photon mγ′

2.3.17

meV

hidden sector photon meVhidden sector photon

hidden sector photon

2.3.17: χ (

preliminary)

hidden sector photonPMT

PMTPMT

PMTPMT PMT

PMT

PMT ±0.1◦C-20◦C

1Hz

PMTCCD

100%

( )

[1] Yoshihiro Iwata, Yoshizumi Inoue, Makoto Mi-nowa: Development of a Compact ResonanceIonization Mass Spectrometer for Trace Ele-ment Analysis of Potassium, arXiv:1010.5902v2[physics.atom-ph].

[2] S. Oguri, Y. Inoue, M. Minowa: Pulse-shapediscrimination of CaF2(Eu), Nucl. Instr. andMeth. in Phys. Research A 662 (2010), 588–591,arXiv:1007.4750v2 [physics.ins-det].

( )

[3] R. Ohta, M. Minowa, Y. Inoue, Y. Akimoto, T.Mizumoto, A. Yamamoto: Prospects of Search forSolar Axions with Mass over 1 eV and Hidden Sec-tor Photons, Proceedings of the 5th Patras Work-shop on Axions, WIMPs and WISPs, Eds. JoergJaeckel, Axel Lindner and Javier Redondo (VerlagDeutsches Elektronen-Synchrotoron), pp.82-85,RESCEU-50/09, arXiv:0911.0738 [astro-ph.IM].

[4] Makoto Minowa: Tokyo Axion Helioscope, AX-IONS 2010, Proceedings of the International Con-ference, Eds. David B. Tanner and K. A. van Bib-ber, AIP conference proceedings 1274, pp. 133–137, arXiv:1004.1308v1 [astro-ph.IM].

( )

[5] : Experimental search for solar hidden sec-tor photons in the eV energy range using kineticmixing with photons 23 3

.

( )

[6] S. Oguri: PANDA – a mobile reactor neutrinomonitor, AAP2010, Sendai, Japan, 3–5 August2010.

[7] Y.Kuroda, S.Oguri1, Y.Kato, C.Ito, Y.Inoue,M.Minowa: PANDA - a mobile reactor neutrinomonitor, poster session at International NeutrinoSummer School 2010, Tokai, Ibaraki, 30 August2010.

[8] Y. Inoue: Tokyo axion helioscope, Horiba Inter-national Conference COSMO/CosPA 2010, TheUniversity of Tokyo, Hongo, Tokyo, Japan, 27September–1 October 2010.

53

Page 55: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.3. 2.

[9] Y. Inoue: Tokyo axion helioscope experiment andother axion experiments, The XLVIth Rencontresde Moriond (Electroweak Interactions and UnifiedTheories), La Thuile, Aosta Valley, Italy, 13–20March 2011.

( )

[10] : Tokyo Axion Helioscope, Hidden photonsearch and Anti-neutrino monitor of reactor oper-ations RESCEU DENET

10‘Dark Energy in the Universe’

2010 8 29 .

[11] : 1eV2010 2010

9 13 .

[12] : eV Hidden Photon2 2010

2010 9 13 .

[13] Hidden Photon PMT2010

2010 9 13 .

[14] :(PANDA)[1]

2010 20109 13 .

[15] : (PANDA)[2]2010

2010 9 13 .

[16] :(PANDA)[3]

2010 2010 913 .

[17] : PANDAGCOE5 RA

2011 2 18 .

[18] : 1eV2011 66

.

[19] : eV Hidden Photon3 2011 66

).

[20] Hidden Photon PMT2 2011 65

.

[21] : (PANDA)[1]

2011 65( : ).

[22] : (PANDA)[2]

2011 65( : ).

[23] : (PANDA)[3]

2011 65( : ).

[24] :2010 6 23 .

[25] : 4Nuclear Salon Fuji-ie

2010 7 26 .

[26] :COE5 RA

2011 2 17 .

54

Page 56: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.4.

2.4

(KEK)B Belle

Belle IICCD Hy-

per Suprime-Cam)J-PARC

T2K

- SciBooNE

HPD MPPC

2.4.1 Belle

1999 KEKKEKB /Belle

2010 6 30( 2.4.18) 2014

Super KEKB11 B B

1/2 Dirac

Λ(m�) Λ (m�/Λ)

2

17290

KEK B9

10 KEKB

radiative leptonic decay τ → μννγτ → eννγ 2.4.19

on mass-shellF2(0) = aτ 10−3

τνW

Michel10 ρ

10−3

2.4.18:

Belle

2.4.19:

2.4.2 Belle II

2010 10 Super KEKB Belle IISuper KEKB KEKB

40 (8 × 1035 cm−2s−1)

BelleII

Super KEKB

Touschek

KEKBKEKB

Super KEKB

55

Page 57: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.4. 2.

2.4.20: Hyper Suprime-Cam

CCD

2.4.3 HSC

4% 73%

21

1.77 1.2CCD (Hyper Suprime-Cam)

20001.5

D

2.4.202011 3

CCD 2011HSC

2011 11

cosmic shear

Suprime-CamHSC

2.4.21: T2K

2.4.4 T2K

T2KJ-PARC

2007

2004

20092010

20100.32×1020 2011 3 11

1.43×1020 2.4.21

SSEM ESM

2.4.22

26mm

J-PARC

T2K

56

Page 58: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.4.

2.4.22:

) (MeV/c)μP(0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

entri

es/(1

00 M

eV/c

)

020406080

100120140160180200

) (MeV/c)μP(0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

entri

es/(1

00 M

eV/c

)

020406080

100120140160180200

Entries 1529CC QECC ResonanceCC DIS

πCC Coherent Neutral CurrentCC CharmNo FGD

μν

2.4.23:

1.2×1.2×1.2 m3 7±5 m

INGRID INGRID

CERN

INGRID

2.4.23

2.4.24: T2K

J-PARC

T2K1.06 ±0.03(

) ±0.04( ) ±0.04()

99% 2010(22.5

) 23GPS J-PARC

2.4.24T2K10−3

2.4.25

0.3

θ13 2.4.26

57

Page 59: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.4. 2.

Super-Kamiokande IVT2K Beam Run 0 Spill 822275

10-05-12:21:03:22

T2K beam dt = 1902.2 ns

Inner: 1600 hits, 3681 pe

Outer: 2 hits, 2 pe

Trigger: 0x80000007

D_wall: 614.4 cm

e-like, p = 377.6 MeV/c

Charge(pe) >26.723.3-26.720.2-23.317.3-20.214.7-17.312.2-14.710.0-12.2 8.0-10.0 6.2- 8.0 4.7- 6.2 3.3- 4.7 2.2- 3.3 1.3- 2.2 0.7- 1.3 0.2- 0.7 < 0.2

0 mu-edecays

0 500 1000 1500 20000

52

104

156

208

260

Times (ns)

2.4.25: T2K

2.4.5

T2K

( ) CP ( –)

CP B

CP

T2K

20

2.4.27100

CP

CPJ-PARC

105

2.4.28

CPT2K

13θ22sin0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 mΔ

-410

-310

-210

-110

2.4.26: θ13

θ13

2.4.27:

CP

2.4.6 –

58

Page 60: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.4.

0 π 2π

10-1

δCP

sin2

2θ13 10-2

10-3

2.4.28:

CP

5

CP

1GeV

- SciBooNE(FNAL-E954)T2K K2K

20 SciBar

2007-20081

SciBar 43%

8%

1GeV

MiniBooNELSND MiniBooNE

1–10 eV2

SciBooNE

2.4.29

θ 2 2sin0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

]2 [e

V2

-110

1

10 CDHS 90% CL limit

CCFR 90% CL limit

MiniBooNE only 90% CL limit

SciBooNE + MiniBooNE 90% CL expected

σ 1 ±SciBooNE + MiniBooNE 90% CL

SciBooNE + MiniBooNE 90% CL observed

2.4.29: SciBooNE/MiniBooNE

2.4.7

HybridPhoto Detector (HPD) HPD

(PMT)

HPDPMT

KEK13 HPD PMT

HPD13

8

HPD

HPD (AD)

AD AD 1020kV AD

AD

O(105)HPD i)

PMTii) PMT

59

Page 61: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.4. 2.

2.4.30: HPD

2.4.31: HPD

iii) PMT 1/10

8 HPD

2.4.30HPD 2.4.31

20%(σ)HPD HPD

2kHzPMT

4kHz

HPD(5V)

HPDHPD

PMT 1/100

hT0Entries 1451Mean 114.9RMS 1.751Underflow 0Overflow 0

/ ndf 2χ 301.3 / 102Constant 71.01Mean 115.2Sigma 0.2527

110 112 114 116 118 1200

20

40

60

80

100

hT0Entries 1451Mean 114.9RMS 1.751Underflow 0Overflow 0

/ ndf 2χ 301.3 / 102Constant 71.01Mean 115.2Sigma 0.2527

Peak point

2.4.32: HPD

HPDHPD

8HPD

8HPD 2.4.32

250ps(σ)

ICADC ASIC

2V 8bit12bit

[1] CyPos

( )

[2] M. J. Lee et al. [Belle Collaboration], “Measure-ment of the branching fractions and the invariantmass distributions for τ− → h−h+h−ντ decays,”Phys. Rev. D 81, 113007 (2010) [arXiv:1001.0083[hep-ex]].

[3] B. R. Ko et al. [Belle collaboration], “Search forCP violation in the decays D+

(s)→ K0

Sπ+ and

D+(s)

→ K0SK

+,” Phys. Rev. Lett. 104, 181602

(2010) [arXiv:1001.3202 [hep-ex]].

[4] C. C. Chiang et al. [Belle collaboration], “Searchfor B0 → K∗0K∗0, B0 → K∗0K∗0 and B0 →K+π−K∓π± Decays,” Phys. Rev. D 81, 071101(2010) [arXiv:1001.4595 [hep-ex]].

[5] N. J. Joshi et al. [Belle Collaboration], “Measure-ment of the branching fractions for B0 → D∗+s π−

and B0 → D∗−s K+ decays,” Phys. Rev. D 81,031101 (2010).

60

Page 62: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.4.

[6] T. Aushev et al., “Study of the B → X(3872)(→D∗0D0)K decay,” Phys. Rev. D 81, 031103 (2010).

[7] M. Petric et al. [Belle Collaboration], “Search forleptonic decays of D0 mesons,” Phys. Rev. D 81,091102 (2010) [arXiv:1003.2345 [hep-ex]].

[8] A. Poluektov et al. [The Belle Collaboration], “Ev-idence for direct CP violation in the decay B± →D(∗)K±, D → Ksπ

+π− and measurement of theCKM phase φ3,” Phys. Rev. D 81, 112002 (2010)[arXiv:1003.3360 [hep-ex]].

[9] A. Drutskoy et al. [Belle Collaboration], “Measure-ment of Υ(5S) decays to B0 and B+ mesons,”Phys. Rev. D 81, 112003 (2010) [arXiv:1003.5885[hep-ex]].

[10] H. J. Hyun et al. [Belle Collaboration], “Searchfor a Low Mass Particle Decaying into μ+μ− inB0 → K∗0X and B0 → ρ0X at Belle,” Phys. Rev.Lett. 105, 091801 (2010) [arXiv:1005.1450 [hep-ex]].

[11] A. Bozek et al. [Belle Collaboration], “Observa-tion of B+ → D∗0τ+ντ and Evidence for B+ →D0τ+ντ at Belle,” Phys. Rev. D 82, 072005 (2010)[arXiv:1005.2302 [hep-ex]].

[12] S. Esen et al., “Observation of Bs → D(∗)+s Ds(∗)−

using e+e− collisions and a determination of theBs-Bs width difference ΔΓs,” Phys. Rev. Lett.105, 201802 (2010) [arXiv:1005.5177 [hep-ex]].

[13] K. Hara et al. [Belle collaboration], “Evidencefor B− → τ−ντ with a Semileptonic Tag-ging Method,” Phys. Rev. D 82, 071101 (2010)[arXiv:1006.4201 [hep-ex]].

[14] C. C. Peng et al. [Belle Collaboration], “Search forB0

s → hh Decays at the Υ(5S) Resonance,” Phys.Rev. D 82, 072007 (2010) [arXiv:1006.5115 [hep-ex]].

[15] S. Uehara et al. [Belle Collaboration], “Measure-ment of ηη production in two-photon collisions,”Phys. Rev. D 82, 114031 (2010) [arXiv:1007.3779[hep-ex]].

[16] Y. Nakahama et al. [BELLE Collaboration], “Mea-surement of CP violating asymmetries in B0 →K+K−K0

S decays with a time-dependent Dalitzapproach,” Phys. Rev. D 82, 073011 (2010)[arXiv:1007.3848 [hep-ex]].

[17] H. Guler et al. [Belle Collaboration], “Study ofthe K+π+π− Final State in B+ → J/ψK+π+π−

and B+ → ψ′K+π+π−,” Phys. Rev. D 83, 032005(2011) [arXiv:1009.5256 [hep-ex]].

[18] W. Dungel et al. [Belle Collaboration], “Measure-ment of the form factors of the decay B0 →D∗−�+ν and determination of the CKM matrixelement |Vcb|,” Phys. Rev. D 82, 112007 (2010)[arXiv:1010.5620 [hep-ex]].

[19] G. Pakhlova et al. [Belle Collaboration], “Measure-

ment of e+e− → D(∗)+s D

(∗)−s cross sections near

threshold using initial-state radiation,” Phys. Rev.D 83, 011101 (2011) [arXiv:1011.4397 [hep-ex]].

[20] R. Wendell et al. [Super-Kamiokande Collabora-tion], “Atmospheric neutrino oscillation analysiswith sub-leading effects in Super-Kamiokande I, II,and III,” Phys. Rev. D 81, 092004 (2010).

[21] Y. Kurimoto et al. [SciBooNE Collaboration], “Im-proved measurement of neutral current coherentπ0 production on carbon in a few-GeV neutrinobeam,” Phys. Rev. D 81, 111102 (2010).

[22] M. Yokoyama et al., “Performance of Multi-PixelPhoton Counters for the T2K near detectors,”Nucl. Instrum. Meth. A 622, 567 (2010).

[23] K. Matsuoka et al., “Design and performance ofthe muon monitor for the T2K neutrino oscilla-tion experiment,” Nucl. Instrum. Meth. A 624, 591(2010).

[24] Y. Nakajima et al. [SciBooNE Collaboration],“Measurement of inclusive charged current inter-actions on carbon in a few-GeV neutrino beam,”Phys. Rev. D 83, 012005 (2011).

[25] K. Abe et al. [Super-Kamiokande Collaboration],“Solar neutrino results in Super-Kamiokande-III,”Phys. Rev. D 83, 052010 (2011).

[26] C. Mariani et al. [K2K Collaboration], “Measure-ment of inclusive π0 production in the Charged-Current Interactions of Neutrinos in a 1.3-GeVwide band beam,” Phys. Rev. D 83, 054023 (2011).

( )

[27] Yutaka Komiyama, Hiroaki Aihara, Hiroki Fuji-mori, Sogo Mineo, Hironao Miyatake, et al., “Hy-per Suprime-Cam: camera design,” Proceedings ofSPIE, 7735, 77353F, 2010.

[28] Hidehiko Nakaya, Hironao Miyatake, Hiroki Fuji-mori, Sogo Mineo, Hiroaki Aihara, et al., “HyperSuprime-Cam: development of the CCD readoutelectronics,” Proceedings of SPIE, 7735, 77352P,2010.

[29] H. Fujimori, H. Aihara, S. Mineo, H. Miyatake, S.Miyazaki, H. Nakaya, T. Uchida, “Back-End Read-out Electronics for Hyper Suprime-Cam,” IEEENuclear Science Symposium Conference Record,N14-9, 2010.

[30] Sogo Mineo, et al., Distributed parallel process-ing analysis framework for Belle II and HyperSuprime-Cam Proceedings of Science ACAT2010,026 (2010).

[31] Sogo Mineo, et al., Development of an analysisframework for HSC and Belle II Proceedings ofSPIE 7740, 77401P (2010).

[32] Hisanori Furusawa, et al., A prototype of HyperSuprime-Cam data analysis sysmtem Proceedingsof SPIE 7740, 77402I (2010).

61

Page 63: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.4. 2.

[33] Masashi Yokoyama, “SciBooNE and other neu-trino cross section measurements,” Proceedings of45th Recontres de Moriond, Electroweak Interac-tions and Unified Theory.

[34] K. Matsuoka, A. Ichikawa, H. Kubo,T. Maruyama, A. Murakami, T. Nakaya andM. Yokoyama, “Development and productionof the ionization chamber for the T2K muonmonitor,” Nucl. Instrum. Meth. A 623, 385(2010).

[35] M. Otani, M. Yokoyama et al., “Design and con-struction of INGRID neutrino beam monitor forT2K neutrino experiment,” Nucl. Instrum. Meth.A 623, 368 (2010).

[36] D. Orme, M. Yokoyama et al., “Development ofmulti-pixel photon counters for the T2K long base-line neutrino experiment,” Nucl. Instrum. Meth. A623, 321 (2010).

[37] T.Abe, H. Aihara, M. Iwasaki, K. Kasimura, S.Mineo, T. Uchida, M. Tanaka, Y. Kawai, H.Kyushima, M. Suyama, M. Shiozawa “R&D sta-tus of large aperture Hybrid Avalanche Photo-Detector,” Nucl.Instrum.Meth.A623:279-281,2010.

( )

[38] “ ——,” 45 2010 4 .

[39] “T2K” 36

3 (2010).

[40] “T2K” 29 1

(2010).

[41] “CERN Summer School 2010 ,”29 3 (2010).

( )

[42] “Design Study of Belle II In-teraction Region” (2011 3 )

( )

[43] Sogo Mineo, “Development of an analysis frame-work for HSC and Belle II,” SPIE Space Tele-scopes and Instrumentation 2010: Optical, In-frared, and Millimeter Wave , June 27, 2010.

[44] Hidekazu Kakuno, “Overview of T2K facility,” 7thInernational Workshop on Neutrino Beams and In-strumentation, Tokai, Japan, August 2010.

[45] Masashi Yokoyama, “Measuring neutrino withnear detectors,” II International Neutrino SummerSchool, Yokohama/Tokai, Japan, Aug. 23-31 2010.

[46] H. Fujimori, H. Aihara, S. Mineo, H. Miyatake, S.Miyazaki, H. Nakaya, T. Uchida, “Back-End Read-out Electronics for Hyper Suprime-Cam,” IEEENuclear Science Symposium, Knoxville, Tennessee,USA, Oct.30-Nov.6, 2010.

[47] Masashi Yokoyama, “Long Baseline Neutrino Os-cillation Experiment with Hyper-Kamiokande andJ-PARC,” 11th International Workshop on Nextgeneration Nucleon Decay and Neutrino DetectorsToyama, Japan, December 13 - 16, 2010

[48] Jiayin Wang, “CP sensitivity study for Hyper-Kamiokande,” ibid.

[49] Hironao Miyatake and Masahiro Takada, “ShapesUsing Multiple Exposures,” Jan. 27, 2011, FromPixels to Shear (2011 GREAT Workshop 1), Edin-burgh, UK

[50] H. Aihara, “HEP Community in Japan,” 87th Ple-nary ECFA Meeting, July 1st, 2010, Frascati

[51] H. Aihara, “Status of KEKB upgrade,” 87th Ple-nary ECFA Meeting, July 2nd, 2010, Frascati

[52] H. Aihara, “PEP4 program at LBNL and SLAC,”The US/Japan Collaboration in High EnergyPhysics: The 30th Anniversary Symposium Octo-ber 20-21, 2010 Kailua-Kona, Hawaii

( )

[53] “,” 99

2010 4

[54] “ HAPD ,”2009 2010 9

[55] “ HAPD ,”2010 12

[56] , “ ,”COE

5 RA , , 2011 2 19

[57] , “ ,”2011 , , 2011 3

19

[58] “ HSC,”

66 2011 3

[59] “Hyper-KamiokandeCP

,”

[60] , “Hyper-KamiokandeCP

,”

62

Page 64: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.4.

[61] , “ KEK,” KEK

22 4 21

[62] “”

2010 5 13

[63] “KEKB,” 2011 1 19

[64] “ ,”

23 1 31

( )

[65] , “T2K ,”2011 1 20

[66] , “Hyper Suprime-Cam,” KEK CMB

, , 2011 2 7

63

Page 65: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.5. 2.

2.5

LHC ATLAS

2.5.1 LHC ATLAS

LHC7TeV TeV

1

TeV

LHC

ATLAS

2.5.33: 7TeV

(1.3TeV) (

LHC

(mET2

(mET)

mETPT)

mETPT Meff)

b)

1.

2.

3. 4b

,

800GeV

3

2010mSugra

(gravitino)

Anomaly-Medaited Gauge-Mediated Gravity-Mediated

O(1mm)-O(10cm)

ATLASTRT

5 TRT

64

Page 66: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.5.

2.5.34: 1

(

Meff): 2010

)

AMSB 75GeV,750GeV

O(1m)(β < 1)

2.5.35: mSugra /

GUT / LHC

(95%CL)

2.5.36: TRT

2010

)

OPENHIST

LEP Tevatron115-140GeV

H → γγ, ττ , W+W−(→ lνlν) 3

4 H → W+W−(→ lνlν)

65

Page 67: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.5. 2.

2010

2010 201112

2.5.37: W+W−

)

LHC TeVTeV

LHC

LHC

2010

1.08-1.76TeV(n=2-7)

TeV

(ADD )

20102-2.5TeV(

n=3-6)ADD

2.5.2

(LHC/ATLAS )

(Ps)

(o-Ps = 1)(p-Ps = 0)

0.84meV(203GHz) Ps (HyperFineStructure HFS)

Ps HFS QED

Ps HFS

Ps HFSPs

5 HzPs o-Ps

p-PsPs HFS

Ps HFS

Ps HFS 1980ppm

QED15ppm (3.9σ)

(0.87T)o-Ps (3GHz)

Ps HFS500W RF

Q 1

66

Page 68: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.5.

energy [keV]3LaBr100 200 300 400 500 600

cout

ns /

5keV

/ se

c

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

ON dataMC sum

transition 3

pickoff

2.5.38: :

Ps

:

o-Ps→p-Ps

511keV

7

12ppm 9.5ppm

ppm HFS

KEK3 11

( )

[1] The ATLAS Collaboration, ”Search for high massdilepton resonances in pp collisions at

√s=7 TeV

with the ATLAS experiment”,arXiv:1103.6218

MAGNETIC FIELD (T)0.862 0.864 0.866 0.868 0.87

Zeem

an T

RA

NSI

TIO

N (A

. U.)

0.1

0.2

0.3

0.4

0.5

/ ndf 2χ 4.089 / 5Prob 0.5367

/ ndf 2χ 4.089 / 5Prob 0.5367

m_g_transition_ratio_fit

GAS DENSITY (amagat)0 0.2 0.4 0.6 0.8 1

(GH

z)H

FSΔ

203.34

203.35

203.36

203.37

203.38

203.39

203.4 / ndf 2χ 1.36 / 2

Prob 0.5065 / ndf 2χ 1.36 / 2

Prob 0.5065

/ ndf 2

χ 2.104 / 2

Prob 0.3492

HFSΔ

0.002403± 203.4

Slope 17.67± -246.9

) QEDαln3αO(

Experimental average at vacuum

Current Result

2.5.39: : 0.895amagat

Ps

HFS :

HFS

203.3951± 0.0024(stat.)± 0.0019(syst.) GHz

[2] The ATLAS Collaboration, ”Search for an excessof events with an identical flavour lepton pair andsignificant missing transverse momentum in

√s =

7 TeV proton-proton collisions with the ATLASdetector” ,arXiv:1103.6208

[3] The ATLAS Collaboration, ”Search for supersym-metric particles in events with lepton pairs andlarge missing transverse momentum in

√s = 7 TeV

proton-proton collisions” ,arXiv:1103.6214

[4] The ATLAS Collaboration, ”Search for a heavyparticle decaying into an electron and a muon withthe ATLAS detector in

√s = 7 TeV pp collisions

at the LHC” ,arXiv:1103.5559

[5] The ATLAS Collaboration, ”Search for supersym-metry in pp collisions at

√s= 7 TeV in final states

with missing transverse momentum and b-jets”,arXiv:1103.4344

[6] The ATLAS Collaboration, ”Search for NewPhysics in Dijet Mass and Angular Distributionsin pp Collisions at

√s = 7 TeV Measured with the

67

Page 69: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.5. 2.

ATLAS Detector” ,arXiv:1103.3864

[7] The ATLAS Collaboration, ”Measurement of theMuon Charge Asymmetry from W Bosons Pro-duced in pp Collisions at

√s = 7 TeV with the

ATLAS detector” ,arXiv:1103.2929

[8] The ATLAS Collaboration, ”Search for StableHadronising Squarks and Gluinos at the ATLASExperiment at the LHC” ,arXiv:1103.1984

[9] The ATLAS Collaboration, ”Measurements ofunderlying event properties using neutral andcharged particles in p-p collisions at 900 GeV and7 TeV with the ATLAS detector at the LHC”,arXiv:1103.1816

[10] The ATLAS Collaboration, ”Search for high-massstates with lepton plus missing transverse energyusing the ATLAS detector with 36 pb[1 of pp col-lisions at

√s = 7 TeV” ,arXiv:1103.1391

[11] The ATLAS Collaboration, ”Search for squarksand gluinos using final states with jets and miss-ing transverse momentum with the ATLAS de-tector in

√s = 7 TeV proton-proton collisions”

,arXiv:1102.5290

[12] The ATLAS Collaboration, ”Measurement of DijetAzimuthal Decorrelations in pp Collisions at

√s=7

TeV” ,arXiv:1102.2696

[13] The ATLAS Collaboration, ”Search for supersym-metry using final states with one lepton, jets, andmissing transverse momentum with the ATLAS de-tector in

√s=7 TeV pp collisions” ,Phys. Rev. Lett.

106, 131802 (2011)

[14] The ATLAS Collaboration, ”Search for MassiveLong-lived Highly Ionising Particles with the AT-LAS Detector at the LHC” ,Phys. Lett. B698(2011) 353-370

[15] The ATLAS Collaboration, ”Luminosity Determi-nation in pp Collisions at

√s=7 TeV Using the

ATLAS Detector at the LHC” ,arXiv:1101.2185

[16] The ATLAS Collaboration, ”Study of Jet Shapesin Inclusive Jet Production in pp Collisions at

√s

= 7 TeV using the ATLAS Detector” ,Phys. Rev.D 83, 052003 (2011)

[17] The ATLAS Collaboration, ”Measurement of thecentrality dependence of J/Psi yields and obser-vation of Z production in lead-lead collisions withthe ATLAS detector at the LHC” ,Phys Lett. B697(2011) 294-312

[18] The ATLAS Collaboration, ”Measurement of theproduction cross section for W-bosons in associa-tion with jets in pp collisions at

√s= 7 TeV with

the ATLAS detector” ,Phys. Lett. B698 (2011)325-345

[19] The ATLAS Collaboration, ”Charged-particlemultiplicities in pp interactions measured with theATLAS detector at the LHC” ,arXiv:1012.5104

[20] The ATLAS Collaboration, ”Measurement of theinclusive isolated prompt photon cross section inpp collisions at

√s= 7 TeV with the ATLAS de-

tector” ,Phys. Rev. D 83, 052005 (2011)

[21] The ATLAS Collaboration, ”Search for DiphotonEvents with Large Missing Transverse Energy in7 TeV Proton-Proton Collisions with the ATLASDetector” ,Phys. Rev. Lett. 106, 121803

[22] The ATLAS Collaboration, ”Measurement ofthe top quark-pair production cross sectionwith ATLAS in pp collisions at

√s=7 TeV”

,arXiv:1012.1792

[23] The ATLAS Collaboration, ”Measurement of un-derlying event characteristics using charged parti-cles in pp collisions at

√s = 900 GeV and 7 TeV

with the ATLAS detector” ,arXiv:1012.0791

[24] The ATLAS Collaboration, ”Studies of the per-formance of the ATLAS detector using cosmic-raymuons” ,EPJC 71 (2011) 1593

[25] The ATLAS Collaboration, ”Observation of acentrality-dependent dijet asymmetry in lead-leadcollisions at

√sNN = 2.76 TeV with the ATLAS

detector at the LHC” ,Phys. Rev. Lett. 105, 252303

[26] The ATLAS Collaboration, ”Measurement of theW → lnu and Z/gamma* → ll production crosssections in proton-proton collisions at

√s = 7 TeV

with the ATLAS detector” ,JHEP 12 (2010) 060

[27] The ATLAS Collaboration, ”Measurement of in-clusive jet and dijet cross sections in proton-protoncollisions at 7 TeV centre-of-mass energy with theATLAS detector” ,EPJC 71 (2011) 1-59

[28] The ATLAS Collaboration, ”Search for QuarkContact Interactions in Dijet Angular Distribu-tions in 7 TeV Proton-Proton Collisions with theATLAS Detector at the LHC” ,Phys. Lett. B694(2011) 327-345

[29] The ATLAS Collaboration, ”Search for New Par-ticles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at theLHC” ,Phys. Rev. Lett. 105, 161801

[30] The ATLAS Collaboration, ”Readiness of the AT-LAS tile calorimeter for LHC collisions” ,EPJC 70(2010) 1193

[31] The ATLAS Collaboration, ”Commissioning of theATLAS Muon Spectrometer with Cosmic Rays”,EPJC 70 (2010) 875

[32] The ATLAS Collaboration, ”Performance of theATLAS Detector using First Collision Data”,JHEP 09 (2010) 056

[33] The ATLAS Collaboration, ”The ATLAS Simula-tion Infrastructure” ,EPJC 70 (2010) 823

[34] The ATLAS Collaboration, ”The ATLAS InnerDetector commissioning and calibration” ,EPJC 70(2010) 787

68

Page 70: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 2.5.

[35] Tomohiro Abe, Tatsuya Masubuchi, Shoji Asai,and Junichi Tanaka, ”Drell-Yan Production ofZ’ in the Three-Site Higgsless Model at theLHC”,arXiv:1103.3579

[36] Shoji Asai, Yuya Azuma, Motoi Endo, KoichiHamaguchi, and Sho Iwamoto, ”Stau Kinks at theLHC” ,arXiv:1103.1881

[37] A. Ishida, G. Akimoto, Y. Sasaki, T. Suehara,T. Namba, S. Asai, T. Kobayashi, H. Saito,M. Yoshida, K. Tanaka, and A. Yamamoto, “Newmethod of precise measurement of positronium hy-perfine splitting”, arXiv:1004.5555

[38] Y. Sasaki, A. Miyazaki, A. Ishida, T. Namba,S. Asai, T. Kobayashi, h. Saito, K. Tanaka, andA. Yamamoto, “Measurement of Positronium hy-perfine splitting with quantum oscillation”, Phys.Lett. B 697 121—126, (2011).

( )

[39] S. Asai, “The latest status of LHC and the EWSBphysics”, Int. J.Mod. Phys.A25 5196-5209 (2010).

[40] A. Ishida, “Precise measurement of HFS of positro-nium using Zeeman effect”, J. Phys. Conf. Ser. 225012019 (2010).

[41] A. Ishida, “Precise Measurement of HyperfineSplitting of Positronium Using the Zeeman Effect”,Materials Science Forum, 666 129—132, (2011).

[42] A. Miyazaki, “New Experiment for the First Di-rect Measurement of Positronium Hyperfine Split-ting with sub-THz Light”, Materials Science Fo-rum, 666 133—137, (2011).

( )

[43] “LHC ”, 2011 1.

[44] , “”, 65 810—813,

(2010).

[45] , “Polish Seminar ”,2 2 .

( )

[46] ”ATLAS 1 lepton mode” , (2011 3

)

[47] , “ ”,(2010 3 ).

( )

[48] S.Asai, “Latest Status of LHC”, COSMI/CosPA2010 September 2010.

[49] A. Ishida, “Precise Measurement of Positron-ium Hyperfine Splitting using Zeeman Effect”,39th Polish Seminar on Positron Annihilation(PSPA10), Poland, June 2010.

[50] A. Miyazaki, “New Experiment for the First DirectMeasurement of Positron Hyperfine Splitting withsub-THz Light”, 39th Polish Seminar on PositronAnnihilation (PSPA10), Poland, June 2010.

[51] A. Miyazaki, “Positronium Hyperfine Splitting”,International School of Subnuclear Physics 2010,Italy, August 2010.

( )

[52] “LHC ”,2011 3

47 ::2010 7

[53] , “”.

[54] , “”.

[55] , “ ()”.

[56] , “X ’.

: :2010 9

[57] , “”.

[58] , “”.

[59] , “I ( )”.

[60] , “II ( )”.

[61] , ”LHC-ATLAS IDdiphoton ”

[62] ,”ATLAS 1Lepton”

[63] ,”LHC-ATLAS”

[64] ,”LHC-ATLAS”

[65] ,”LHC-ATLAS mono-jet”

[66] Khaw Kim Siang,”Search for SM Higgs decayingto two taus and NMSSM Higgs decaying to fourtaus with the ATLAS detector at 7 TeV CollisionEnergy”

69

Page 71: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.5. 2.

[67] ,”LHC-ATLAS MSSMH/A→ ττ

::2010 11

[68] , “”.

[69] , “”.

[70] , “ ”,GCOE5 RA , , 2011 2 .

[71] , “ ”,17

, , 2011 2 .

: 66 :

[72] , “I ( )”.

[73] , “II ( )”.

[74] , “”.

[75] , “”.

[76] ,”LHC-ATLAS WW →lnuqq ”

[77] ,”LHC-ATLAS

[78] ,”LHC-ATLAS”

[79] ,”LHC-ATLAS”

[80] ,”LHC-ATLAS 1Lepton”

[81] ,”LHC-ATLAS dilepton”

[82] ,”LHC-ATLAS ISR jetUniversal Extra Dimension ”

[83] ,”LHC-ATLAS”

( )

[84] A. Ishida, “Measurement of Hyperfine Splittingof Positronium (1. Indirect Measurement)”, T2Kseminar, J-Parc, 2010 7 .

[85] T. Yamazaki, “Measurement of Hyperfine Splittingof Positronium (2. Direct Measurement)”, T2Kseminar, J-Parc, 2010 7 .

70

Page 72: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3

3.1

3.1.1

2008

( )

(As, P )s± nodal s, d

[15]

[52] Pandey,

[53]

C22H14 TC =7 − 20K

(Fig.3.1.1)[56, 64]

LUMO LUMO+1K

K

3.1.1: Wannier wavefunctions in the conduction

band of K-doped aromatic (picene) solid.[56, 64]

TC

La2CuO4 HgBa2CuO4

TC

2Hg 2

Phys. Rev. Lett.[1, 54]

TC

TC

(HgBa2Can−1CunO2n+2, n = 1, 2, 3)

TC

[55, 63]

[16]

LaAlO3/LaNiO3

[62]

71

Page 73: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.1. 3.

,.

,

[13]

3.1.2

two-legladder(Fig.3.1.2)

[2]

3.1.2: An optical ladder lattice for cold fermionic

atoms.[2]

dimethy-laminopyrrole

[3]

3.1.3 Multiferroic

mul-tiferroic

uniformHund mul-

tiferroic (electromagnon)[34, 35, 57, 65]

[71]

3.1.4

( ) mass-less Dirac

masslessDirac N = 0

ripple[45]

[4, 19, 60]

[58]

Dirac

Massless Dirac 1e2/h 1/2

2

EF

Fig.3.1.3 2[6, 43, 44, 59]

Fig.3.1.3N = 0

[5, 67]

3.1.3: Various types of Dirac cones.

72

Page 74: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.1.

THz

acHall conductivity THz

robust

[20] THzFaraday

, THz FaradayGaAs/AlGaAs

Phys. Rev.Lett. [7, 30]

Avishai (Ben Gurion)

[8, 36, 37, 61]

N = 0 Landau

N = 0 Landau

[66]

massless Dirac Klein

Maksym, Roy (Leicester ), Craciun, Russo(Exeter ),

[22]

3.1.5

thresholdSchwinger-Landau-Zener

Eckstein, Werner (ETH)

Schwinger-Landau-Zener

Phys. Rev. Lett. [11]

Landau-Zener

Dykhne-Davis-Pechkas

(Bethe)

[9]

FLEX+Keldysh2

d-[10]

ac

FeshbachWerner ac

acFloquet

ac(Fig.3.1.4)

Phys. Rev. Lett.[12, 41, 42, 68]

ac Floquet(DMFT)

[21, 69][70]

3.1.4: Positive and negative T situations in an

inverted band in intense ac fields.[12]

73

Page 75: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.1. 3.

Dirac dc[18, 26]

(Aharonov-Anandan)

[38]

AdS/CFT QCD

(AdS/CFT )

QCD

(RIKEN), (CERN)

’t Hooft

1+1 QED[39]

3.1.6

network“tight-binding photonic band

[14, 26]photonic band

3.1.7

Caltech/IPMU)

Condensed Matter Physics Meets HighEnergy Physics IPMU Focus Week

[24][47] [25]

[31] [46][48] [49]

[50] [23][27, 28, 29, 32]

[33, 40, 51]

( )

[1] Hirofumi Sakakibara, Hidetomo Usui, KazuhikoKuroki, Ryotaro Arita and Hideo Aoki: Twoorbital model explains why the single-layer Hgcuprate have higher superconducting transitiontemperature than the La cuprate, Phys. Rev. Lett.105, 057003 (2010).

[2] M. Okumura, S. Yamada, M. Machida andH. Aoki: Phase-separated ferromagnetism in spin-imbalanced Fermi atoms loaded on an optical lad-der: a DMRG study, Phys. Rev. A 83, 031606(R)(2011).

[3] Yuji Suwa, Ryotaro Arita, Kazuhiko Kuroki andHideo Aoki: First-principles study of ferromag-netism for an organic polymer dimethylaminopy-rrole — a realization of organic periodic Andersonmodel, Phys. Rev. B 82, 235127 (2010).

[4] Tohru Kawarabayashi, Takahiro Morimoto, Ya-suhiro Hatsugai and Hideo Aoki: Anomalous criti-cality in the quantum Hall transition at n = 0 Lan-dau level of graphene with chiral-symmetric disor-ders, Phys. Rev. B 82, 195426 (2010).

[5] Tohru Kawarabayashi, Yasuhiro Hatsugai,Takahiro Morimoto and Hideo Aoki: Generalizedchiral symmetry and stability of zero modesfor tilted Dirac cones, Phys. Rev. B 83, 153414(2011).

[6] Haruki Watanabe, Yasuhiro Hatsugai and HideoAoki: Half-integer contributions to the quantumHall conductivity from single Dirac cones, Phys.Rev. B 82, 241403(R) (2010).

[7] Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto,H. Aoki and R. Shimano: Optical Hall effect in theinteger quantum Hall regime, Phys. Rev. Lett. 104,256802 (2010).

[8] Takahiro Morimoto, Yshai Avishai and HideoAoki: Dynamical scaling analysis of the opticalHall conductivity in the quantum Hall regime,Phys. Rev. B 82, 081404(R) (2010).

[9] T. Oka and H. Aoki: Dielectric breakdown ina Mott Insulator: many-body Schwinger-Landau-Zener mechanism studied with a generalized Betheansatz, Phys. Rev. B 81, 033103 (2010).

[10] T. Oka, H. Aoki: Nonequilibrium magnetic and su-perconducting phases in the two-dimensional Hub-bard model coupled to electrodes, Phys. Rev. B 82,0645160 (2010).

74

Page 76: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.1.

[11] M. Eckstein, T. Oka and P. Werner: Dielectricbreakdown of Mott insulators in dynamical mean-field theory Phys. Rev. Lett. 105, 146404 (2010).

[12] Naoto Tsuji, Takashi Oka, Philipp Werner andHideo Aoki: Changing the interaction of latticefermions dynamically from repulsive to attractivein ac fields, Phys. Rev. Lett., to be published.

[13] Yukihiro Ota, Masahiko Machida, Tomio Koyamaand Hideo Aoki: Leggett’s collective modes inmultiband superfluids and superconductors —Multiple dynamical classes, Phys. Rev. B 83,060507(R) (2011).

[14] Shimpei Endo, Takashi Oka and Hideo Aoki: Re-alization of tight-binding photonic bands in met-allophotonic waveguide networks with applicationto a flat band in kagome lattice, Phys. Rev. B 81,113104 (2010).

( )

[15] Kazuhiko Kuroki, Hidetomo Usui, Seiichiro Onari,Ryotaro Arita and Hideo Aoki: Pnictogen heightas a switch between high Tc nodeless and low Tc

nodal pairings in the iron based superconductors,Physica C 207, S416 (2010).

[16] Hirokazu Takashima, Ryotaro Arita, KazuhikoKuroki and Hideo Aoki: Functional renormaliza-tion group beyond the static approximation andits application to the two-dimensional Hubbardmodel, Physica C 207, S35 (2010).

[17] Takashi Oka and Hideo Aoki: Non-equilibriumsuperconductivity in a correlated electron systemstudied with the Keldysh+FLEX approach, Phys-ica C 207, S928 (2010).

[18] Takashi Oka, and Hideo Aoki: Photovoltaic Berrycurvature in the honeycomb lattice, J. Phys. Conf.Ser. 200, 062017 (2010).

[19] Tohru Kawarabayashi, Yasuhiro Hatsugai andHideo Aoki: Landau level broadening in graphenewith long-range disorder — Robustness of the n =0 level, Physica E 42, 759 (2010).

[20] Takahiro Morimoto, Yasuhiro Hatsugai and HideoAoki: Optical Hall conductivity in 2DEG andgraphene QHE systems, Physica E 42, 751 (2010).

[21] Naoto Tsuji, Takashi Oka, and Hideo Aoki:Nonequilibrium steady states in correlated electronsystems — Photoinduced insulator-metal transi-tion and optical response, J. Phys.: Conf. Ser.200, 012212 (2010).

[22] P. A. Maksym, M. Roy, M. F. Craciun, S. Russo,M. Yamamoto, S. Tarucha and H. Aoki: Proposalfor a magnetic field induced graphene dot, J. Phys.:Conf. Ser. 245, 012030 (2010).

( )

[23] Hideo Aoki: Integer quantum Hall effect (a chapterin Comprehensive Semiconductor Science & Tech-nology ed by P. Bhattacharya, R. Fornari and H.Kamimura, Elsevier, 2011).

( )

[24]IPMU65, 638 (2010)

[25] —2010 9

p.14

[26]

39, 445 (2010)

[27]45, 457 (2010)

[28] 45, 753 (2010)

[29]32, 196 (2011)

[30]66, 365 (2011)

( )

[31] Hideo Aoki: Collective modes in multi-band su-perfluids and superconductors (PLASMA2010, Hi-rosaki, May 2010).

[32] Hideo Aoki: How can we manipulate graphenephysics — chiral symmetry, topology and optics(UK-Japan Graphene Workshop, Lancaster, Feb.2011).

[33] Takashi Oka: Strong field physics in condensedmatter (PIF2010, arXiv:1102.2482).

[34] Takahiro Mikami, Takashi Oka and Hideo Aoki:Hund s-coupling-induced multiferroicity in muti-band insulators (SPQS2010, Tokyo, Aug. 2010).

[35] Takahiro Mikami, Takashi Oka and Hideo Aoki:Ferroelectricity-ferromagnetism coexistence andelectromagnons in multi-band electron systems(APS March Meeting, Dallas, Mar. 2010).

[36] Takahiro Morimoto, Y. Avishai, Hideo Aoki: Dy-namical scaling analysis of the optical Hall conduc-tivity in the graphene quantum Hall system withvarious types of disorder (HMF19, Fukuoka, Aug.2010).

[37] Takahiro Morimoto, Yasuhiro Hatsugai, HideoAoki: Dynamical scaling analysis of the opti-cal Hall conductivity in the quantum Hall regime(APS March Meeting, Dallas, Mar. 2011).

75

Page 77: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.1. 3.

[38] Takashi Oka, and Hideo Aoki: All optical mea-surement proposed for the photovoltaic Hall effect(HMF19, Fukuoka, Aug. 2010; arXiv:1007.5399).

[39] Takashi Oka and Hideo Aoki: Possible confinementphase in carbon-nanotubes and the extended mas-sive Schwinger model (APS March Meeting, Dallas,Mar. 2011).

[40] Takashi Oka: Strong field physics in a strongly cor-related system (DMQS2011, Tokyo, Feb. 2011).

[41] Naoto Tsuji, Takashi Oka, Philipp Werner andHideo Aoki: Ac-induced many-body interactionand superconductivity in correlated fermion sys-tems (SPQS 2010 , Tokyo, Aug. 2010).

[42] Naoto Tsuji, Takashi Oka, Philipp Werner andHideo Aoki: Correlated fermions driven by acfields: transition from repulsive to attractive inter-action (Boulder School for Condensed Matter andMaterials Physics, Boulder, July 2010).

[43] H. Watanabe, Y. Hatsugai and H. Aoki: Manip-ulation of the Dirac cones and the anomaly inthe graphene related quantum Hall effect (HMF19,Fukuoka, Aug. 2010; arXiv:1009.1959).

[44] Haruki Watanabe, Yasuhiro Hatsugai, and HideoAoki: Decomposition into half-integer quantumHall numbers from Dirac cones in a graphene-related lattice model (APS March Meeting, Dallas,Mar. 2010).

[45] Y. Hatsugai, T. Kawarabayashi, T. Morimoto andH. Aoki: Chiral symmetry in graphene (GrapheneWeek, Maryland, Apr. 2010).

(Colloquia)

[46] Hideo Aoki: How can we manipulate multibandsuperconductors — iron-based and aromatic com-pounds (ETH Zurich, July 2010).

( )

[47] (July 2010).

[48] (Aug. 2010).

[49] (Aug. 2010).

[50](Nov. 2010).

[51] —Schwinger-Landau-Zener

-Nov. 2010

[52]

Sept 2010

[53] S. Pandey, H. Kontani, D. S. Hirashima, R. Aritaand H. Aoki: Investigation of the role of spin-orbitcoupling on the transport properties of iron pnic-tide materials Sept 2010

[54] , , , ,dz2

Sept 2010

[55]HgBa2Can−1CunO2+2n+

( Sept 2010)

[56]K

Sept 2010

[57]

Sept 2010

[58] , ,

Sept 2010

[59] , ,

Sept 2010

[60] , ,

Sept 2010

[61] Y. Avishai

Sept 2010

[62]LaAlO3/LaNiO3

(Mar 2011)

[63](

Mar 2011)

[64]K

Mar 2011

[65] :

Mar 2011

[66]Mar

2011

[67]n = 0

Mar 2011

[68] Philipp Werner Ac

(June 2010)

76

Page 78: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.1.

[69] :Mar 2011

( )

[70] Naoto Tsuji: Theoretical study of nonequilibriumcorrelated fermions driven by ac fields ( ,2010 12 )

[71] Takahiro Mikami: Theoretical study of multifer-roicity in multi-band electron systems ( ,2011 1 )

77

Page 79: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.2. 3.

3.2

: (1)[1]

(2)

[2]

S = 1

3.2.1

[1]

[3, 4]

3.2.5

1 : 1.1[41, 45]

3.2.5:

3.2.6(a),(b)[5, 31, 39]

[43]

[21, 25, 33]

78

Page 80: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.2.

(a) (b)

3.2.6:(a)

(b): [5]

RbMnFe

VCr

CoNb

CsMnFex

[6, 58, 59]

6Zn

[37, 43] Potts

3.2.2

Landau-Zener[2]

JST[47]

[48, 49]

Dzyaloshinsky-Moriya

[7]

(cavity)

[8]Quantum RAM

( 3.2.7

0.8 1 1.20

1

ω

N=5,nphoton=5, g=0.1

kp=0.001,kS=0.001

χ(ω)

T=0.01, 1, 100

3.2.7: ( )

79

Page 81: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.2. 3.

[51]

[9]

[50]

S=1 bilinear-biquadratic model

[57]

[56]

[10, 11]

[22, 23, 26, 27, 28, 29]

[12, 13]

Derrida

AC[14, 15, 16, 17, 18, 19, 20, 52, 53, 54, 55]

( )

[1] S. Miyashita, Phase transition in spin systems withvarious types of fluctuations, Proceedings of theJapan Academy, Series B 86, 643-666 (2010).

[2] S. Miyashita, Quantum Dynamics under time-dependent external field, J. Compt. Theor.Nanosci. in press.

[3] M. Nishino, C. Enachescu, S. Miyahsita, K.Boukheddaden and F. Varret, Intrinsic effects ofthe boundary condition on switching processes ineffective long-range interactions originating fromlocal structual change, Phys. Rev.B 82, 020409 (1-4) (2010).

[4] C. Enachescu, M. Nishino, S. Miyashita, A.Hauser, A. Stancu and L. Stoleriu, Cluster evo-lution in spin crossover systems observed in theframe of a mechano-elastic model, Europhys. Lett.91, 27003 (1-6) (2010).

[5] T. Mori, Analysis of the sxactness of mean-fieldtheory in long-range interacting systems, Phys.Rev. E 82, 060103(1-4) (2010).

[6] H. Tokyo: experimental works:Novel magnetic functionalities of Prussian blue

analogs H. Tokoro, and S. Ohkoshi Dalton Transac-tions, in press (2011). Experimental access to elas-tic and thermodynamic properties of RbMnFe(CN)6K. Boukheddaden, E. D. Loutete-Dangui, E. Codjovi,M. Castro, J. A. Rodriguez-Velamazan, S. Ohkoshi, H.Tokoro, M. Koubaa, Y. Abid, F. Varret J. Appl. Phys.,109, 013520/1 (2011). Synthesis of a metal oxide witha room temperature photo-reversible phase transitionS. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto,A. Namai, F. Hakoe, H. Tokoro Nature Chemistry, 2,539 (2010). High proton conductivity in Prussian blueanalogs and the interference effect by magnetic order-ing S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto,Y. Tsunobuchi, H. Tokoro J. Am. Chem. Soc., 132,6620 (2010). Humidity sensitive magnet composed ofcyano-bridged Co-Nb bimetallic assembly K. Imoto,D. Takahashi, Y. Tsunobuchi, M. Arai, W. Kosaka, H.Tokoro, S. Ohkoshi Eur. J. Inorg. Chem., 4079 (2010).Observation of the fixed Fe-CN-Mn cluster in cesium

manganese hexacyanoferrate K. Ishiji, T. Matsuda, H.Tokoro, S. Ohkoshi, T. Iwazumi J. Phys. Soc. Jpn.,79, 074801 (2010). Photo-induced phase switching dy-namics in RbMn[Fe(CN)6] probed by accumulation freemid-infrared spectroscopy A. Asahara, M. Nakajima,R. Fukaya, H. Tokoro, S. Ohkoshi, T. Suemoto Phys.Status Solidi B, 248, 491-494 (2011). Effect of lat-tice deformation on photoinduced phase transition pro-cess in RbMn[Fe(CN)6] R. Fukaya, M. Nakajima, H.Tokoro, S. Ohkoshi, T. Suemoto Phys. Status Solidi B,248, 482-485 (2011). Dynamics of photoinduced phasetransitions in hexacyanoferrate studied by infrared andRaman spectroscopy T. Suemoto, R. Fukaya, A. Asa-hara, M. Nakajima, H. Tokoro, S. Ohkoshi Phys. StatusSolidi B, 248, 477-481 (2011).

80

Page 82: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.2.

[7] S. El Shawish,O. Cepas and S.Miyashita, Electronspin resonance in S=1/2 antiferromagnets at hightemperature, Phys. Rev.B 81, 224421 (1-9) (2010).

[8] I. Chiorescu, N. Groll, S. Bertaina, T. Mori andS. Miyashita, Magnetic strong couplomg in a spin-photon system and transition to classical regime,Phys. Rev. B 82, 024413 (1-7) (2010).

[9] F. Jin, H. De Raedt, S. Yuan, M. I.. Katsnelson, S.Miyashita and K. Michielsen, Approach to Equilib-rium in Nano-scale Systems at Finite TemperatureJ. Phys. Soc. Jpn. 79, 124005(1-10) (2010).

[10] S. Tanaka and S. Miyashita, Nonmonotonic dy-namics in a frustrated Ising model with time-dependent transverse field, Phys. Rev.E 81,051138 (1-8) (2010).

[11] S. Tanaka, M. Hirano and S. Miyashita, Quantumfield induced orderings in fully frustrated Ising spinsystems, Physica E 43, 766 (2011).

[12] H. Deradt, S. Zhao, S. Yuan, F. Jin, K. Michielsenand S. Miyashita, Event-by-event simulation ofquantum phenomena, Physica E 42, 298-302(2010).

[13] F. Jin, S. Yuan, H. De Raedt, K. Michielsen andS. Miyashita, Corpuscular Model of Two-Beam In-terference and Double-Slit Experiments with Sin-gle Photons, J. Phys. Soc. Jpn. 79, 074401 (1-14)(2010).

[14] Fluctuation Theorem and Microreversibility in aQuantum Coherent Conductor S. Nakamura, Y.Yamauchi, M. Hashisaka, K. Chida, K. Kobayashi,T. Ono, R. Leturcq, K. Ensslin, Keiji Saito, Y. Ut-sumi, A.C.Gossard, Phys. Rev. B, in press

[15] Generating Function Formula of Heat Transfer inHarmonic Networks Keiji Saito and Abhishek DharPhys. Rev. E, in press

[16] Linear response formula for finite frequency ther-mal conductance of open systems Abhishek Dhar,Onuttom Narayan, Anupam Kundu, and KeijiSaito Phys. Rev. E vol. 83 011101/1-4 (2011).

[17] K. Saito and T. Nagao, Chaotic Transport in theSymmetry Crossover Regime with a Spin-Orbit In-teraction, Phys. Rev. B 82,125322 (1-12) (2010).

[18] A. Dhar, O. Narayan, A. Kundu, and K. Saito,Green-Kubo formula for finite frequency thermalconductance of open systems, preprint

[19] K. Saito, G. Benenti and G. Casati, A microscopicmechanism for increasing thermoelectric efficiencyChemical Physics (2010), in press.

[20] S. Nakamura, Y. Yamauchi, M. Hashisaka, K.Chida, K. Kobayashi, T. Ono, R. Leturcq, K.Ensslin, K. Saito, Y.Utsumi and A. C. Gossard,Nonequilibrium Fluctuation Relations in a Quan-tum Electrical Conductor Phys. Rev. Lett. 104,080602 (2010).

( ( ))

[21] T. Fujiwara, Ordering process in a quantum spin-system with electron transfer, (2011) Master the-sis, The University of Tokyo.

( )

[22] T. Deguchi, C. Matsui, Algebraic aspects of thecorrelation functions of the integrable higher-spinXXZ spin chains with arbitrary entries, the pro-ceedings of Infinite Analysis 09 - New Trends inQuantum Integrable System.

( )

[23] C. Matsui, Central charge of integrable alternat-ing spin chains, CREST 2010 International Sym-posium on Physics of Quantum Technology, Tokyo,2010/04/06-09.

[24] K. Hijii, Nonadiabatic transition under an asym-metricallt periodic field, CREST 2010 Interna-tional Symposium on Physics of Quantum Tech-nology, Tokyo, 2010/04/06-09.

[25] T. Fujiwara, Growth of spin correlation owing toquantum charge fluctuation, CREST 2010 Interna-tional Symposium on Physics of Quantum Technol-ogy, Tokyo, 2010/04/06-09.

[26] C. Matsui, Correlation functions of integrable spinchains with boundaries, Days on Diffraction, St.Petersburg, Russia, 2010/05/30 - 06/03.

[27] C. Matsui, Correlation functions of integrablespin chains with boundaries, RAQIS10, Annecy,France, 2010/06/15 -18.

[28] C. Matsui, Correlation functions of integrable spinchains with boundaries, Finite-Size Technologyin Low-Dimensional Quantum Systems (V), Be-nasque, Spain, 2010/06/27 - 07/17.

[29] C Matsui, correlation functions of integrablehigher spin chains with boundaries, 24th IUPAPInternational Congerence on Statistical Physics,Cairns, Australia, 2010/07/19-23.

[30] S. Miyashita, Phase transition and its dynamicsin the spin-crossover type materials, 24th IUPAPInternational Congerence on Statistical Physics,Cairns, Australia, 2010/07/19-23.

[31] T. Mori, On Exactness of the Mean-Field Theoryin Long-Range Interacting Systems, 24th IUPAPInternational Congerence on Statistical Physics,Cairns, Australia, 2010/07/19-23.

[32] S. Morita, Quantum-thermal annealing withcluster-flip Monte Carlo method, 24th IUPAPInternational Congerence on Statistical Physics,Cairns, Australia, 2010/07/19-23.

[33] T. Fujiwara, Growth of spin correlation owing toquantum charge fluctuation, 24th IUPAP Interna-tional Congerence on Statistical Physics, Cairns,Australia, 2010/07/19-23.

81

Page 83: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.2. 3.

[34] K. Hijii, Nonadiabatic transition between Floquetstates, 24th IUPAP International Congerence onStatistical Physics, Cairns, Australia, 2010/07/19-23.

[35] T. Fujiwara, Non-monotonic spin correlation as afunction of temperature owing to quantum charfefluctuation, International Workshop on StatisticalPhysics of Quantum Systems (SPQS2010), Tokyo,2010/08/02-04.

[36] K. Hijii, Nonadiabatic transition in Floquet statesunder an asymmetrically periodic field, Interna-tional Workshop on Statistical Physics of QuantumSystems (SPQS2010), Tokyo, 2010/08/02-04.

[37] S. Kamatsuka, Mixture phase in generalized q-state model, International Workshop on StatisticalPhysics of Quantum Systems (SPQS2010), Tokyo,2010/08/02-04.

[38] C. Matsui, Correlation functions of integrablespin chains with boundaries, International Work-shop on Statistical Physics of Quantum Systems(SPQS2010), Tokyo, 2010/08/02-04.

[39] T. Mori, Analysis of Exactness of the Mean-FieldTheory in Long-Range Interacting Systems, Inter-national Workshop on Statistical Physics of Quan-tum Systems (SPQS2010), Tokyo, 2010/08/02-04.

[40] S. Morita, Conveyance of quantum particles by ac-celerated motion of a potential-well, InternationalWorkshop on Statistical Physics of Quantum Sys-tems (SPQS2010), Tokyo, 2010/08/02-04.

[41] T. Nakada, Ordering processes of spin-crossovermaterialsin competition between long and shortrange interactions, International Workshop on Sta-tistical Physics of Quantum Systems (SPQS2010),Tokyo, 2010/08/02-04.

[42] C. Matsui, The ground state of the integrablespin-s XXZ spin chain with boundaries” The In-ternational Workshop on Dynamics and Manipu-lation of Quantum Systems(DMQS2010), Tokyo,2011/02/14-16.

[43] S. Kamatsuka, Magnetic order of the Heisen-berg ferromagnetic model with dipole-dipole in-teractions on the sphere, The International Work-shop on Statistical Physics of Quantum Systems(DMQS2010), Tokyo, 2011/02/14-16.

[44] T. Fujiwara, Ordering process in a quantum spinsystem with electron transfer, The InternationalWorkshop on Statistical Physics of Quantum Sys-tems (DMQS2010), Tokyo, 2011/02/14-16.

[45] T. Nakada, Two-body interaction model for elasticinteraction of lattice distortion, The InternationalWorkshop on Statistical Physics of Quantum Sys-tems (DMQS2010), Tokyo, 2011/02/14-16.

[46] T. Mori, Inhomogeneous States in Long-RangeInteracting Systems, The International Work-shop on Statistical Physics of Quantum Systems(DMQS2010), Tokyo, 2011/02/14-16.

[47] S. Miyashita, Manipulation of quantum dynamicsand quantum simulation, CREST 2010 Interna-tional Symposium on Physics of Quantum Tech-nology, Tokyo, 2010/04/06-09.

[48] S. Miyashita, Study on the line shape of ESR formolecular magnets, 6th Interinational Workshopon Nanomagnetism and Superconductivity, ComaRuga, Spain, 2010/06/30-7/1.

[49] S. Miyahsita, Reduction of the system dynamicsfrom the total system including the environment,Physics and Chemistry in Quantum DissipativeSystems, Kyoto, 2010/08/10.

[50] S. Miyashita, Incomplete magnetic ordered groundstate in frustrated and itinerant magnets, TheWorkshop on ”Resonating Valence Bond Physics:Spin Liquids and Beyond, Budapest, Hungary,2010/10/13-15.

[51] S. Miyashita, Response spectrum of photon-mediated interacting systems, The Interna-tional Workshop on Dynamics and Manipula-tion of Quantum Systems(DMQS2010), Tokyo,2011/02/14-16.

[52] K. Saito, “Heat Conduction in Three DimensionalAnharmonic Crystals” Heat Control and Thermo-electricity, Italy, 2010/11.

[53] K. Saito, Heat Conduction in Three DimensionalAnharmonic Crystals, Transmission of Informationand Energy in Nonlinear and Complex Systems,Singapore, 2010/07.

[54] K.Saito, Quantum Fluctuation Relation in Meso-scopic Conductors, International Workshop onStatistical Physics of Quantum Systems Tokyo,2010/08/02-04.

[55] K. Saito, Additivity principle in high-dimensionalharmonic lattices, The International Workshopon Dynamics and Manipulation of Quantum Sys-tems(DMQS2010), Tokyo, 2011/02/14-16.

[56] S. Morita, Convergence of Quantum Particlesby an Acceleration Potential-Well, TheInterna-tional Workshop on Dynamics and Manipula-tion of Quantum Systems (DMQS2010), Tokyo,2011/02/14-16.

[57] Keigo Hijii An additional SU(2) symmetry of theone-dimensional spin-1 BQ model with single ionanisotropy The International Workshop on Dy-namics and Manipulation of Quantum Systems(DMQS2010) Tokyo, 2011/02/14-16.

[58] H. Tokoro, S. Ohkoshi, Light-induced phase col-lapse in a rubidium manganese hexacyanoferrateInternational Chemical Congress of Pacific BasinSocieties, December 19, 2010, Hawaii (USA).

[59] H. Tokoro, S. Ohkoshi, Reversible PhotomagneticEffect in Rubidium Manganese Hexacyanoferrate

82

Page 84: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.2.

(Poster) H. Tokoro, S. Ohkoshi The 12th Inter-national Conference on Molecule-based Magnets,October 10, 2010, Beijing (China).

( )

[60] , XXZ, , ,

2010/09/23-26.

[61] , , Q, ,

, 2010/09/23-26.

[62] , , ,,

, , 2010/09/23-26.

[63] , ,, , ,

2010/09/23-26.

[64] , , C. Enachescu, K. Boukhed-daden, F. Varret,

, 2010, , 2010/09/23.

[65] , ,, 2010

, , 2010/09/23-26.

[66] 1 , , Floquet, 2010 , ,

2010/09/23-26.

[67] , XXZ, , ,

2011/11/15-17.

[68] S. Morita, Conveyance of quantum particle by ac-celerating potential-well,

2010 ,2010/12/08-11.

[69] K. Hijii and S. Miyashita, Nonadiabatic transitionsbetween adiabatic Floquet states under sweepedmagnetic field,

2010 , 2010/12/08-11.

[70] , ,

, , 2/22-2/23.

[71] ,,

, ,2/22-2/23.

[72] , Zq, 2011 ,

, 2011/03/25-28. .

[73] ,, 2011 , ,

2011/03/25-28 .

[74] ,,

2011 , , 2011/03/25-28 .

[75] ,, 2011

, , 2011/03/25-28 .

[76] , ,, 2011 ,

, 2011/03/25-28 .

[77] , , , Tomio Petrosky,2

, 2011 ,

[78] Generating Function Formula of Heat Transfer inHarmonic Networks

3 25 ( ) 28 ( )

[79]

, 2010 6 22, 23

[80]4 G-COE

2010 12 5

[81]

, 2010 6 22, 23

[82]4 G-COE

2010 12 5

[83] International Workshop on Statistical Physics ofQuantum Systems August 2-4, 2010, Tokyohttp://looper.t.u-tokyo.ac.jp/spqs2010/

[84] The Third International Workshop on Dynam-ics and Manipulation of Quantum Systems(DMQS2010) 14-17 Feb. 2011, Tokyohttp://spin.phys.s.u-tokyo.ac.jp/conference/DMQS2010/

83

Page 85: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.3. 3.

3.3

-

( )

3.3.1

STS)

t-Jdx2−y2-

[17, 28] t-J

2 CuO2

unit cell CuO2 12 3

CuO2

t-J RVB

(1)(2)

[35]

(S = 0)

(doublon) (holon)

doublon-holonξdh doublon ξdd

ξdhξdd doublon-holon

[7, 14, 22, 33]

3.3.2

2008

[1, 19, 20, 31, 32, 34, 51]5 RPA

Bogoliubov-de Gennes

(1)s+− s++

(2)

[20, 32, 47, 51]

84

Page 86: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.3.

3.3.8: %

T

T

[19, 20, 34]

d

Bogoliubov-de Gennes

d

3.3.8(1)

(2) Δ0

(3) 0.5Δ0 0.7Δ0

[41]

Jahn-Teller

3d

orthorhombic dxzdyz

dxzdyz Jahn-Teller

orthorhombic

[21, 42]

5 tight-bindingdxz dyz

s+−Tc

[6, 15, 23, 36, 43]

3.3.3

-

- , TPP[FePc(CN)2]2,3/4 (Pc)

(π )S = 1/2

Fe Co TPP[CoPc(CN)2]2Fe

Co S = 0Co Fe

TPP[FexCo1−xPc(CN)2]2 (x = 0.03)π

(π-d )

85

Page 87: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.3. 3.

π-dπ-d

Pc Fe d

π-d

d Pc d( )

π-d

[39, 44, 46, 52]

120

d+id RVB

[8, 48]

θ-

θ-(BEDT-TTF)2X

V

[18, 49]

Peierls -Schrodinger

1-

2

3.3.4

FFLO

FFLO

CeCoIn5

Bogoliubov-de Gennes

[16, 37]

3.3.5

Bi

3.3.9

[50]

-

ω > 15meV

86

Page 88: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.3.

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

T X Γ L T

Ener

gy [

eV]

3.3.9: L

T

0.8

0.6

0.4

0.2

0.0

Re

σ ����� σ

��0

6543210 ω / Δ

Γ/Δ = 0.02

Γ/Δ = 0.02 0.06

0.10 0.06 0.10

3.3.10:

Γ

3.3.10

[45]

[53, 54, 55]

3.3.6

Potts

KOs2O4 βK

Potts

1

KkB log 1.3

KOs2O4

[5, 12]

87

Page 89: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.3. 3.

3.3.7

2

2

[2]

f2 -

f2

f-

(QCP) T ∗F2

f

QCP T ∗F T ∗FHz

[3, 11, 24, 38]

local Fermi liquid heavy Fermi liquid

ff

T 2

“heavy Fermiliquid” Ce La

f f“local

Fermi liquid”f

local Fermi liquid heavy Fermi liquid

f

ff

flocal Fermi liquid

heavy Fermi liquid[4, 13]

( )

[1] T. Kariyado and M. Ogata: J. Phys. Soc. Jpn. 79,083704 (2010). “Single Impurity Problem in Iron-Pnictide Superconductors”

[2] H. Matsuura, S. Tanikawa, and K. Miyake: J.Phys. Soc. Jpn. 79, 074705 (2010). “Variety ofFixed Points of Two-Level Kondo Model with SpinDegrees of Freedom”

[3] S. Nishiyama, H. Matsuura, and K. Miyake: J.Phys. Soc. Jpn. 79, 104711 (2010). “Magneti-cally Robust Non-Fermi Liquid Behavior in HeavyFermion Systems with f2-Configuration: Com-petition between Crystalline-Electric-Field andKondo-Yosida Singlets”

[4] H. Watanabe and M. Ogata: Phys. Rev. B 81,113111 (2010). “Crossover from dilute-Kondo sys-tem to heavy-fermion system”

[5] R. Igarashi and M. Ogata: submitted to Phys. Rev.B. “Partial order in a frustrated Potts model”

[6] N. Arakawa and M. Ogata: to appear in J.Phys. Soc. Jpn.. “Orbital-Selective Superconduc-tivity and the Effect of Lattice Distortion in Iron-Based Superconductors”

[7] H. Yokoyama, T. Miyagawa, M. Ogata: submittedto J. Phys. Soc. Jpn.. “Effect of Doublon-HolonBinding on Mott transition—Variational MonteCarlo Study of Two-Dimensional Bose HubbardModels”

( )

[8] Y. Hayashi and M. Ogata: Proceeding of the8th International Symposium on Crystalline Or-ganic Metals, Superconductors and Ferromag-nets (ISCOM2009) (Niseko, Japan, 9.12-17, 2007)Physica B 405, S150 (2010). “Variational MonteCarlo Study of the Spin Liquid State with One-dimensionalization”

[9] H. Yokoyama, M. Ogata, and K. Kobayashi: Pro-ceeding of 9th International Conference on Mate-rials and Mechanisms of Superconductivity (M2S2009), (Tokyo, September 7-12, 2009). PhysicaC 470, S149-150 (2010). “Close relation betweenantinodal Fermi-surface effect and superconductiv-ity in cuprates”

88

Page 90: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.3.

[10] T. Kariyado and M. Ogata: Proceeding of 9th In-ternational Conference on Materials and Mecha-nisms of Superconductivity (M2S 2009), (Tokyo,September 7-12, 2009). Physica C 470, S334-335(2010). “Nuclear magnetic relaxation rate in iron-pnictide superconductors”

[11] S. Nishiyama, H. Matsuura, and K. Miyake: J.Phys.: Conf. Ser. 273, 012047 (2010). “Magneti-cally Robust Non-Fermi Liquid Behavior in HeavyFermion Systems with f2-Configuration: Com-petition between Crystalline-Electric-Field andKondo-Yosida Singlets”

[12] R. Igarashi and M. Ogata: Proceeding of The In-ternational Conference on Magnetism 2009 (ICM2009), (Karlsruhe, Germany, July 26-31, 2009). J.Phys.: Conf. Ser. 200, 022019 (2010). “Partial or-der of frustrated Potts model”

[13] H. Watanabe and M. Ogata: Proceeding of ICM2009. J. Phys.: Conf. Ser. 200, 012221 (2010).“Ground State Properties of Randomly-DopedKondo Lattice Model”

[14] H. Yokoyama, T. Miyagawa, and M. Ogata: Pro-ceeding of 23rd International Symposium on Su-perconductivity, to be published in Physica C(2011). “Mechanism of superfluid-insulator transi-tion in two dimensional Bose Hubbard model”

( )

[15] “Theoretical Study on Magnetism andSuperconductivity in Multi-orbital Systems” (

()

[16] : “ Fulde-Ferrell-Larkin-Ovchinni-kov ” (

)

( )

[17] M. Ogata: International Conference Superstripes2010 “Quantum Phenomena in Complex Matter”(Erice-Sicily, July 19-25, 2010). “Theory for Inho-mogeneous Superconductors: Approach from thet-J Model”

[18] M. Ogata: 11th German-Japanese Symposiumin 2010 “New Quantum States and Phenom-ena in Condensed Matter” (Miyajima, Hiroshima,September 13-16, 2010) “Charge order and super-conductivity in organic conductors”

[19] T. Kariyado and M. Ogata: Emergent QuantumStates in Complex Correlated Matter (Dresden,Germary, August 23-27, 2010). “Single ImpurityProblem in Iron-Pnictide Superconductors”

[20] T. Kariyado and M. Ogata: International Work-shop on Novel Superconductors and Super Materi-als 2011 (Tokyo, March 6-8, 2011). “Impurity In-duced Mid-Gap Bound States in Iron-Pnictide Su-perconductors”

[21] N. Arakawa and M. Ogata: International Work-shop on Novel Superconductors and Super Mate-rials 2011, (Tokyo, March 6-8, 2011). “Theoreticalanalysis of the ordered states in iron-based com-pounds on the basis of a two-orbital model”

[22] H. Yokoyama, T. Miyagawa, and M. Ogata: 23rdInternational Symposium on Superconductivity(Tsukuba, Ibaraki, November 1-3, 2010). “Mech-anism of superfluid-insulator transition in two di-mensional Bose Hubbard model”

[23] N. Arakawa and M. Ogata: 23rd InternationalSymposium on Superconductivity (Tsukuba,Ibaraki, November 1-3, 2010). “Orbital-selectivesuperconductivity in Iron-based compounds”

[24] S. Nishiyama, H. Matsuura, and K. Miyake:Strongly Correlated Electron Systems - SCES 2010(Santa Fe, U.S.A. June 27-July 2, 2010). “Magnet-ically robust non-Fermi liquid behavior due to thecompetition between crystallineelectric-field sin-glet and Kondo-Yosida singlet in f2-based heavyfermion systems”

[25] H. Yamaguchi, H. Matsuura, S. Watanabe, andK. Miyake: Strongly Correlated Electron Systems- SCES 2010 (Santa Fe, U.S.A. June 27- July 2,2010). “Research on mechanism of magnetism inVanadium-Benzene cluster”

[26] H. Matsuura, K. Miyake, and H. Fukuyama: Inter-national Conference on Science and Technology ofSynthetic Metals (ICSM 2010) (Kyoto, Japan, July4-9, 2010). “Mechanism of Room Temperature Fer-romagnetism in V(TCNE)x: Role of Hidden FlatBands”

[27] M. Ogata and T. Kariyado: International Confer-ence on Core Research and Engineering Scienceof Advanced Materials (Osaka, June 1–2, 2010).“Simple real-space picture of nodeless and nodal s-wave gap functions in Iron-Pnictide superconduc-tors”

[28] M. Ogata: CIMTEC 2010 — 12th InternationalConference on Modern Materials and Technologies,5th Forum on New Materials (Montecatini Terme,Italy, June 13–18, 2010). “Theory for Inhomoge-neous Superconductors: Approach from the t-JModel”

[29] M. Ogata: IMR Workshop “Recent Progresson Spectroscopies and High-Tc Superconductors”(IMR, Sendai, August 9–11, 2010). “Order param-eters and impurity effects in iron-pnictide super-conductors”

89

Page 91: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.3. 3.

[30] M. Ogata and T. Kariyado: Opening Symposiumof QS2C Theory Forum (RIKEN, Wako Septem-ber 27-30, 2010). “Order parameters and impurityeffects in iron-pnictide superconductors”

[31] M. Ogata and T. Kariyado: Super-PIRE/Reimei/MWN Joint Kickoff Meeting(Knoxville, Tennessee, October 28-31, 2010).“Order parameters and impurity effects iniron-pnictide superconductors”

[32] M. Ogata and T. Kariyado: 2011 APCTP Win-ter Workshop on Frontiers in Electronic QuantumMatter (Pohang, Korea, February 16-19, 2011).“Order parameters and impurity effects in iron-pnictide superconductors”

( )

[33]2010, 9.23–9.26 “ -

[34] :2010, 9.23–9.26 “

[35]2010, 9.23–9.26 “

t-J ”

[36]2010, 9.23–9.26 “

[37]2010, 9.23–9.26 “2 FFLO

BKT ”

[38] :2010, 9.23–9.26 “f2

-”

[39] :2011, 3.25–3.28( )

“ - gπ-d ”

[40]“

d ”

[41] :“d

[42]“ 2

[43] 42010, 11.13–11.15 “

[44]G-COE

2010, 12.3–12.5 “- g

π-d ”

[45]4 (

2011, 1.5–1.7) “”

[46] :

( 2011, 1.5–1.7) “ -g π-d

[47] :

2011, 2.22-2.23 “

[48]2010, 5.28–5.29 “ ”

[49] 2010, 9.23–9.26 8, 5, 7, 10

“ ”“ ”

[50]2010,

10.15–16 “ ”

[51] : TRIP( 2010, 11.28) “Order Parame-

ters and Impurity Effects in Iron-Pnictide Super-conductors”

[52] :2011, 2.28–3.2 “ -g π-d

( )

[53]2010, 8 “

[54] Y. Fuseya, M. Ogata and H. Fukuyama ES-PCI Paris (France), seminar 2010, 9 “QuantumTransport Phenomena of Dirac Electrons in Bis-muth”

[55]2010, 11 “

90

Page 92: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.4.

3.4

.

.

.

3.4.1

(DFT) LDAGGA

DFT

(TC) DFT

TCF = exp[−∑

i<j uij ] uij

HHTC = F−1HF

1

(ConfigurationInteraction)

TC

(i)

k(ii) TC

TC+Configuration Interaction Singles (TCCIS)

(iii)TC

(i)-(iii)

( )

3.4.11 L�

10

100

1000

100 1000

300K

1000K

300K

Diamond

Si

Ballistic limit

Diffusive limit

3.4.11: (L)

FMO-LCMO FMO-LCMO

91

Page 93: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.4. 3.

FMO(Fragment Molecular Orbital)LCMO(Linear Combination of Molecular Orbitals)

DNA

FMO

FMOFMO-LCMO

DNA 3.4.12FMO-LCMO

3.4.12: FMO-LCMO 12

DNA HOMO

Hartree-Fock HOMO

97.4%

3.4.2

2

Gd CrGaN

AlN/MgB2(0001)

22p//

Heisenberg 2

2p//

AlN/MgB2(0001)2p// Ni

Fe 3.4.13Fermi

Fermi2p//

Bloch2 AlN/MgB2(0001)

Hund Fermi

0

−4 −2 0 2 4

0

−4 −2 0 2 4

interface N p||

Loca

l den

sity

of s

tate

s [a

rb. u

nits

]

(a) (b)

Energy relative to εF [eV] Energy relative to εF [eV]

Loca

l den

sity

of s

tate

s [a

rb. u

nits

]

(c)

0

down

up

fcc Ni

down

up

bcc Fe

down

up

3.4.13: (a) AlN/MgB2(0001)

2p// (b) bcc Fe (c) fcc Ni

92

Page 94: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.4.

BaTiO3

BaTiO3

Tetragonal

Oxygen vacancy, Nb5+ at Ti4+

site, etc.

BaTiO3

LDA

BaTiO3 Tetragonalc/a = 1.009

(Exp. 1.011) 3.4.14 TetragonalBaTiO3

c/aNelec. � 0.10e/unit cell (1.6×1021 cm3)

Tetragonal Cubic

3.4.14 0.10 e/unit cellCubic

BaTiO3 Ti-3dTi

ABO3 tolerance factorB

Ti Ti

Ti4+

Nb5+ (VO2+) 3

40–270Cubic

Nb5+

0.05e/unit cell, VO2+ 0.06e/unit cell

3.4.14: BaTiO3(Tetra )c/a

ESM

MPI OpenMPhybrid xTAPPESM

[1] , 30

( )

[2] Yoshiki Iwazaki, Toshimasa Suzuki, and ShinjiTsuneyuki, “Negatively charged hydrogen atoxygen-vacancy sites in BaTiO3: Density-functional calculation”, J. Appl. Phys. 108 (2010)083705.

[3] Y. Gohda and A. Oshiyama, “Stabilization Mecha-nism of Vacancies in Group-III Nitrides: ExchangeSplitting and Electron Transfer”, J. Phys. Soc.Jpn. 79, 083705 (2010).

[4] Y. Gohda and S. Tsuneyuki, “Two-dimensionalintrinsic ferromagnetism at nitride-boride inter-faces”, Phys. Rev. Lett. 106, 047201 (2011).

( )

[5] Y. Gohda and A. Oshiyama, “First-principles cal-culations on spin polarization of vacancies in ni-tride semiconductors”, AIP Conf. Proc., in press.

93

Page 95: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3.4. 3.

( )

[6] ,

, Vol. 15, No.3, p.7 (2010).

[7],

, Vol. 15, No.3, p.8 (2010).

[8] BaTiO3

2011 6

( )

[9] “Efficient algorithm of thetranscorrelated method for first-principles elec-tronic structure calculation”

, 2011 .

( )

[10] ( ), GaN(

).

( )

[11] S. Tsuneyuki, S. Furuya, Y. Yoshimoto, ’Theo-retical Study of a Strain-Induced Nanostructureat N/Cu(001) Surface’, Tsinghua Week at Todai”The Frontier Science Workshop on CondensedMatter Physics and Nanoscience”, The Universityof Tokyo, May 13, 2010.

[12] M. Ochi, K. Sodeyama, R. Sakuma, and S.Tsuneyuki, “Transcorrelated method - an orbitaloptimization of Jastrow-Slater wave functions -:an efficient algorithm for this method”, CECAMWorkshop: “Quantum Monte Carlo meets Quan-tum Chemistry: new approaches for electron cor-relation”, Lugano, Switzerland, Jun. 15-18, 2010.

[13] S. Tsuneyuki, ’Atomistic Modeling of MaterialsBased on First-Principles Electronic Structure Cal-culation’, Asian CMD Workshop in Indonesia, In-stitut Teknologi Bandung, July 22, 2010.

[14] Y. Iwazaki, T. Suzuki, Y. Mizuno and S.Tsuneyuki: GGA+U calculations of oxygen va-cancies in perovskite-type oxides, Fourth Interna-tional conference on Science and Technology forAdvanced Ceramics (STAC-4), Yokohama, Japan,June 21, 2010

[15] Y. Gohda and S. Tsuneyuki, “Interface atomicstructures and electronic properties of group-III ni-trides”, Psi-k Conference 2010 (Berlin, Germany,Sep. 13, 2010).

[16] Y. Ando, Y. Gohda, and S. Tsuneyuki:”First-Principles study of Schottky contacton SiON/SiC(0001)” Ψk-2010 Conference, BerlinGermany, Sep. 13, 2010.

[17] M. Ochi, K. Sodeyama, R. Sakuma, and S.Tsuneyuki, “Excited states calculations with thetranscorrelated+CIS (TCCIS) method for solids”,Ψk-2010 Conference, Berlin, Germany, Sep. 12-16,2010.

[18] T. Tadano, Y. Gohda and S. Tsuneyuki: First-principles modeling of anharmonic lattice vibra-tions toward lattice thermal-conductivity calcula-tions, Ψk-2010 Conference, Berlin, Germany, Sep.14, 2010.

[19] T. Tadano, Y. Gohda and S. Tsuneyuki: Latticethermal conductivity with first-principles anhar-monic lattice model, 2011 APS March Meeting,Dallas, TX, USA, Mar. 21, 2011.

[20] Y. Gohda and S. Tsuneyuki, “Intrinsic ferromag-netism at AlN-MgB2 interfaces”, 2011 APS MarchMeeting, (Dallas, TX, USA, Mar. 22, 2011).

[21] S. Tsuneyuki, ’First-principles modeling of theelectronic structure of proteins’, COE Start-up In-ternationa Workshop ”Organic Semiconductors to-wards the next”, Chiba University, Nov. 11, 2010.

( )

[22] , , , Transcor-related+CIS (TCCIS)

,

,, 2010 5 27-28 .

[23] , , , FMO

, , , 2010 9 14-15

[24],

, 2010 9 17 .

[25], 2010

, , 20109 23 .

[26] , ,,

2010 , , 2010 926 .

[27],

, , 2010 1027

94

Page 96: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3.4.

[28]/

,, , 2010

10 29 .

[29] , , , FMO-LCMO ,

, , 2011 1 5-7

[30]2 ,

5, , 2011 2

22 .

[31] , , , FMO-LCMO ,

5 , , 20112 22-23 .

[32],

5, , 2011 2 22-23 .

[33] , , ”” ,

5, , 2011 2

22-23 .

[34] , ,,

5 , , 20112 22-23 .

[35] , , ,

,5

, , 2011 222-23 .

[36]BaTiO3

, 2011 ,, 2011 3 16

[37] , , ”” ,

, 2011 3 28 .

[38]66

2011 3 28

[39] , ,,

66 , ,2011 3 28 .

[40] ,

, 66, , 2011 3 25-28 .

[41], 20

, 2010 5 29 .

[42], ,

2010 7 26 .

[43], CMD

, 2010 9 10 .

[44] ,, , 2010 9 30 .

[45] ,

1 5, 2011

1 17 .

[46] CMSI,

, 2011 2 5 .

[47] FMO-LCMO,

,2011 2 5 .

[48] ( ),, 2011 2

7 .

( )

[49] Yoshiki Iwazaki Theoretical Study of Defectinduced Electronic and Structural Properties inPerovskite-type Oxides NIMS-CMS ,

( ), 2011 2 3

[50] Y. Gohda, “Itinerant two-dimensional ferromag-netism at nitride-boride interfaces”, Open seminarof the Nano-system group, AIST, Tsukuba, Japan,Feb. 18, 2011.

95

Page 97: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4

4.1

angle-resolvedphotoemission spectroscpy: ARPES) X

soft x-ray magnetic circular dichroism:XMCD)

X

SPring-8

4.1.1

20

“ ”

ARPES

ARPES

Tc

Tc

CuO2 33 Bi2Sr2Ca2Cu3O10+δ

ARPE 3CuO2 CuO2

CuO2

CuO2 “2 ”Tc

CuO2

.

Tc

Tc

[6]

Y1−zLaz(Ba1−xLax)2Cu3Oy

DMFT

[7]

3

22

33

BaFe2(As1−xPx)2

3

[15]

4.1.2

-

100%

“”

XMCD

96

Page 98: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.1.

Co2MnGe/MgO

Co2MnGe MgO Co,MnXMCD MgOCo Mn Co

Co

[12]

Ti1−xCoxO2

Ti1−xCoxO2

Co XMCD

Co

nm

[16]

[1] 5 201011

[2] 2011 3

[3] 2011 3

[4] -11 22

( )

[5] K. Yoshimatsu, T. Okabe, H. Kumigashira,S. Okamoto, S. Aizaki, A. Fujimori, andM. Oshima: Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films, Phys.Rev. Lett. 104, 147601–1-4 (2010).

[6] S. Ideta, K. Takashima, M. Hashimoto, T.Yoshida, A. Fujimori, H. Anzai, T. Fujita, Y.Nakashima, A. Ino, M. Arita, H. Namatame, M.Taniguchi, K. Ono, M. Kubota, D. H. Lu, Z.-X. Shen, K. M. Kojima, and S. Uchida: En-hanced superconducting gaps in the tri-layer high-temperature Bi2Sr2Ca2Cu3O10+δ cuprate super-conductor, Phys. Rev. Lett. 104 227001–1-4,(2010); arXiv:0905.1223.

[7] M. Ikeda, M. Takizawa, T. Yoshida, A. Fujimori,K. Segawa, and Y. Ando: Chemical potentialjump between the hole-doped and electron-dopedsides of ambipolar high-Tc cuprate superconduc-tors, Phys. Rev. B 82, 020503(R)–1-4 (2010);arXiv:1001.0102.

[8] T. Yoshida, M. Hashimoto, T. Takizawa, A. Fuji-mori, M. Kubota, K. Ono, and H. Eisaki: Massrenormalization in the band width-controlledMott-Hubbard systems SrVO3 and CaVO3

studied by angle-resolved photoemission spec-troscopy, Phys. Rev. B 82, 085119–1-5 (2010);arXiv:1003.2269.

[9] T. Kataoka, Y. Yamazaki, Y. Sakamoto, A. Fuji-mori, A. Tanaka, S. K. Mandal, T. K. Nath, D.Karmakar, and I. Dasgupta: Surface- and bulk-sensitive x-ray absorption study of the valencestates of Mn and Co ions in Zn1−2xMnxCoxOnanoparticles, Appl. Phys. Lett. 96, 252502–1-7(2010).

[10] N.L. Saini, B. Joseph, A. Iadecola, T. Mizokawa,A. Fujimori, and T. Ito: Photoemission study ofLa8−xSrxCu8O20: Impact of the charge and spindensity waves on the electronic structure, J. Phys.Soc. Jpn. 79, 114718 (2010).

[11] J. Okamoto, D.J. Huang, K. S. Chao, S.W.Huang, C.-H. Hsu, A. Fujimori, A. Masuno, T.Terashima, M. Takano, and C.T. Chen: Quasi-two-dimensional d-spin and p-hole ordering in a three-dimensional Fe perovskite La1/3Sr2/3FeO3, Phys.Rev. B 82, 132402–1-4 (2010)

[12] D. Asakura, T. Koide, S. Yamamoto, K. Tsuchiya,T. Shioya, K. Amemiya, V.R. Singh, T. Kataoka,Y. Yamazaki, Y. Sakamoto, A. Fujimori, T. Taira,and M. Yamamoto: Magnetic states of Mn and Coatoms at Co2MnGe/MgO interfaces seen via soft x-ray magnetic circular dichroism study, Phys. Rev.B 82, 184419–1-8 (2010).

[13] H. Anzai, A. Ino, T. Kamo, T. Fujita, M. Arita, H.Namatame, M. Taniguchi, A. Fujimori, Z.-X. Shen,M. Ishikado, and S. Uchida: Energy-dependent en-hancement of the electron-coupling spectrum ofthe underdoped Bi2Sr2CaCu2O8+δ superconduc-tor, Phys. Rev. Lett. 105, 227002–1-4 (2010).

[14] R.-H. He, X.J. Zhou, M. Hashimoto, T. Yoshida,K. Tanaka, S.-K. Mo, T. Sasagawa, N. Mannella,W. Meevasana, H. Yao, E. Berg, M. Fujita, T.Adachi, S. Komiya, S. Uchida, Y. Ando, F. Zhou,Z.X. Zhao, A. Fujimori, Y. Koike, K. Yamada,S.A. Kivelson, Z. Hussain and Z.-X. Shen: Dop-ing dependence of the (π, π) shadow band in La-based cuprates studied by angle-resolved photoe-mission spectroscopy, New J. Phys. 13, 013031–1-14 (2011); arXiv:0911.2245.

[15] T. Yoshida, I. Nishi, S. Ideta, A. Fujimori, M.Kubota, K. Ono, S. Kasahara, T. Shibauchi, T.Terashima, Y. Matsuda, H. Ikeda, and R. Arita:

97

Page 99: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.1. 4.

Two-dimensional and three-dimensional Fermi sur-faces of superconducting BaFe2(As1−xPx)2 andtheir nesting properties revealed by angle-resolvedphotoemission spectroscopy, Phys. Rev. Lett. 106,117001–1-4 (2011); arXiv:1008.2080.

[16] V.R. Singh, Y. Sakamoto, T. Kataoka, M.Kobayashi, Y. Yamazaki, A. Fujimori, F.-H.Chang, D.-J. Huang, H.-J. Lin, C.T. Chen, H.Toyosaki, T. Fukumura, and M. Kawasaki: Bulkand surface magnetization of Co atoms in rutileTi1−xCoxO2−δ thin films revealed by x-ray mag-netic circular dichroism, J. Phys. Condens. Mat.23, 176001–1-5 (2011); arXiv:1103.6092.

[17] Y. Yamazaki, T. Kataoka, V.R. Singh, A. Fuji-mori, F.-H. Chang, H.-J. Lin, D.J. Huang, C.T.Chen, K. Ishikawa, K. Zhang, and S. Kuroda: Ef-fect of co-doping of donor and acceptor impuritiesin the ferromagnetic semiconductor Zn1−xCrxTestudied by soft x-ray magnetic circular dichroism,J. Phys. Condens. Mat. 23, 176002–1-4 (2011);arXiv:1103.4917.

( )

[18] S. Ideta, K. Takashima, M. Hashimoto, T. Yoshida,A. Fujimori, H. Anzai, T. Fujita, Y. Nakashima,A. Ino, M. Arita, H. Namatame, M. Taniguchi, K.Ono, M. Kubota, D. H. Lu, Z.-X. Shen, K.M. Ko-jima, and S. Uchida: Angle-resolved photoemis-sion study of the tri-layer high-Tc superconduc-tor Bi2Sr2Ca2Cu3O10+δ: Effects of inter-layer hop-ping, Proceedings of 9th International Conferenceon Materials and Mechanisms of Superconductivity(M2S-IX); Physica C 470, S14-S16 (2010).

( )

[19]Ba(Fe1−xTMx)2As2 (TM = Ni, Cu)

24, 95 (2011).

( )

[20] X-ray magnetic circular dichroism study ofthe diluted magnetic semiconductor Zn1−xCrxTe

[21] Angle-resolved photoemission study ofthe iron-based superconductors PrFeAsO1−y andBaFe2(As1−x,Px)2

[22] Electron-doped high-temperature su-perconductors Y1−zLaz(Ba1−xLax)2Cu3Oy andNd2−xCexCuO4 studied by photoemission spec-troscopy

( )

[23] A. Fujimori: Photoemission spectroscopy of elec-tronically reconstructed and epitaxially strainedoxide thin films, Inter-phase: Novel ElectronicStates at Interfaces in Oxides (Lorentz Centeer,Leiden, April 26-29, 2010).

[24] A. Fujimori: Fermiology and core-level spec-troscopy of strained and electronically recon-structed oxide thin films, 9th International Con-ference on Spectroscopies in Novel Superconductors(SNS2010) (Fudan University, Shanghai, May 23-28, 2010).

[25] A. Fujimori: Photoemission spectroscopy and theelectronic structure of diluted magnetic semicon-ductors, International Conference on Core Re-search and Engineering Science of Advanced Ma-terials (Osaka University, May 30-June 4, 2010).

[26] A. Fujimori: XMCD characterization of high-TC

diluted magnetic semiconductors, ibid.

[27] A. Fujimori: Photoemission spectroscopy ofperovskite-type oxides under epitaxial strain, 12thInternational Ceramics Congress (CIMTEC 2010)(Montecatini Terme, Italy, June 6-11. 2010)

[28] A. Fujimori: Fermiology and core-level spec-troscopy of oxide thin films under epitaxial strain,2010 Villa Conference on Complex Oxide Het-erostructures (VCCOH-2010) (Santorini, Greece,June 14-18, 2010).

[29] A. Fujimori: Fermiology and core-level spec-troscopy of strained and electronically recon-structed oxide thin films, 2nd APCTP-IACS JointConference, International Conference on Physicsof Novel Oxide Materials (APCTP, Pohang, July15-17, 2010).

[30] A. Fujimori: Fermiology of Fe pnictide supercon-ductors by ARPES, International Conference onQuantum Phenomena in Complex Matter (Super-stripes 2010) (Erice, Italy, July 20-24, 2010).

[31] A. Fujimori: Three-dimensional electronic struc-ture of Fe pnictides, Recent Progress on Spec-troscopies and High-Tc Superconductors (TohokuUniversity, August 9-11, 2010).

[32] A. Fujimori: Heterostructures of transition metaloxides, 5th Windsor Summer School “QuantumPhenomena in Low-Dimensional Materials andNanostructures” (Windsor, August 9-21, 2010).

[33] A. Fujimori: Local magnetic information in fer-romagnetic thin films from x-ray magnetic curcu-lar dichroism, International Conference on Mag-netic Materials (ICMM-2010) (Saha Institute forNuclear Physics, Kolkata, October 25-29, 2010).

[34] K. Yoshimatsu, K. Horiba, H. Kumigashira, T.Yoshida, A. Fujimori, and M. Oshima: Metal-insulator transition and two-dimensional electronliquid in SrVO3 ultrathin films, 4th Indo-JapanSeminar on Electronic Structure of Novel Magneticand Superconducting Materials (Tokyo University,February 1-2, 2011).

98

Page 100: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.1.

[35] A. Fujimori:Three-dimensional electronic structureof Fe pnictides, 11th Korea-Japan-Taiwan Sympo-sium on Strongly Correlated Electron System: 8thWorkshop for A3 Foresight Program (Jeju Island,Korea, February 10-12, 2011).

[36] T. Yoshida: Three-dimensional Fermi surfaces andsuperconducting gap of iron pnictide superconduc-tor, 152011 3 3 4

[37] A. Fujimori: Three-dimensional electronic struc-ture of Fe pnictide superconductors, Interna-tional Meeting on High-Accuracy, Hierarchical andMany-Body Schemes for Materials Simulations

2011 3 10-11 .

[38] A. Fujimori: Three-dimensional electronic struc-ture and superconductuivity in Fe pnictides, Studyof Matter at Extreme Conditions (SMEC2011)(Miami, March 27-April 2, 2011).

Three-dimensional Fermi surfaces and their nest-ing properties in the iron pnictide superconductorBaFe2(As1-xPx)2 stripes

[39] N. Kamakura, T. Okane, Y. Takeda, S. Fujimori,Y. Saitoh, H. Yamagami, A. Fujimori, A. Fujita, S.Fujieda, and K. Fukamichi: Electronic structure ofLa(Fe0.88Si0.12)13, 2010 MRS Spring Meeting (SanFrancisco, April 6-8, 2010).

[40] T. Yoshida, I. Nishi, A. Fujimori, M. Yi, R. Moor,D.-H. Lu, Z.-X. Shen, K. Kiho, P. M. Shirage, H.Kito, C.-H. Lee, A. Iyo, H. Eisaki, and H. Harima:Quasi-particle band dispersion and Fermi surfacesof the iron pnictides superconductor KFe2As2, 9-th International Conference on Spectroscopies inNovel Superconductors (SNS2010) (Shanghai, May23-25, 2010).

[41] S. Ideta, T. Yoshida, M. Hashimoto, A. Fujimori,H. Anzai, T. Fujita, Y. Nakashima, A. Ino, M.Arita, H. Namatame, M. Taniguchi, K. Ono, MKubota, D. H. Lu, Z.-X. Shen, K. Takashima,K. M. Kojima, and S. Uchida: Relationship be-tween the Fermi arc length, energy gap, and su-perconducting transition temperature in the high-Tc cuprate superconductors observed by ARPES,ibid.

[42] I. Nishi, W. Malaeb, T. Yoshida, A. Fujimori,Y. Kotani, M. Kubota, K. Ono, M. Yi, D. H.Lu, R. Moore, Z.-X. Shen, M. Ishikado, A. Iyo,K. Kihou, H. Kito, H. Eisaki, S. Shamoto, andR. Arita: Angle-resolved photoemission study ofPrFeAsO1−y, ibid.

[43] V. K. Verma, V. R. Singh, K. Ishigami, T.Kataoka, A. Fujimori, F.-H. Chang, H.-J. Lin, D.-J. Huang, C.T. Chen, S. Jana, S. Ray, Niladri,S. Karan, S. Jana, and N. Pradhan: Room tem-perature ferromagnetism in dilute magnetic semi-conductor Mn doped ZnS nanoparticles, Interna-

tional Conference on Core Research and Engineer-ing Science of Advanced Materials (Osaka Univer-sity, May 30-June 4, 2010).

[44] K. Yoshimatsu, H. Kimigashira, A. Fujimori, andM. Oshima: In situ angle-resolved photoemis-sion study on SrRuO3 thin films, 37th Interna-tional conference on Vacuum Ultraviolet and X-rayPhysics (VUVX-37)(Vancouver, July 11-16, 2010).

[45] K. Yoshimatsu, E. Sakai, H. Kimigashira, A. Fuji-mori, and M. Oshima: Fermi surface of SrRuO3

thin films studied by soft x-ray angle-resolvedphotoemission spectroscopy, 17-th InternationalWorkshop on Oxide Electronics (WOE-17) (Awaji,September 19-22, 2010).

[46] J. Okabayashi, S. Toyoda, K. Ono, M. Oshima, andA. Fujimori: Temperature-dependent electronicstructure of Ga1−xMnxAs studied by photoemis-sion spectroscopy, 6th International Conference onthe Physics and Applications of Spin Related Phe-nomena in Semiconductors (PASPS-VI) (Univer-sity of Tokyo, August 1-4, 2010).

[47] S. Fujimori, T. Ohkochi, I. Kawasaki, A. Yasui, Y.Takeda, T. Okane, Y. Saitoh, A. Fujimori, H. Ya-magami, Y. Haga, E. Yamamoto, and Y. Onuki:Electronic structure of heavy Fermion uraniumcompounds studied by core-level photoelectronspectroscopy, International Conference on HeavyElectrons 2010 (ICHE2010) (Tokyo MetropolitanUniversity, September 17-20, 2010)

[48] Y. Takeda, T. Okane, T. Ohkochi, Y. Saitoh, H.Yamagami, A. Fujimori, A. Ochiai, E. Yamamoto,and Y. Haga: Electronic structure of uraniummonochalcogenides UXC (XC = S, Se, Te) as seenvia soft x-ray photoemission spectroscopy, ibid.

[49] T. Okane, T. Ohkochi, A. Yasui, I. Kawasaki, S.-i. Fujimori, Y. Takeda, Y. Saitoh, H. Yamagami,A. Fujimori, Y. Matsumoto, N. Kimura, T. Ko-matsubara, and H. Aoki; Resonant angle-resolvedphotoemission study of substitutional solid solu-tions of CeRu2Si2, ibid.

[50] V.K. Verma, V.R. Singh, K. Ishigami, G. Shi-bata, A. Fujimori, T. Koide, T. Chakraborty,and S. Ray; X-ray absorption spectroscopy andx-ray magnetic circular dichroism study of Fe-doped BaTiO3, International Conference on Mag-netic Materials (ICMM-2010) (Saha Institute forNuclear Physics, October 25-29, 2010).

[51] S. Ideta, T. Yoshida, 4, I. Nishi, A. Fujimori, H.Kotani, M. Arita, K. Ono, Y. Nakashima, M. Mat-suo, T. Sasagawa, and R. Arita: Three dimen-sional Fermi surfaces of iron-based superconductorBa(Fe1−xNix)2As2 observed by ARPES, JSPS A3Foresight Program Autumn School for Young Sci-entists (Kyoto, November 7-11, 2010).

[52] I. Nishi, M. Ishikado, W. Malaeb, T. Yoshida, A.Fujimori, Y. Kotani, M. Kubota, K. Ono, M. Yi,

99

Page 101: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.1. 4.

D.H. Lu, R. Moore, Z.-X. Shen, A. Iyo, K. Ki-hou, H. Kito, H. Eisaki, S. Shamoto, and R. Arita:Angle-resolved photoemission spectroscopy studyof PrFeAsO0.7: Pnictogen height dependence ofthe electronic structure, ibid.

[53] K. Ishigami, K. Yoshimatsu, M. Takizawa, H.Kumigashira, M. Oshima, T. Yoshida, and A.Fujimori: Soft x-ray photoemission study ofLa1−xSrxTiO3 thin films, ibid.

[54] Y. Yamazaki, T. Kataoka, V.R. Singh, A. Fujimori,F.-H. Chang, H.-J. Lin, D.J. Huang, C.T. Chen,K. Ishikawa, K. Zhang, and S. Kuroda : Soft x-raymagnetic circular dichroism study of the dilutedmagnetic semiconductor Zn1−xCrxTe, ibid.

[55] W. Uemura, S. Ideta, I. Nishi, T. Yoshida, A. Fu-jimori, M. Kubota, K. Ono, K. Segawa, and Y.Ando: Angle-resolved photoemission spectroscopystudy of hole-doped and electron-doped cuprateY1−zLaz(Ba1−xLax)2Cu3Oy, ibid.

[56] V.R. Singh, T. Kataoka, Y. Yamazaki, V.K.Verma, G. Shibata, A. Fujimori, F.-H. Chang,H.-J. Lin, D.-J. Huang, C.T. Chen, Y. Yamada,T. Fukumura and, M. Kawasaki: Carrier-inducedferromagnetism of cobalt-doped anatase TiO2 thinfilms studied by soft x-ray magnetic circulardichroism, 4th Indo-Japan Seminar on ElectronicStructure of Novel Magnetic and SuperconductingMaterials (Tokyo University, February 1-2, 2011).

[57] A. Fujimori: Three-dimensional electronic struc-ture and superconductuivity in Fe pnictides, ibid.

[58] V.R. Singh, K. Ishigami, Y. Yamazaki, V.K.Verma, A. Fujimori, Y. Takeda, T. Okane, Y.Saitoh, H. Yamagami, Y. Nakamura, M. Azuma,and Y. Shimakawa: X-ray absorption spectroscopyand x-ray magnetic circular dichroism investiga-tions of Co-doped BiFeO3 films, ibid.

[59] V.K. Verma, V.R. Singh, K. Ishigami, Y. Ya-mazaki, G. Shibata, T. Kadono, A. Fujimori, T.Koide, S. Chattopadhyay, and T.K. Nath: Studyof valence state and magnetic property of Fe inFe-doped ZnO thin films, ibid.

[60] S. Ideta, T. Yoshida, I. Nishi, A. Fujimori, M.Nakajima, H. Kotani, M. Kubota, K. Ono, Y.Nakashima, M. Matsuo, T. Sasagawa, K. Kihou,Y. Tomioka, C.H. Lee, A. Iyo, H. Eisaki, T.Ito, S. Uchida, R. Arita: Electronic structureof the electron-doped iron-based superconductorsBa(Fe1−xTMx)2As2 (TM = Ni, Cu) observed byangle-resolved photoemission spectroscopy, ibid.

[61] K. Yoshimatsu, M. Takizawa, H. Kumigashira, M.Oshima, T. Yoshida, and A. Fujimori: Soft x-rayphotoemission study of La1−xSrxTiO3 thin films,ibid.

[62] W. Uemura, S. Ideta, I. Nishi, T. Yoshida, A. Fu-jimori, M. Kubota, K. Ono, K. Segawa, and Y.Ando: Angle-resolved photoemission spectroscopy

study of hole-doped and electron-doped cuprateY1−zLaz(Ba1−xLax)2Cu3Oy, ibid.

[63] I. Nishi, S. Ideta1, T. Yoshida, A. Fujimori, S.Kasahara, T. Terashima, T. Shibauchi, Y. Mat-suda, M. Nakajima, S. Uchida, Y. Tomioka, T. Ito,K. Kihou, C. Lee, A. Iyo, H. Eisaki, M. Kubota,K. Ono, H. Ikeda, and R. Arita: Composition de-pendence of Fermi surfaces in BaFe2(As1−xPx)2,ibid.

[64] G. Shibata, V.R. Singh, V.K. Verma, K. Ishigami,A. Fujimori, T. Koide, K. Yoshimatsu, E.Sakai, H. Kumigashira, and M. Oshima: Thick-ness dependence of the magnetic properties ofLa0.6Sr0.4MnO3 thin films studied by soft x-raymagnetic circular dichroism, ibid.

[65] Y. Yamazaki, T. Kataoka, V.R. Singh, A. Fuji-mori, F.-H. Chang, H.-J. Lin, D.J. Huang, C.T.Chen, K. Ishikawa, K. Zhang, S. Kuroda: Soft x-ray magnetic circular dichroism study of the di-luted magnetic semiconductor Zn1−xCrxTe, ibid.

[66] T. Yoshida, I. Nishi, S. Ideta, A. Fujimori, M.Kubota, K. Ono, S. Kasahara, T. Shibauchi, T.Terashima, Y. Matsuda, M. Nakajima, S. Uchida,Y. Tomioka, T. Ito, K. Kihou, C.H. Lee, A. Iyo,H. Eisaki, H. Ikeda, and R. Arita: Observationof the three-dimensional Fermi surfaces and thesuperconducting gaps in BaFe2(As1−xPx)2, 11thKorea-Japan-Taiwan Symposium on Strongly Cor-related Electron System: 8th Workshop for A3Foresight Program (Jeju Island, Korea, February10-12, 2011).

[67] S. Ideta, T. Yoshida, I. Nishi, A. Fujimori, H.Kotani, M. Kubota, K. Ono, Y. Nakashima,M. Matsuo, T. Sasagawa, M. Nakajima, K.Kihou, Y. Tomioka, C.H. Lee, A. Iyo, H.Eisaki, T. Ito, S. Uchida, and R. Arita: Elec-tronic structure of the iron-based superconductorBa(Fe1−xTMx)2As2 (TM = Ni, Cu) observed byARPES, ibid.

[68] I. Nishi, S. Ideta, T. Yoshida, A. Fujimori, S. Kasa-hara, T. Terashima, T. Shibauchi, Y. Matsuda,M. Nakajima, S. Uchida, Y. Tomioka, T. Ito, K.Kihou, C. Lee, A. Iyo, H. Eisaki, M. Kubota, K.Ono, H. Ikeda, and R. Arita: Doping dependenceof Fermi surfaces in BaFe2(As1−xPx)2, ibid

[69] S. Ideta, T. Yoshida, T. Shimojima, W. Malaeb,M. Nakajima, A. Fujimori, S. Uchida, Y.Nakashima, H. Anzai, A. Ino, M. Arita, H. Na-matame, M. Taniguchi, Y. Tomioka, T. Ito, K. Ki-hou, C.H. Lee, A. Iyo, H. Eisaki, S. Kasahara, T.Terashima, T. Shibauchi, Y. Matsuda, H. Ikeda,and R. Arita: Out-of-plane momentum depen-dence of the superconducting gap in BaFe2(As1-xPx)2 observed by angle-resolved photoemissionspectroscopy 15

2011 3 3 4

100

Page 102: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.1.

[70] T. Yoshida, I. Nishi, S. Ideta, A. Fujimori, M.Nakajima, S. Uchida, M. Kubota, K. Ono, S.Kasahara, T. Terashima, H. Ikeda, T. Shibauchi,Y. Matsuda, Y. Tomioka, T. Ito, K. Kihou, C.Lee, A. Iyo, H. Eisaki, and R. Arita: Three-dimensional Fermi surfaces and superconductinggap of BaFe2(As1−xPx)2, International Workshopon Novel Superconductors and Super Materials2011 (NS220011) (Miraikan, March 6-8, 2011).

[71] S. Ideta, T. Yoshida, I, Nishi, M. Nakajima, S.Uchida, A. Fujimori, H. Kotani, M. Kubota, K.Ono, Y. Nakashima, M. Matsuo, T. Sasagawa,K. Kihou, Y. Tomioka, C. H. Lee, A. Iyo, H.Eisaki, T. Ito, and R. Arita: Electronic structreof the electron-doped Ba(Fe1−xTMx)2As2 (TM =Ni, Cu) observed by angle-resolved photoemissionspectroscopy, ibid.

[72] I. Nishi, S. Ideta, T. Yoshida, A. Fujimori, M.Nakajima, S. Uchida, R. Arita, S. Kasahara, T.Terashima, T. Shibauchi, Y. Matsuda, H. Ikeda,Y. Tomioka, T. Ito, K. Kihou, C. Lee, A. Iyo, H.Eisaki, M. Kubota, and K. Ono: Composition de-pendence of Fermi surfaces in BaFe2(As1−xPx)2,ibid.

[73] Y. Takeda, T. Okane, T. Ohkochi, Y. Saitoh,H. Yamagami, A. Fujimori, A. Ochiai, E. Ya-mamoto, and Y. Haga: Electronic structure ofuranium monochalcogenides UXC as seen via softx-ray photoemission spectroscopy, 6-th Workshopon Speciation, Techniques, and Facilities for Ra-dioactive Materials at Synchrotron Light Sourcesand Other Quantum Beam Sources (Actinide XAS2011) (Harima, March 2-4, 2011).

( )

[74] Correlated electronic structure of cuprateand iron-pnictide superconductors observed byARPES,Seminar for New Aspects of High-Tc Su-perconductivity from Cuprates to Fe-Based Super-conductors 2010 7 4

[75] KEK-PF BL-28ARPES ,ISSP

SPring-8 BL-07LSU( 3 8 )

[76] BaFe2(As1−xPx)2 ,TRIP JST 2010

6 5

[77]X

Ga1−xMnxAs2010

2010 6 23-25

[78] V.R. Singh, V.K. Verma, K. Ishigami, D. Asakura,A. Fujimori, T. Koide, F.-H. Chang, H.-J. Lin, D.-J. Huang, C.T. Chen, T. Ishikawa, and M. Ya-mamoto: X-ray absorption spectroscopy and x-raymagnetic circular dichroism of epitaxial Co2MnSithin films with various Mn compositions facing anMgO barrier

[79] V.K. Verma, V.R. Singh, K. Ishigami, G. Shibata,A. Fujimori, T. Koide, T. Chakraborty and S. Ray:X-ray absorption spectroscopy and x-ray magneticcircular dichroism study of Fe-doped BaTiO3,

[80]

BaFe2(As1−xPx)2

2010 9 23-26

[81]D.H. Lu Z.-X. Shen

BaFe2−xNixAs2

[82] V.R. Singh V.K. Verma

La0.6Sr0.4MnO3 X

[83] V.R. Singh, K. Ishigami, Y. Yamazaki, V.K.Verma, A. Fujimori, Y. Takeda, T. Okane, Y.Saitoh, H. Yamagami, Y. Nakamura, M. Azuma,and Y. Shimakawa: X-ray absorption spectroscopyand x-ray magnetic circular dichroism investiga-tions of Co-doped BiFeO3 films,

[84]SrRuO3 X

[85]

La(Fe0.88Si0.12)13

[86]Cu V Fe

A03 2010 1116-17

[87] S. Ideta, T. Yoshida, I. Nishi, A. Fujimori, H.Kotani, M. Kubota, K. Ono, Y. Nakashima,M. Matsuo, T. Sasagawa, and R. Arita: Elec-tronic structure of iron-based superconductorBa(Fe1−xTMx)2As2 (TM = Ni, Cu) observed byARPES, ’10

12 7-8

[88] K. Yoshimatsu, E. Sakai, H. Kimigashira, A. Fu-jimori, and M. Oshima: Soft x-ray angle-resolvedphotoemission study on SrRuO3 thin films,

[89] Y. Yamazaki, T. Kataoka, V. R. Singh, A. Fuji-mori, F.-H. Chang, H.-J. Lin, D.J. Huang, C.T.Chen, K. Ishikawa, K. Zhang, and S. Kuroda: Ef-fects of co-doping of donor and acceptor impuritiesin the ferromagnetic semiconductor Zn1−xCrxTe

101

Page 103: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.1. 4.

studied by soft x-ray magnetic circular dichroism,15 (PASPS-15)

2010 12 20-21

[90] XMCD2010

20111 6-7

[91] V.K. Verma, V.R. Singh, K. Ishigami, G. Shibata,A. Fujimori, T. Koide, S. Chattopadhyay, and T.K.Nath: X-ray absorption spectroscopy and x-raymagnetic circular dichroism study of Fe doped andFe, Al co-doped ZnO thin films

[92] V.R. Singh, T. Kataoka, Y. Yamazaki, V.K.Verma, G. Shibata, A. Fujimori, F.-H. Chang,H.-J. Lin, D.-J. Huang, C.T. Chen, Y. Yamada,T. Fukumura, and M. Kawasaki: Carrier-inducedferromagnetism of cobalt-doped anatase TiO2 thinfilms studied by soft x-ray magnetic circulardichroism

[93] ,

BaFe2(As1−xPx)224

2011 17-10

[94]

Ba(Fe1−xNix)2As2

[95] V.R. Singh, V.K. Verma

La0.6Sr0.4MnO3 X

[96]SrRuO3 in situ

[97]

Ba(Fe1−xCux)2As266 2011 3

25-28

[98]

BaFe2(As1−xPx)2

[99]

Y1−zLaz(Ba1−xLax)2Cu3Oy

[100]

BaFe2(As1−xPx)2

[101] V.K. Verma, V.R. Singh, K. Ishigami, Y. Ya-mazaki, G. Shibata, T. Kadono, A. Fujimori, T.Koide, S. Chattopadhyay, and T. K. Nath: X-rayabsorption spectroscopy and x-ray magnetic circu-lar dichroism study of Fe doped ZnO thin films,

[102] V.R. Singh V.K. Verma

La0.6Sr0.4MnO3 X

[103]X

Ga1−xMnxAs

[104]

URhGeUCoGe

[105] A. Fujimori: X-ray magnetic circular dichroismstuides of spintronics and multiferroic oxides (In-dian Institute of Science, Bangalore, November 1,2010).

[106] A. Fujimori: Two- versus three-dimensionalFermi surfaces of Fe pnictide superconduc-tors (Tata Institute for Fundamental Research,Munbai, November 2, 2010).

[107] A. Fujimori: Probing novel electronic phases atoxide interfaces (Tata Institute for Fundamen-tal Research Colloquium, Mumbai, November 3,2010).

[108]2011 2 24

102

Page 104: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.2.

4.2

4.2.1

Cu

12 Cu 2008 FeAs

μSRSTM

epoch-making

1) Cu(Phys.

Rev. Lett. (1997)(1998)(1999)(2003)(2006). Sci-ence (2002))

2) /Nature (1995)

(2008) (2010), Science (1999) (2007), Phys. Rev.Lett. (2000) (2001) (2002) (2008)

3)

(Nature (2000)(2001)(2002)(2003) (2008)), Sci-ence (2002)(2005)(2007), Phys. Rev. Lett.(2000)(2005)).

4) Tc

(Nature (2000),Science (2003) (2009), Phys. Rev. Lett.(2002) (2005)).

5)(Nature(2001) (2003) (2006))

25

1

4.2.1: Tc 1973

4.2.2

1a) d b)

c) 22

CuO2

4.2.2:

(CDW)

Tc T ∗

103

Page 105: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.2. 4.

La

La

Tc

CuO2 3CuO2

4.2.3:

STM/STS ARPES

2(Δ1)

(Δ0)STM/STS

CuO2

CuO2

CuO2

STM/STS

4CuO2

42

Bi2Sr2CaCu2O8+δ

STM/STS 1 -2 nm4

Bi

CuO2

Cu O

STM/STS

CuO2

4 2CuO2 2

Ox Oy

2

4.2.4:

d

104

Page 106: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.2.

Tc

LaTc

CuO2

Tc

Tc

Bi2212 Tc=37KSTM/STS CuO2

T=55K Tc

s Tc

s 1s

ΔN Δθ ∼ 1 s

Tc

3 Bi2Sr2Ca2Cu3O8+δ Tc

110K ARPES 3 CuO2

2 CuO2

11 2

Tc=100K

4.2.3

2008 2Fe As

LaFeAsO1−yFy

Tc=26KTc 56K

Tc LaNd Sm

Tc

56K

CuO2

PFeAs CuO2

VI Se FeSe1−y

( Fe1+xSe)Tc 27K

d

2

Tc

4.2.5: Fe

Tc

SDW

105

Page 107: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.2. 4.

LnFeAsO1−y(Ln:La, Pr, Ce, Nd)1111

y Fe

ρ ∼ Tn n Tc

4.2.6:

n Tc

Tc n 2 Tc

40 n 1n

ρ ∼ T

Tc

Ba(Fe1−xCox)2As2 0 x 0.08

21

Drude

SDW0.1eV

SDW

Fe 3

4.2.7: BaFe2As2

Ts=140K

2

4.2.4 Tc

CuO2 CuO2

La Y Tc

Tc

Tc 30K135K CuO2

Tc

Tc

Tc CuO2

Tc

106

Page 108: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.2.

4.2.8: 1986

Tc

Tc

1Bi Bi2Sr2CaCu2O8+δ

Bi2212 CuO2 Tc

SrO Sr2+

Sr Bi3+

Bi2212 Tc 90K SrBi 98.5K

Bi2Sr2Ca2Cu3O10+δ

Tc 125K

[1] Strong carrier-scattering in iron-pnictide supercon-ductors LnFeAsO1−y(Ln=La and Nd)”obtainedfrom change transport experiments”, S. Ishida, M.Nakajima, Y. Tomioka, T. Ito, K. Miyazawa, H.Kito, C. H. Lee, M. Ishikado, S. Shamoto, A. Iyo,H. Eisaki, K. M. Kojima, and S. Uchida, Phys.Rev. B 81, 094515 (2010).

[2] Evolution of the optical spectrum with doping inBa(Fe1−xCox)2As2”, M. Nakajima, S. Ishida, K.Kihou, Y. Tomioka, T. Ito, Y. Yoshida, C. H. Lee,H. Kito, A. Iyo, H. Eisaki, K. M. Kojima, and S.Uchida, Phys. Rev. B 81, 104528 (2010).

[3] ”Doping-Dependent Nodal Fermi Velocityof the High-Temperature SuperconductorBi2Sr2CaCu2O8+δ Revealed Using High-Resolution Angle-Resolved PhotoemissionSpectroscopy ”, I. M. Vishik, W. S. Lee,.F.Schmitt, B. Moritz, T. Sasagawa, S. Uchida, K.Fujita, S. Ishida, C. Zhang, T. P. Devereaux, andZ. X. Shen, Phys. Rev. Lett. 104, 207002 (2010).

[4] Enhanced Superconducting Gaps in the TrilayerHigh-Temperature Bi2Sr2Ca2Cu3O10+δ CuprateSuperconductor”, S. Ideta, K. Takashima, M.

Hashimoto, T. Yoshida, A. Fujimori, H. Anzai, T.Fujita, Y. Nakashima, A. Ino. M. Arita, H. Na-matame, M. Taniguchi, K. Ono, M. Kubota, D.H. Lu, Z.-X. Shen, K. M. Kojima, and S. UchidaPhys. Rev. Lett. 104, 227001 (2010).

[5] Intra-unit-cell electronic nematicity of the high-T ccopper-oxide pseudogap states”, M. J. Lawder, K.Fujita, Jhinhwan Lee, A.R. Schmidt, Y. Kohsaka,Chung Koo Kim, H. Eisaki, S. Uchida, J. C. Davis,J. P. Sethna, and Eun-Ah Kim, Nature 466, 347-351 (2010).

[6] Experimental Observation of the Crystallizationof a Paired Holon State”, A. Rusydi, W. Ku, B.Schulz, R. Rauer, I. Mahns, D. Qi, X. Gao, A. T.S. Wee, P. Abbamonte, H. Eisaki, Y. Fujimaki, S.Uchida, and M. Rubhausen, Phys. Rev. Lett. 105,026402 (2010).

[7] ”Energy-Dependent Enhancement of theElectron-Coupling Spectrum of the Under-doped Bi2Sr2CaCu2O8+δ Supercondutor”, H.Anzai, A. Ino, T. Kamo, T. Fujita, M.Arita, H.Namatame, M. Taniguchi, A. Fujimori, Z.-X.Shen, M. Ishikado, and S. Uchida, Phys. Rev.Lett. 105, 227002 (2010).

[8] Quasiparticle dynamics in overdopedBi1.4Pb0.7Sr1.9CaCu2O8+δ: Coexistence ofsuperconducting gap and pseudogap below Tc”,Saritha K. Nair, X. Zou, Elbert E. M. Chia, J.-X.Zhu, C.Ponagopoulos, S. Ishida, and S. Uchida,Phys. Rev. B82, 212503 (2010).

[9] Angle-resolved photoemission study of the trilayerhigh-Tc supercondutor”, S. Ideta, K. Takashima,M. Hashimoto, T. Yoshida, A Fujimori, H. Anzai,T. Fujita, Y. Nakashima, A. Ino, M. Arita, H. Na-matame, M. Taniguchi, K. Ono, M. Kubota, D.H. Lu, Z.-X Shen, K. M. Kojima, and S. Uchida,Physica C470(Suppl) 14-16 (2010).

[10] Interlayer Josephson coupling in Hg-based multi-layered cuprates”, Y. Hirata, K.M. Kojima, S.Uchida, M. Ishikado, A. Iyo, H. Eisaki, and S.Tajima, Physica C470(Suppl) 44-46 (2010).

[11] Crystal growth and characterization of T*cuprate superconductor Nd1.6−ySr0.4CeyCuO4”,T. Kakeshita, S. Adachi, and S. Uchida, PhysicaC470(Suppl) 115-117 (2010).

[12] Oxygen isotope effect in optimally doopedBi2Sr2CaCu2O8+δ studied by low-energyARPES”, H. Iwasawa, J.F. Douglas, K. Sato, T.Masui, Y. Yoshida, Z. Sun, H. Eisaki, H. Bando,A. Ino, M. Arita, K. Shimada, H. Namatame, M.Taniguchi, S. Tajima, S. Uchida, T. Saitoh, D.S. Dessau, and Y. Aiura, Physica C470(Suppl)134-136 (2010).

[13] Characteristic charge transport in oxygen-dificient-controlled LnFeAsO1−y(Ln=La andNd)”, S. Ishida, M. Nakajima, Y. Tomioka, T. Ito,K. Miyazawa, H. Kito, C. H. Lee, M. Ishikado, S.

107

Page 109: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.2. 4.

Shamoto, A Iyo, H. Eisaki, K. M. Kojima, and S.Uchida, Physica C470(Suppl) 324-325 (2010).

[14] Optical reponse of Fe As-based compounds”, M.Nakajima, S. Ishida, K. Kihou, Y. Tomioka, T.Ito, C. H. Lee, H. Kito, A. Iyo, H. Eisaki, K. M.Kojima, and S. Uchida, Physica C470(Suppl) 326-327 (2010).

[15] Spin-Density Wave near the Vortex Coresin the High- Temperature SuperconductorBi2Sr2CaCu2O8+y”, A. M. Mounce, S. Oh, S.Mukhopadhyay, W. P. Halperin, A. P. Reyes, P.L. Kuhns, K. Fujita, M. Ishikado, and S. Uchida,Phys. Rev. Lett. 106, 057003(2011).

[16]

[17] Ba(Fe,Co)2As2

[18] S. Uchida, Charge transport in cuprates and iron-pnictides (The Korean Physical Society-PioneeringSymposium on Novel Superconducting Phenom-ena”, Daejeon, Korea, April 22, 2010).

[19] S. Uchida, Summary Talk: Experimental ProgressReported at SNS 2010 (The 9th International Con-ference on Spectroscopies in Novel Superconduc-tors, Shanghai, China, May 28, 2010).

[20] S. Uchida, Disorder and Superconductivity (ASeminar on New Aspects of High-Tc Superconduc-tivity from Cuprates to Fe-Based Superconductors,Tokyo, Japan, July 03, 2010).

[21] S. Uchida, Nematicity in cuprates and Fe-arsenides(The ICC-IMR International Workshop on RecentProgress in Spectroscopies and High-Tc Supercon-ductors, Sendai, Japan, August 09, 2010).

[22] S. Uchida, Anisotropic Optical Response of theParent Compounds of Iron Pnictide (Super-PIRE-Reimei-MWN Joint Kickoff Meeting, Knoxville,USA, October 28, 2010).

[23] S. Uchida, Electronic Anisotropy in Cuprates andFe-Arsenides (The 9th Asia Pacific Workshop onMaterials Physics, Hanoi, Vietnam, December 14,2010).

[24] S. Uchida, Role of In-Plane and Out-of-Plane Oxy-gen Atoms in High-Tc Cuprates (The 11th Korea-Japan-Taiwan Symposium on Strongly CorrelatedElectron System/ The 8th Workshop for A3 Fore-sight Program, Jeju, Korea, February 11, 2011).

[25] ,

BaFe2As22010

2010 9 23 .

[26] , , ,, , :

BaFe2As2 20102010 9 23 .

[27] , , ,, ,

AEFe2As2(AE2010

2010 9 23 .

[28] , :La2−xBaxCuO4( -1/8)

2010 2010 923 .

[29] , , ,, , , ,,

, , ,: BaFe2(As1− P )2

662011 3 26 .

[30] , ,, , , ,, ,

, , :BaFe2(As1− P )2

66 2011 3 26 .

[31] , ,, ,

:Ba(Fe1− Cu )2As266 2011 3 26 .

[32] , , , ,, , , ,

, , ,

BaFe2As266 2011

3 26 .

[33] , , ,, ,

: BaFe2As266 2011

3 26 .

[34] , , :

( 2009 1128

108

Page 110: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.3.

4.3

43

4.3.1

Bi2Te3Pb

(Bi1−xPbx)2Te3in situ

in situ

Pb

Pb

x = 0.14

0.5 × (e2/h)

Bi

Bi(111)

Bi

Bi

Bi

Rashba

Bi

Bi

Bi1

4 STM Si(111)-4× 1-

In

1 -

Si(111)- 4 × 1-InIn 1

100 K8× 2-In CDW

-

4STM 4 4 × 1-In

In

InSi

In

In

In 110 K-

RHEED110 K 4 × 1 8 × 2

109

Page 111: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.3. 4.

4.3.2

Bi2Te3 Pb

3 nm Bi2Te3

Pb Ten Pb

Si(110)2 × 5-Au

Si(110)2 × 5-AuSi(111)4 × 1-In

Si(553)-Au Si(557)-AuSi

Si(110)2× 5-Au

-

STM

STM

STM

STMSi(110)-2× 5-Au

Co

Kerr SMOKE

Co Co

SMOKESTM RHEED

Si(111)-

7× 7 Ag(111) Si(111)-√3×√

3-Ag2 Co

Co

4.3.9

4.3.3

10 K1.8 K STM

K

T

4He0.8 K

T

4 STM

4 K(FIB) ,

(AFM)

110

Page 112: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.3.

4.3.9: Co Si(111)-

7× 7 , Si(111)-√3×√

3-Ag Ag(111) (a)(c) (b)(d)

(a)(b) 300 K, (c)(d) 15 K Co

4 STM

Co-chairman

The 9th Russia-Japan Seminar on SemiconductorSurfaces, 2010 9 27-29 (Vladivostok, Rus-sia).

SSSJ-A3 Foresight Joint Symposium on Nanoma-terials and Nanostructures, 2010 7 5-7 (

).

Symposium on Surface and Nano Science 2011(SSNS 11), 2011 1 19-22 ( ).

[1] ( ) 20 22

[2] ( ) 15 22

( )

[3] S. Yamazaki, Y. Hosomura, I. Matsuda, R. Ho-bara, T. Eguchi, Y. Hasegawa, and S. Hasegawa:Metallic Transport in a Monatomic Layer of In ona Silicon Surface, Physical Review Letters 106,116802 (Mar, 2011).

[4] N. Miyata, R. Hobara, H. Narita, T. Hirahara, S.Hasegawa, and I. Matsuda: Development of sur-face magneto-transport measurement with micro-four-point probe method and the measurement ofBi nanofilm on Si(111), Japanese Journal of Ap-plied Physics 50, 036602 (Mar, 2011).

[5] I. Matsuda, K. Kubo, F. Nakamura, T. Hira-hara, S. Yamazaki, W. H. Choi, H. W. Yeom,

111

Page 113: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.3. 4.

H. Narita, Y. Fukaya, M. Hashimoto, A. Kawa-suso, S. Hasegawa, and K. Kobayashi: Electroncompound nature in a surface atomic layer of two-dimensional triangle lattice, Physical Review B 82,165330 (Nov, 2010).

[6] T. Hirahara, Y. Sakamoto, Y. Takeichi, H.Miyazaki, S. Kimura, I. Matsuda, A. Kakizaki, andS. Hasegawa: Anomalous transport in an n-typetopological insulator ultrathin Bi2Se3 film, Physi-cal Review B 82, 155309 (Oct. 2010) (selected asEditors Suggestions).

[7] H. Morikawa, K. S. Kim, Y. Kitaoka, T. Hirahara,S. Hasegawa and H. W. Yeom: Conductance tran-sition and interwire ordering of Pb nanowires onSi(557), Physical Review B 82, 045423 (Jul, 2010).

[8] A. Nishide, Y. Takeichi, T. Okuda, A. A. Taskin,T. Hirahara, K. Nakatsuji, F. Komori, A. Kak-izaki, Y. Ando, and I. Matsuda: Spin-polarizedsurface bands of a three-dimensional topological in-sulator studied by high-resolution spin- and angle-resolved photoemission spectroscopy, New Journalof Physics 12, 065011 (Jun, 2010).

[9] Y. Niinuma, Y. Saisyu, T. Hirahara, R. Hobara,S. Hasegawa, H. Mizuno, and T. Nagamura: De-velopment of an UHV-SMOKE system using per-manent magnets, e-Journal of Surface Science andNanotechnology 8, 298(Jun, 2010).

[10] T. Hirahara, Y. Sakamoto, Y. Saisyu, H. Miyazaki,S. Kimura, T. Okuda, I. Matsuda, S. Murakami,and S. Hasegawa: Ttopological metal at the sur-face of an ultrathin Bi1−xSbx alloy film, PhysicalReview B 81, 165422 (Apr, 2010)(selected as Edi-tors’ Suggestions).

[11] Y. Sakamoto, T. Hirahara, H. Miyazaki, S.Kimura, and S. Hasegawa: Spectroscopic evidenceof a topological quantum phase transition in ultra-thin Bi2Se3 films, Physical Review B 81, 165432(Apr, 2010).

[12] K. He, Y. Takeichi, M. Ogawa, T. Okuda, P.Moras, D. Topwal, A. Harasawa, T. Hirahara,C. Carbone, A. Kakizaki, and I. Matsuda: Di-rect spectroscopic evidence of spin-dependent hy-bridization between Rashba-split surface states andquantum-well states, Physical Review Letters 104,156805 (Apr, 2010).

[13] N. Miyata, H. Narita, M. Ogawa, A. Harasawa,R. Hobara, T. Hirahara, P. Moras, D.Topwal,C.Carbone, S.Hasegawa, and I. Matsuda: En-hanced spin relaxation in a quantum metal film bythe Rashba-type surface, Phys. Rev. B, in press.

( )

( )

[14]

, 31,493 (Sep, 2010).

[15], 65, 840 (Nov, 2010).

[16] ,63, 34 (Feb, 2011).

( )

[17] T. Hirahara, Y. Sakamoto, Y. Saisyu, H. Miyazaki,S. Kimura, T. Okuda, I. Matsuda, S. Murakami,and S. Hasegawa: A topological metal at the surfaceof an ultrathin Bi1−xSbx alloy film, Proceedings ofThe Ninth Russian-Japan Seminar on Semiconduc-tor Surfaces, Eds. A. A. Saranin and S. Hasegawa,Far Eastern Branch of Russian Academy of Sci-ence, pp. 232-236 (Jan, 2011).

( )

[18] ()

( , Apr, 2010).

( )

[19] 2010,

17(1), 40 (Mar, 2011).

( )

[20] : STM( ).

[21] KerrSTM .

[22].

( )

[23] S. Hasegawa, T. Tono, Y. Sakamoto, and T. Hi-rahara: Spin transport at surfaces with strongspin-orbit coupling, RIEC International Sympo-sium and The 9th Japan-Korea Symposium onSurface Nanostructures, 2010 11 16 ( ).

[24] S. Hasegawa: Nano Transport with Four-Tip Scan-ning Tunneling Microscope, National Conferenceon Nano, Surface and Graphene Sciences and Tech-nologies 2010, 2010 9 11 ( , .

[25] S. Hasegawa: Electronic and Spin Transport atSurfaces and nanostructures, 18th InternationalVacuum Congress, 2010 8 24 ( , .

[26] S. Hasegawa: Spin-Split Surface States due toRashba Effect and Topological Insulators, Spin-Polarized Scanning Tunneling Microscopy 3 Con-ference , 2010 8 20 ( , .

112

Page 114: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.3.

[27] S. Hasegawa: Surface States of Rashba Spin-Split Type and Topological Insulators, The Work-shop 2010 on ”Electronic, transport, and opti-cal properties of low-dimensional systems” (WS10-ETOLDs), 2010 6 1 (Valencia, Spain .

[28] T. Hirahara and S. Hasegawa: Surface states ofRashba-spin-split type and topological insulators,Korean Physical Society meeting, 2010 4 21

(Daejon, ).

[29] T. Hirahara: Ultrathin films of topological insula-tors, JSPS A3 Foresight Program Autumn Schoolfor Young Scientist, 2010 11 10 ( )

[30] T. Hirahara, Y. Sakamoto, S. Hasegawa: Ultrathinfilms of topological insulators, Symposium on Sur-face and Nano Science 2011 (SSNS 11), 2011 1

19 ( ).

[31] T. Tono, T. Hirahara, and S. Hasegawa, Detectionof the spin Hall effect in ultrathin bismuth films,The 18th International Colloquium on ScanningProbe Microscopy, 2010 12 9 ( ).

[32] S. Hasegawa, T. Hirahara, Y. Sakamoto: Topolog-ical surface states of Bi alloys on Si surfaces, The9th Russia-Japan Seminar on Semiconductor Sur-faces, 2010 9 29 (Vladivostok, Russia).

[33] T. Tono, T. Hirahara, and S. Hasegawa, Detectionof the spin Hall effect in ultrathin bismuth films,The 9th Russia-Japan Seminar on SemiconductorSurfaces, 2010 9 27 (Vladivostok, Russia).

• International vacuum congress (IVC-18), 20107 23-27 ( )

[34] T. Hirahara, Y. Sakamoto, Y. Saisyu, H. Miyazaki,S. Kimura, T. Okuda, I. Matsuda, S. Murakami, S.Hasegawa: A topological metal at the surface of anultrathin BiSb alloy film.

[35] Y. Sakamoto, T. Hirahara, H. Miyazaki, Y. Take-ichi, T. Komorida, S. Kimura, A. Kakizaki, S.Hasegawa: Electronic structure of a topological in-sulator Bi2Se2 ultrathin films on a Si surface.

[36] Y. Saisyu, T. Hirahara, Y. Niinuma, R. Hobara,S. Hasegawa : SMOKE measurements of magneticthin films.

[37] T. Uetake, N. Nagamura, R. Hobara , T. Hirahara ,S. Hasegawa, and T. Nagamura: Transport proper-ties of Ag quantum films formed on Si(111)4×1-Inmeasured by low-temperature four-tip STM.

[38] T. Tono, T. Hirahara, S. Hasegawa : In situ de-tection of the spin Hall effect in ultrathin bismuthfilms.

• SSSJ-A3 Foresight Joint Symposium on Nano-materials and Nanostructures, 2010 7 5-7

( )

[39] T. Hirahara: The physics of topological insulatorsstudied using ultrathin films.

[40] Y. Sakamoto, T. Hirahara, H. Miyazaki, Y. Take-ichi, T. Komorida, S. Kimura, A. Kakizaki, S.Hasegawa: Electronic structure of a topological in-sulator Bi2Se2 ultrathin films on a Si surface.

[41] T. Uetake, N. Nagamura, R. Hobara , T. Hirahara ,S. Hasegawa, and T. Nagamura: Transport proper-ties of Ag quantum films formed on Si(111)4×1-Inmeasured by low-temperature four-tip STM.

[42] Y. Saisyu, T. Hirahara, Y. Niinuma, R. Hobara,S. Hasegawa : SMOKE measurements of magneticthin films.

[43] F. Nakamura, K. Kobayashi, S. Hasegawa, A.Ichimiya, and I. Matsuda: Energy and phase-shiftanalyses of

√21 × √

21 phase of Si surface withpseudopotential approach.

[44] T. Tono, T. Hirahara, S. Hasegawa: In situ de-tection of the spin Hall effect in ultrathin bismuthfilms.

[45] R. Hobara, N. Nagamura, T. Takeshi, U. To-moya, U. Yoichi, T. Hirahara, S. Hasegawa, andT. Nagamura: Development of Ultra-Low Temper-ature Four tip STM in combination with FIB.

( )

[46]30

2010 11 5 .

[47]Bi2Se3222010 12 10 .

[48] , : Bi, 22

2010 11 17( ).

[49] , ,

2010 11 13 ( ).

[50] Bi2Se32011

3 3 .

[51] :,

, 2010 1117 .

[52] , , , , ,, 4 STM

Si(111)4 1-In Ag

113

Page 115: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.3. 4.

( ) 2010 115 .

• 2010 , 2010 9 23-26 ()

[53]

Bi2Se3 ARPES.

[54]: Si

√21×√

21.

[55] :in situ .

[56]: 41

.

[57]

41.

( )

[58] T. Hirahara: Ultrathin films of topological insula-tors, Materials Science Division Seminar, ArgonneNational Laboratory, 2010 10 11 ( ).

[59] S. Hasegawa: Investigation of Surface Conductivityof Silicon-Based Nanomaterials, Institute of Au-tomation and Control Processes, Russian Academyof Science, 2010 7 23 (Vladivostok, Russia).

[60]

2010 11 26 .

[61],

2010 4 16 .

( )

[62] : , 49, ( ) , 2010 7 15 (

).

[63] :,, 2010 11 11-12 ( ).

[64]2010 8 30 -9 1 .

[65] (TA) I2009 .

[66] 2010.

[67] 22010 .

114

Page 116: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.4.

4.4

22

2

3

(NMR)/ (STM/STS)

(LEED)1

50 μKNMR

2 3He-4He30 mK 10−8

Pa STM/STS(ULT-STM)

6 T 13 T3

12 mK

LEEDLEED

4.4.1 2

3He2

3He (ρ)

4He 1

2 2 3He100 μK K

2 3He

3 4 3( )

22 0.5 nm−2

2 0.5 nm−2

-2∼4

2 3He80 mK 4.4.10

( 4.4.10(a)) (γ)0.5 nm−2

( 4.4.10(b)) 0.5nm−2

3He( 4.4.10(b) )2 3He

He-He2

3He2 3He

()

NMR

4.4.10(T )

γ (T 2 )2 (

)

( )

4/7 -

2 3He1 3He 4He HD

4/71 (4/7 )

115

Page 117: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.4. 4.

(a)

(b)

4.4.10: (a) 2

2 3He (b) (γ)

2

4/7(S = 1/2)

4/7(ZPV)

ZPV

4He

4/7

4/7 2 He

4/7

3He 4He T ≈ 1 K1.5 K -

() 10 (

1/10 )ZYX

0.5 < T < 5.2 K( )

T = 76 K N2 T = 4 K 4HeZYX

4/7-

4.4.2 LEED

4/7300 mK LEED

LEED X2 He

1 ∼ 3 K LEED

116

Page 118: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.4.

T = 5 K 1 0.5 K4.4.11

LEED(i)

(ii)fALEED

2 (MCP; Micro-ChannelPlate) DLD(Delay Line Detector)

(iii)80 K (iv)

LEED(v)

1

4.4.11: LEED

4.4.3 /

(EF)

/

(Sn)nm nm

Tc ∼ 4 K Sn

Sn

2 Kosterlitz-Thouless(KT)

KT (TKT)

24He

2KT

TKT < T < Tc0( Tc0

)

STS(

)

0.6 K9 T KT

SiO2

Micro-mechanical Cleavage(MC)Ti Au

Sn4.4.12(a) 3

30 nm Sn(SEM) 300∼500

nm Sn 20 nm

4.4.12(a)2 T1 ∼ 3.9 K

Sn

KT2.5 < T < 3.4 K exp(−1/

√T )

KT

117

Page 119: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.4. 4.

Sn(0.5 μm) (3 μm)

4.4.12(b)Bc = 77 mT

B < Bc

B > Bc

B < Bc

-

: PPMS(Physical Property Measurement Sys-tem) SEM

1 um

0 50 100 150 2000

200

400

600

800

Magnetic Fireld [mT]

Resis

tance

[��

(b)50 100

750

800

850

4.0 K3.5 K3.0 K2.6 K2.4 K2.2 K2.0 K

0 1 2 3 4 5 60

0.5

1

Temperature [K]

R/R

(T=

4.2

K)

(a)

T1

TKT

Bc

4.4.12: (a) 3 30 nm

Sn

(b)

- (Bc)

eV

Xe√3×√

3STS

EF ∼ 1 eV

STS

4.4.4

2 KT

KT

2 (CuO2 )

Y 8 %Bi2Sr2CaCu2O8+x(Bi2212)

MCIV

7 5 KT2 T = 4 K

(AFM)4.4.13 SiO2 Bi2212

AFM (a) (b)MC

4.4.13(c)

AFM (RGB)

30 (45 nm)

( 3 ∼ 5 )

118

Page 120: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.4.

(c)10 μm

0 10 20 300

50

100

150

Length [�m]

He

igh

t[n

m] (b)

(a)

4.4.13: (a)Bi2212 AFM (b)(a)

(c)

4.4.5

( ) 214 ∼ 6 3

National Institute of Standards and Tech-nology / Center for Nanoscale Science and Technol-ogy STM

SiC C

EF

( )

[1].

[2] 2.

( )

[3] Y. Shibayama, H. Fukuyama, and K. Shirahama: Observation of non-classical rotational inertia intwo-dimensional 4He solid on graphite surface, In-ternational Symposium on Quantum Fluids andSolids (QFS2010), (Grenoble, France, August 1-7,2010).

[4] H. Fukuyama : STS imaging of quasi-two-dimensional electronic wave-functions at graphitesurfaces with defects in magnetic fields,

”The Frontier Science Workshopon Condensed Matter Physics and Nanoscience”,(The University of Tokyo, Japan, May 13, 2010).

[5] T. Matsui, K. Tagami, M. Tsukada, and H.Fukuyama : STS Observation of Dirac FermionTopologically appeared on Graphite, SSSJ-A3Foresight Joint Symposium on Nanomaterials andNanostructures, (The University of Tokyo, Japan,July 5-7, 2010).

[6] H. Fukuyama : Strong correlations and frustratedmagnetism in two dimensional helium three, 11thGerman-Japanese Symoposium, ”New QuantumStates and Phenomena in Condensed Matter”, (Hi-roshima, Japan, September 13-16, 2010).

[7] T. Matsui, K. Tagami, M. Tsukada, and H.Fukuyama : STS Observations of TopologicalDirac Fermion on Graphite Surfaces, 2010 Inter-national Conference on Solid State Devices andMaterials (SSDM2010), (The University of Tokyo,Japan, September 22-24, 2010).

( )

[8]LEED 2

I 20102010 9 .

[9] 23 II

2010 2010 9.

[10]2 4/7

2010 20109 .

[11] 23 4

2010 11 13-15 .

[12]22

2011 3 3 .

[13]

66 2011 3 .

[14]Bi2Sr2CaCu2O8+x II

66 2011 3.

119

Page 121: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.4. 4.

[15]2 4He

662011 3 .

[16] 23 III66 2011 3 .

[17] 3

( ) 2011 1 4-5 .

( )

[18]2

2010 10 16 .

[19]2011 3 18 .

120

Page 122: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.5.

4.5

3He-4He20 mK 15 T

4.5.1

InAsInSb

STS

InAs InSb

Ag

50 mm2 15

4.2 K

4.5.14:

in

situ

52 mm

InAs, InSb, GaAsInSb GaAs

4.5.2

InAs InSbGaAs

Bi0.42 nm

BiGaAs

121

Page 123: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.5. 4.

Kosterlitz-Thoulessuniversal jump

4.5.3

Si/SiGe

GaAs

rs

100 GHzΔB

ΔBτCR = B/(ωΔB) τCR

τt100 GHz

100 GHzlω = vF /ω

hω = 4.8 K

0.4 0.6 0.8 1

0

5

10

0 2 4 6 8

5

10

20

0 2 4 6 8

10

5

20

T (K)

T (K)

B (T)

Ab

so

rptio

n (

nW

)τC

R (

ps)

τt (p

s)

50

0.4 K

2.0 K

5.0 K

1.91

1.21

0.67

1.93

0.74

0.90

Ns (1015 m-2

)

Ns (1015 m-2

)

1.51

1.22

(a)

(b)

(c)

4.5.15: (a) 100 GHz

Ns = 1.51× 1015 m−2 Si/SiGe

(b)

Ns = 1.93, 1.51, 1.22, 0.90, 0.74×1015 m−2

(from top to bottom) τCR

(c) Ns = 1.91, 1.21, 0.67×1015 m−2 (from

top to bottom) τt (R. Ma-

sutomi et al., Phys. Rev. Lett. (accepted for pub-

lication) )

100 GHz0.1 ∼

10 GHz

122

Page 124: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.5.

σ xx (

a.u

.)

60

50

40

30

20

10

0

σ xx (

a.u

.)

20

10

0

151050B (T)

151050B (T)

f = 10 GHz

T = 0.4 K

ν = 2

ν = 4

f = 0.4 GHz

T = 0.4 K

ν = 2

ν = 4

(a)

(b)

4.5.16: Si/SiGe σxx

a 0.4 GHz ν = 2

ν = 4 (b)

10 GHz ν = 4

Si/SiGe

0.1 μmσxx

0.1 ≤ f ≤ 10 GHz

ν =

( )

[1] Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto,H. Aoki, and R. Shimano: Optical Hall Effect inthe Integer Quantum Hall Regime, Physical Re-view Letters 104, 256802 (2010).

[2] T. Okamoto, T. Mochizuki, M. Minowa, K. Ko-matsuzaki, and R. Masutomi: Magnetotransportin adsorbate-induced two-dimensional electron sys-tems on cleaved InAs surfaces, Journal of AppliedPhysics (Special topic: plenary and invited pa-pers from the 30th International Conference on thePhysics of Semiconductors; Seoul; Koria; 2010, inpress).

[3] R. Masutomi, K. Sasaki, I. Yasuda, A. Sekine,K. Sawano, Y. Shiraki, T. Okamoto: MetallicBehavior of Cyclotron Relaxation Time in Two-Dimensional Systems, Physical Review Letters (ac-cepted for publication).

( )

[4] R. Masutomi, K. Sasaki, I. Yasuda, A. Sekine,K. Sawano, Y. Shiraki, T. Okamoto: CyclotronResonance of Two Dimensional Electrons nearthe Metal-Insulator Transition, Proceedings of the30th International Conference on the Physics ofSemiconductors (July 25-30, 2010, Seoul, Korea),AIP Conference Proceedings (in presss).

( )

[5] GaAs

[6]InSb

[7]

( )

[8] Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto,H. Aoki, and R. Shimano: Terahertz Hall con-ductivity measurements in a GaAs/AlGaAs quan-tum Hall system, The 9th International Conferenceon Superlattices, Nanostructures and Nanodevices(Beijing, China), July 18-23, 2010.

[9] R. Masutomi, K. Sasaki, I. Yasuda, A. Sekine,K. Sawano, Y. Shiraki, T. Okamoto: CyclotronResonance of Two Dimensional Electrons nearthe Metal-Insulator Transition, The 30th Interna-tional Conference on the Physics of Semiconduc-tors (Seoul, Korea), July 25-30, 2010.

[10] R. Masutomi, K. Sasaki, I. Yasuda, A. Sekine, K.Sawano, Y. Shiraki, and T. Okamoto: Cyclotronresonance in the two-dimensional metallic phase ofSi quantum wells, The Horiba-19th InternationalConference on “The Application of High MagneticFields in Semiconductor Physics and Nanotechnol-ogy” (Fukuoka, Japan), August 1-6, 2010.

123

Page 125: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.5. 4.

[11] K. Sasaki, R. Masutomi, K. Toyama, K. Sawano,Y. Shiraki, and T. Okamoto: Pseudospin phasetransitions during Landau level crossing in a Siquantum well, The Horiba-19th International Con-ference on “The Application of High MagneticFields in Semiconductor Physics and Nanotechnol-ogy” (Fukuoka, Japan), August 1-6, 2010.

[12] T. Okamoto: Magnetotransport in adsorbate-induced two-dimensional electron systems oncleaved InAs surfaces, The 30th International Con-ference on the Physics of Semiconductors (Seoul,Korea), July 25-30, 2010.

124

Page 126: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.6.

4.6

(THz

4.6.1

(BEC)

(

BCS

Si BCS

BECBCS

1

BEC

(1s-2p )

3THz 50GHz

4.6.2

θ−(BEDT-TTF)2CsZn(SCN)4

20 K

4.6.3

125

Page 127: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.6. 4.

Morimoto

[T. Morimotoet al., Phys. Rev. Lett.103, 116803, (2009)]

,AHE AHE

AHE

SrRuO3 CuCr2Se4−xBrxAHE

SrRuO3

4.6.4

( )

Mn-O-Mn

Mn

Mn si · sj(i,jMn

si × sj

EuYMnO3

si × sj

α

4.6.5

Up = e2E2/4meω2

LiNbO3

1 mJ 90 fs0.9MV/cm

Up ∼ 9eV

126

Page 128: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4.6.

−2 0 2−1

−0.5

0

0.5

1

Time (ps)

TH

z E−

field

(M

V/c

m)

0 1 2 3Frequency (THz)

Pow

er (

arb.

uni

t)

4.6.17: THz

0.9MV/cm

10.3eV

1

(< 200kV/cm)1S

400kV/cm4

meV 1eV

( )

[1] T. Suzuki and R. Shimano: Cooling dynamicsof photoexcited carriers in Si studied using opti-cal pump and terahertz probe spectroscopy ,Phys.Rev. B 83, 085207 (2011).

[2] R. Shimano, T. Suzuki: Exciton Mott transitionin Si studied by terahertz spectroscopy, PhysicaStatus Solidi (c) 8, p. 1153-1156 (2011).

[3] S. Watanabe, N. Minami, and R. Shimano,Intenseterahertz pulse induced exciton generation in car-bon nanotubes,Optics Express 19, 1528 (2011).

[4] J. Fujioka, Y. Ida, Y. Takahashi, N. Kida, R. Shi-mano, and Y. Tokura: Optical investigation of thecollective dynamics of charge-orbital density waves

in layered manganites,Phys. Rev. B 82, 140409(R)(2010). (Editor s suggestion)

[5] S. Seki, N. Kida, S. Kumakura, R. Shimano, andY. Tokura: Electromagnons in the spin collinearstate of a triangular lattice antiferromagnet, Phys.Rev. Lett. 105, 097207 (2010).

[6] T. Ogawa, S. Watanabe, N. Minami, and R.Shimano: Room temperature terahertz electro-optic modulation by excitons in carbon nan-otubes,Appl. Phys. Lett. 97, 041111 (2010). (se-lected for the August 2010 issue of Virtual Journalof Nanoscale Science and Technology, Volume 22,Issue 6 (2010),and Virtual Journal of Ultrafast Sci-ence, Volume 9, Issue 8 (2010).)

[7] Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto,H. Aoki, and R. Shimano: Optical Hall effect in theinteger quantum Hall regime,Phys. Rev. Lett. 104,256802 (2010).

[8] S. Watanabe, R. Kondo, S. Kagoshima, and R. Shi-mano Ultrafast photo-induced insulator-to-metaltransition in the spin density wave system of(TMTSF)2PF6 ,Physica B 405, S360-S362 (2010).

( )

[9]

[10] θ ET

[11] Si

( )

[12] T. Suzuki, R. Shimano: Formation dynamics of ex-citons in Si, The International Workshop on Non-linear Optics and Excitation Kinetics in Semicon-ductors (NOEKS), Paderborn/Germany, Aug.17,2010.

[13] R. Shimano, T. Suzuki: Exciton Mott transition inSi studied by terahertz spectroscopy, Poster, 20108/16-19 The International Workshop on NonlinearOptics and Excitation Kinetics in Semiconductors(NOEKS), Paderborn/Germany, Aug.17, 2010.

[14] Ryo Shimano, T. Ogawa, S. Watanabe: In-tense Terahertz Field-Induced Electroabsorptionin Carbon Nanotubes, IRMMW-THz, Rome Italy,Sept.7, 2010.

[15] Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto,H Aoki, R. Shimano: Terahertz Hall conductiv-ity measurements in a GaAs/AlGaAs quantumHall system, International Conference on Super-lattices, Nanostructures and Nanodevices(ICSNN-2010),Beijing, China, July21, 2010.

127

Page 129: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.6. 4.

[16] Ryo Shimano, Intense THz light and matter in-teraction in low dimensional electron systems, The3rd International Symposium on InterdisciplinaryMaterials Science (ISIMS-2011) , Tsukuba, Japan,March 10, 2011.

( )

2011 (2011 3 25-28

web )

[17]Si

[18] , : GaAs

[19] θ-(BEDT-TTF)2CsZn(SCN)4

2010 (2010 9 23-26

[20] , : GaAs

[21]

[22] I. Kezsmarki S. Bordacs: Ba2CoGe2O7

[23] :

[24] , :, H22

H22

,2010 8 5 ,

[25] : θ-(BEDT-TTF)2CsZn(SCN)4

,4

2011 1 6

[26] : Si

4, 2011 1 6 ,

[27] : Si,

, 20105 27 ,

[28] Intense terahertz pulse induced phenom-ena in low dimensional electron systems: carbonnanotubes and organic conductors, ,

, 2011 114 ,

[29]( ), H22

H22

, 2010 8 6 ,

( )

[30] , Terahertz spectroscopy in solids; fromsemiconductor to strongly correlated electron sys-tem, , 2010

11 25 ,

[31] , ,,2010 12

22 ,

( )

[32] 2010.6.24

[33] Nature asia-pacific, NPG Asia Materials, researchhighlight, ”Condensed-matter physics: Electronsin a new light”, 2010.9.6.

128

Page 130: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5

5.1 ( )

2

1916

19291946

(1965 )

3/4 1/54

21

2

1995500

2009 3

2

5.1.1

X

15

[1]

N

SDSS DR7

N

129

Page 131: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.1. ( ) 5.

[3, 31, 48, 49, 52, 81, 74]

� = 4

[47, 50]

NSDSS

[6, 7]X

[8] SDSS2011

190ksec

∑mν < 0.2 − 1.0eV (95%C.L.)

Sloan Digital SkySurvey (SDSS) Data-Release 7 (DR7)

WMAP5∑mν < 0.81eV (95%C.L.) WMAP5

2 [9, 32, 33, 34,35, 76, 77]

BBO DECIGO106

[10] 3 DECIGOz = 1

1.5-8%Ia

CMB

Ia CMB

130

Page 132: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.1. ( )

70%

CMB

CMB PlanckACTPol HSC

DETFStage-III

[11, 54]

HSC

LSST

[36, 37, 38, 55, 56]

CMB

CMB

CMB Okamoto& Hu (2003) OH03

CMBPolarBear ACTPol

CMB

OH03

OH03

OH03

Planck ACTPol

[57, 82]

SDSS

(Sloan Digital Sky Survey, SDSS)

N

SDSS

131

Page 133: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.1. ( ) 5.

[27, 43]

SDSS SFD

Schlegel, Finkbeiner, Davis (1988:SFD)COBE IRAS

Yahata et al. (2007) SDSS DR4 (Sloan Digi-tal Sky Survey 4th Data Release)

SFD 0.1

SFD

SDSS SFD

2 SDSS DR7DR4

[64]

5.1.2

(λ)λ

TrES-4,XO-4, HAT-P-11

λHAT-P-11

[12]

()

10pc

[16]EPOXI

[63, 68, 69]

2 Mapping

22

10pc

[42, 61, 62]

( )

[1] Erik Reese, Hajime Kawahara, Tetsu Kitayama,Naomi Ota, Shin Sasaki & Yasushi Suto: “Impactof Chandra calibration uncertainties on galaxycluster temperatures: application to the Hubbleconstant”, The Astrophysical Journal, 721 (2010)653

132

Page 134: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.1. ( )

[2] Ryuichi Takahashi, Naoki Yoshida, MasahiroTakada, Tahahiko Matsubara, Naoshi Sugiyama,Issha Kayo, Takahiro Nishimichi, Shun Saito & At-sushi Taruya: “Non-Gaussian Error Contributionto Likelihood Analysis of the Matter Power Spec-trum”, The Astrophysical Journal, 726 (2011) id.7

[3] Atsushi Taruya, Takahiro Nishimichi & ShunSaito: “Baryon acoustic oscillations in 2D: Mod-eling redshift-space power spectrum from pertur-bation theory”, Physical Review D, 82 (2010) id.063522

[4] Takahiro Nishimichi, Atsushi Taruya, KazuyaKoyama & Cristiano Sabiu: “Scale dependence ofhalo bispectrum from non-Gaussian initial condi-tions in cosmological N-body simulations”, Journalof Cosmology and Astroparticle Physics, 07 (2010)002

[5] Atsushi Nishizawa, Atsushi Taruya & Seiji Kawa-mura: “Cosmological test of gravity with polariza-tions of stochastic gravitational waves around 0.1-1Hz”, Physical Review D, 81 (2010) id. 104043

[6] Thierry Sousbie, 2010, MNRAS accepted

[7] Thierry Sousbie, Christophe Pichon & HajimeKawahara, 2010, MNRAS accepted

[8] Hajime Kawahara, Hiroshi Yoshitake, TakahiroNishimichi & Thierry Sousbie: “Suzaku Observa-tion of a New Merging Group of Galaxies at a Fil-amentary Junction”, ApJ, 727 (2011) L38

[9] Shun Saito, Masahiro Takada & Atsushi Taruya:“Neutrino mass constraint with the Sloan Digi-tal Sky Survey power spectrum of luminous redgalaxies and perturbation theory” Phys.Rev. D 83,043529 (2011).

[10] Atsushi Nishizawa, Atsushi Taruya & Shun Saito:“Tracing the redshift evolution of Hubble pa-rameter with gravitational-wave standard sirens”,accepted for publication in Physical Review D(2011).

[11] Toshiya Namikawa, Shun Saito and AtsushiTaruya “Probing dark energy and neutrino massfrom upcoming lensing experiments of CMB andgalaxies” JCAP 12 (2010) 027

[12] Teruyuki Hirano, Norio Narita, Avi Shporer,Bun’ei Sato, Wako Aoki, and Motohide Tamura:“A Possible Tilted Orbit of the Super-NeptuneHAT-P-11b”, Publication of Astronomical Societyof Japan, 63 (2011) in press (arXiv:1009.5677)

[13] Norio Narita, Teruyuki Hirano, Roberto Sanchis-Ojeda, Joshua N. Winn, Matthew J. Holman,Bun’ei Sato, Wako Aoki, and Motohide Tamura:“The Rossiter-McLaughlin Effect of the Transit-ing Exoplanet XO-4b”, Publication of Astronomi-cal Society of Japan, 62 (2010) L61

[14] Norio Narita, Bun’ei Sato, Teruyuki Hirano,Joshua N. Winn, Wako Aoki, and Motohide

Tamura: “Spin-Orbit Alignment of the TrES-4Transiting Planetary System and Possible Addi-tional Radial Velocity Variation”, Publication ofAstronomical Society of Japan, 62 (2010) 653

[15] Akihiko Fukui, Norio Narita, Paul J. Tristram,Takahiro Sumi, Fumio Abe, Yoshitaka Itow, DenisJ. Sullivan, Ian A. Bond, Teruyuki Hirano, Moto-hide Tamura, David P. Bennett, Kei Furusawa, Fu-miya Hayashi, John B. Hearnshaw, Shun Hosaka,Koki Kamiya, Shuhei Kobara, Aarno Korpela,PamM. Kilmartin, Wei Lin, Cho Hong Ling, ShotaMakita, Kimiaki Masuda, Yutaka Matsubara,Noriyuki Miyake, Yasushi Muraki, Maiko Nagaya,Kenta Nishimoto, Kouji Ohnishi, Kengo Omori,Yvette Perrott, Nicholas Rattenbury, ToshiharuSaito, Ljiljana Skuljan, Daisuke Suzuki, WinstonL. Sweatman, Kohei Wada: “Measurements ofTransit Timing Variations for WASP-5b”, Publi-cation of Astronomical Society of Japan, 63 (2011)287

[16] Yuka Fujii, Hajime Kawahara, Yasushi Suto, At-sushi Taruya, Satoru Fukuda, Teruyuki Nakajima,& Edwin L. Turner: “Colors of a Second Earth:Estimating the Fractional Areas of Ocean, Land,and Vegetation of Earth-like Exoplanets”, The As-trophysical Journal, 715 (2010) 866

[17] Hajime Kawahara & Yuka Fujii: “Global Mappingof Earth-like Exoplanets From Scattered LightCurves”, The Astrophysical Journal, 720 (2010)1333

( )

[18] T.Ohashi, Y.Ishisaki, Y.Ezoe, S.Sasaki,H.Kawahara, K.Mitsuda, N.Yamasaki, Y.Takei,M.Ishida, Y. Tawara, I.Sakurai, A.Furuzawa,Y.Suto, K.Yoshikawa, N.Kawai, R.Fujimoto,T.G.Tsuru, K.Matsushita, and T.Kitayama:“DIOS: the diffuse intergalactic oxygen surveyor:status and prospects”, SPIE, 7732(2010)77321S

[19] Yasushi Suto: “Unknowns and unknown un-knowns: from dark sky to dark matter and darkenergy”, SPIE, 7733(2010)773302

( )

[20] : “ ”, UP450(2010)38

[21] : “ : ”,65 (2010)272

[22] : “ ”,(2010) 5 , p115

[23] : “ : ”,UP 452(2010)26

[24] : “ :3 ”, UP 455(2010)26

[25] :“ : ”,UP 457(2010)33

133

Page 135: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.1. ( ) 5.

[26] :“ :”, UP 460(2011)24

( )

[27] Kensuke Fukunaga: “Precise measurement ofnumber-count distribution function of SDSS galax-ies” ( )

( )

[28] : “ ”, (20104 )

[29] : “ ”,(2010 7 )

[30] :“ ”,

(2010 10 )

( )

[31] Atsushi Taruya: “Baryon acoustic oscillationsin 2D: Modeling redshift-space power spectrumfrom perturbation theory”; COSMO/CoSPA2010(Tokyo, 9/26-10/1, 2010)

[32] Shun Saito, Masahiro Takada & Atsushi Taruya:“Neutrino Mass Constraint from SDSS DR7 powerspectrum with perturbation theory”; SDSS-IIIcollaboration meeting (APC, France, September2010).

[33] Shun Saito: “Beyond 1D-BAOs through galaxysurveys”; COSMO/CoSPA2010 (Tokyo, 9/26-10/1, 2010)

[34] Shun Saito: “Fruitful information beyond 1DBAOs through galaxy surveys”; Cosmology inNorthern California (LBNL, U.S., November2010).

[35] Shun Saito: “2D BAO constraints based on pertur-bation theory”; Cosmology on the Beach (PuertoVallarta, Mexico, January 2011).

[36] Toshiya Namikawa, Tomohiro Okamura & AtsushiTaruya: “Probing primordial non-gaussianityfrom magnification-lensing and magnification-ISWcross-correlations”; (Kochi, Japan, 8/29-9/1,2010)

[37] Toshiya Namikawa, Tomohiro Okamura & AtsushiTaruya: “Magnification effect on galaxy-CMBlensing cross-correlation”; COSMO/CoSPA2010(Tokyo, 9/26-10/1, 2010)

[38] Toshiya Namikawa, Tomohiro Okamura and At-sushi Taruya: “Impact of magnification effect onthe detection of primordial non-Gaussianity fromimaging survey of galaxies” DENET 2011 SubaruHSC Workshop (ASIAA, Taowa, March 2011)

[39] Teruyuki Hirano: “The Rossiter-McLaughlin Ef-fect for Transiting Exoplanetary Systems: NewTheory and Observation”; 2010 Sagan ExoplanetSummer Workshop (California Institute of Tech-nology, July 2010)

[40] Teruyuki Hirano: “New Analysis Routine for theRossiter-McLaughlin Effect”; Detection and dy-namics of transiting exoplanets (France, August2010)

[41] Teruyuki Hirano: “New Methods for Analyzingthe Rossiter-McLaughlin Effect in Transiting Ex-oplanetary Systems”; The Astrophysics of Plane-tary Systems: Formation, Structure, and Dynam-ical Evolution (Torino, October 2010)

[42] Yuka Fujii, Hajime Kawahara, Yasushi Suto, At-sushi Taruya, Satoru Fukuda, Teruyuki Nakajimaand Edwin L. Turner: “Investigating Surfaces ofEarth-like Exoplanets via Scattered Light”; 2010Sagan Exoplanet Summer Workshop (CaliforniaInstitute of Technology, July 2010)

[43] Kensuke Fukunaga: “Density Probability Distri-bution Function of SDSS”; COSMO/CoSPA2010(Tokyo, 9/2-10/1, 2010)

[44] Yasushi Suto: “Unknowns and unknown un-knowns: from dark sky to dark matter and dark en-ergy”; invited plenary talk at SPIE meeting, (SanDiego, June 2010)

[45] Yasushi Suto: “DENET and Sumire collabora-tion”; DENET-Taiwan HSC collaboration meeting2011 (ASIAA, Taipei, March 2011)

[46] Yasushi Suto: “HSC: Subaru collaboration withTaiwan and Princeton”; Subaru User’s Meeting,(NAOJ, January 2010)

[47] Atsushi Taruya: “Modeling and forecasting BAOfrom multipole expansion”; The observational pur-suit of dark energy after Astro2010, (Pasadena,10/7-8, 2010)

[48] Atsushi Taruya: “Baryon acoustic oscillations in2D”; The 11th Asian Pacific Physics Conference(Shanghai, September 2010)

[49] Atsushi Taruya: “Baryon acoustic oscillations in2D”; The 11th Asian Pacific Physics Conference(Shanghai, September, 2010)

[50] Atsushi Taruya: “Modeling baryon acoustic oscil-lations: prospects and impact on cosmology”; PFSScience workshop (Mitaka, 12/9-10, 2010)

[51] Shun Saito: “Redshift-space distortion/ NeutrinoMasses-Perturbation Theory & Lesson from DR7-focusing on ’nonlinear power spectrum’ on BAOscale”; BigBOSS collaboration meeting (LBNL,U.S.A., February 2011).

( )

134

Page 136: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.1. ( )

[52] : “”; ( , 9/14,

2010)

[53] : “Signature of primordial vector modeson large-scale structure”; RESCEU/DENET

( , 8/29-9/1, 2010)

[54] : “CMB

”; CMB( , 6/7-6/9, 2010)

[55] : “CMB”;

2010 ( , 9/22-9/24,2010)

[56] : “”; RA (

, 2/17-2/19, 2011)

[57] : “CMB”;

2011 ( , 3/16-3/19, 2011)

[58] HDS;5/12, 2010

[59]Joshua N. Winn

;2011 3/16-3/19, 2011

[60] Joshua N. Winn

;2011 ( , 3/16-3/19, 2011)

[61]Edwin L. Turner: “Toward remote sens-

ing of Earth-like exoplanets”; RESCEU/DENETSummer School ( , 8/29-9/1, 2010)

[62] :;

2010 ( , 9/22-9/24,2010)

[63]Edwin L. Turner:

; 2011( , 3/16-3/19, 2011)

[64] SDSSSFD ;

2011 ( , 3/16-3/19,2011)

[65] : “ ”;

(, 1/31, 2011)

[66] : “”,

( , 1/22, 2011)

[67] : “Latest Discorveries on Titlted Plan-etary Orbits Based on the Measurements of theRossiter-McLaughlin Effect”; 7

, 3/9-3/11, 2011

[68]Edwin L. Turner:

;( 12/28, 2010)

[69]Edwin L. Turner: “Scattered light as

a probe of the surface environment of Earth-likeexoplanets”; 7

, 3/9-3/11, 2011

( )

[70] Yasushi Suto: “Colors of a second earth: to-wards exoplanetary remote-sensing”; JPL collo-quium (Pasadena, USA, June 24, 2010)

[71] Yasushi Suto: “Impact of Chandra calibration un-certainties on cluster temperatures: application toH0 from the Sunyaev-Zel’dovich effect” Caltech as-trophysics theory group seminar, Pasadena USA(June 25, 2010)

[72] Atsushi Taruya: “Signature of primordial vectormodes on large-scale structure”; LBNL seminar(Berkeley, 10/13, 2010)

[73] Atsushi Taruya: “Halo bispectrum from non-Gaussian initial conditions”; (Shanghai observa-tory, 11/15, 2010)

[74] Atsushi Taruya: “Modeling baryon acoustic oscil-lations in 2D”; Cosmo-oenology seminar (Institutd’Astrophysique de Paris, 2/9, 2011)

[75] Atsushi Taruya: “Cosmology from standardsirens”; Cosmo Journal club (Institut de PhysiqueTheorique, 3/9, 2011)

[76] Shun Saito: “Toward unlocking the full potential ofBAO information through galaxy surveys”; INPAJournal Club (LBNL, U.S.A., November 2010).

[77] Shun Saito: “Modeling of galaxy power spec-trum in redshift space based on perturbation the-ory”; Cosmology Seminar (University of Califor-nia, Davis, U.S.A., February 2011).

[78] : “ ”, “”, “ ”, “

” 272010 8 6 9

[79] : “ ”,90 2010 11 18

[80] : “”,

2010 2 8

135

Page 137: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.1. ( ) 5.

[81] : “”; ( , 4/27,

2010)

[82] : “CMB”; ( , 2/24,

2011)

( )

[83] : “ ”;

( , 12/22, 2010)

136

Page 138: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.2.

5.2

0 1 2

00

(qubit)

2

(entanglement)

Peter Turner

Jenny Hide

5.2.1

Kraus-CiracKraus-Cirac

[ ]

LOCC

(LOCC)

1 ebit

LOCC1 ebit

LOCC

[Turner ]

137

Page 139: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.2. 5.

1 2

2

[ : Turner ]

[ ]

Non-deterministic quantum polynomial-time (NQP)

(NQP-hard)

[ ]

5.2.2

[Turner ]

138

Page 140: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.2.

[ Turner ]

witness

[Hide]

[ Hide Turner ]

witness

Mayer-Warrach[ Hide ]

5.2.3

2

2

2

A-

[: Turner ]

139

Page 141: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.2. 5.

2-design

SICPOVMs2-design

2-design

2-design

2-design

Los AlamosRobin Blume-Kohout

[ : Turner]

Hong-Ou-Mandel

ImperialCollege, London Terry Rudolph

[ : Turner]

5.2.4

[ : Turner ]

[ Turner ]

( )

[1] M. Aulbach, D. Markham and M. Murao, Themaximally entangled symmetric state in terms ofthe geometric measure, New J. Phys. 12, 073025(2010)

[2] A. Soeda and M. Murao, Delocalization power ofglobal unitary operations on quantum information, New J. Phys. 12, 093013 (2010)

[3] T. Sugiyama, P. S. Turner, and M. Murao, Er-ror probability analysis in quantum tomography: Atool for evaluating experiments, Phys. Rev A 83,012105 (2011)

[4] M. Mhalla, M. Murao, S. Perdrix, M. Someyaand P. S. Turner, Which graph states are use-ful for quantum information processing?, arXiv:1006.2616 (2010)

[5] A. Soeda, P. S. Turner and M. Murao, Entangle-ment cost of implementing controlled-unitary oper-ations, arXiv:1008.1129 (2010)

[6] A. Soeda, Y. Kinjo, P.S. Turner and M. Murao,Quantum Computation over the Butterfly Network,arXiv:1010.4350 2010

[7] A. Soeda and M. Murao, Comparing globalnessof bipartite unitary operations acting on quantuminformation: delocalization power, entanglementcost, and entangling power, arXiv:1010.4599 (2010)

[8] J. Hide, A steady state entanglement witness,arXiv:1102.0220 (2010)

( )

[9] A. Soeda and M. Murao, Classification of delocal-ization power of global unitary operations in termsof LOCC one-piece relocalization , EPTCS 26, 117(2010)

140

Page 142: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.2.

[10] M. Aulbach, D. Markham and M. Murao, Geomet-ric entanglement of symmetric states and the Ma-jorana representation, in Lecture Notes in Com-puter Science (LNCS) 6519, 141 (2010)

[11] P. S. Turner, T. Sugiyama, T. Rudolph, Testingfor multiparticle indistinguishability, Proceedingsof the 10th International Conference on Quan-tum Communication, Measurement & Computing,(2010)

( )

[12] , Characterizing globalness of unitary op-erations for quantum information processing,

[13] ,,

[14] , Distributed Quantum Computation overthe Buttery Network,

( )

[15] A. Soeda, P. S. Turner, and M.Murao, Require-ments on classical communication and entangle-ment resource in distributed quantum computation,2010 International Symposium on Physics of Quan-tum Technology, Tokyo (Japan), April 2010

[16] M. Aulbach, D. Markham, M. Murao, Symmetricstate entanglement and the Majorana representa-tion, TQC 2010, Leeds (UK), April, 2010

[17] M. Murao and A. Soeda, Delocalization Powerof Global Unitary Operations on Quantum Infor-mation, Developments in Computational Models2010, Edingburgh (United Kingdom), July 2010

[18] A. Soeda, P. S. Turner, and M. Murao, Analysisof two-way LOCC in entanglement assisted imple-mentation of controlled-unitary operations, AsianConference on Quantum Information Science 2010,Tokyo (Japan), August 2010

[19] M. Aulbach, D. Markham, M. Murao, Symmetricstate entanglement and the Majorana representa-tion, Asian Conference on Quantum InformationScience 2010, Tokyo (Japan), August 2010

[20] Y. Tanaka, M. Murao, Functionality-PreservingRandomization for Unitary Operations and ItsComputational Complexity, Asian Conferenceon Quantum Information Science 2010, Tokyo(Japan), August 2010

[21] A. Soeda, P. S. Turner, and M. Murao, Min-imal entanglement cost of implementing a dis-tributed controlled-unitary operation, The 2nd In-ternational Conference on Quantum Informationand Technology, Tokyo (Japan), October 2010

[22] A. Soeda and M. Murao, On the feasibility ofadding a control to an oracle, The 14th Workshopon Quantum Information Processing, Sentosa (Sin-gapore), January 2011

[23] M. Mhalla, M. Murao, S. Perdrix, M. Someya andP. S. Turner, Structural characterization of graphstates for quantum information processing, 14thQuantum Information Processing, Sentosa, Singa-pore, January 2011

[24] M. Aulbach, D. Markham, M. Murao,, Visualcharacterization of symmetric state entanglement, 14th Quantum Information Processing, Sentosa,Singapore, January 2011

[25] Y. Kinyo, M. Murao, A. Soeda and P. S. Turner,Quantum Computation over the Butterfly Network,14th Quantum Information Processing, Sentosa,Singapore, January 2011

[26] Y. Nakata, P. S. Turner and M. Murao, How effec-tively can Hamiltonian with multi-body interactionsgenerate random states?, 14th Quantum Informa-tion Processing, Sentosa, Singapore, January 2011

[27] Y. Nakata, P. S. Turner and M. Murao, The ThirdInternational Workshop on Dynamics and Manip-ulation of Quantum System, 14th Quantum Infor-mation Processing, Tokyo, February 2011

[28] T. Sugiyama, P. S. Turner, M. Murao, Comparingthe performance of quantum tomographic appara-tuses by large deviation analysis, 10th Asian Con-ference on Quantum Information Science, Tokyo(Japan), August 2010

[29] T. Sugiyama, P. S. Turner, M. Murao, Evaluationof estimation errors in quantum tomography, 2ndJFLI workshop, Paris (France), October 2010

[30] T. Sugiyama, P. S. Turner, M. Murao, Large devia-tion analysis in quantum tomography, The SecondInternational Conference on Quantum Informationand Technology, Tokyo (Japan), October 2010

[31] S. Nakayama, P. S. Turner, M. Murao, Quantumcircuit model of dissipative qubit dynamics leadingcanonical distribution, Dynamics and Manipula-tion of Quantum Systems, Tokyo (Japan), Febru-ary 2011

[32] P. S. Turner, T. Sugiyama and T. Rudolph Test-ing for multipartite indistinguishability, 10th Inter-national Conference on Quantum Communication,Measurement & Computing, University of Queens-land, Brisbane, (Australia), 19 July 2010

[33] P. S. Turner, T. Sugiyama and T. Rudolph, Testingfor multipartite indistinguishability, InternationalConference on Quantum Information and Tech-nology, National Institute of Informatics, Tokyo,(Japan), 22 October 2010

( )

141

Page 143: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.2. 5.

[34] , Peter S. Turner, , Necessaryamount of entanglement for LOCC implementa-tion of global unitary operations, RA

, Niigata (Japan), June 2010

[35] , , Entanglement consumption indistributed quantum information processing: lowerbound for controlled-unitary operations,

StudentChapter, Tokyo (Japan), June2010

[36] , Peter S. Turner, ,

Tokyo (Japan), December 2010

[37] , Peter S. Turner, ,

Niigata (Japan), March2011

[38] , Peter S. Turner, ,

, RA , Niigata (Japan),June 2010

[39] , Peter S. Turner, ,

, StudentChapter, Ibaraki(Japan), September 2010

[40] , Peter S. Turner, ,,

, Osaka (Japan), September2010

[41] , Peter S. Turner, ,

,, Tokyo (Japan), December 2010

[42] , Peter S. Turner, ,deFinetti ,66 , Niigata (Japan), March 2011

[43] , Peter S. Turner, ,,

- -, Tokyo(Japan), December 2010

[44] , Peter S. Turner, ,,

, Tokyo (Japan), December2010

[45] Shojun Nakayama, Peter S. Turner, Mio Murao,Quantum circuit model of dissipative qubit dy-namics leading canonical distribution,

Winter School 2011, Sendai (Japan), February2011

[46] Shojun Nakayama, Peter S. Turner, Mio Murao,Quantum circuit model of dissipative qubit dynam-ics leading canonical distribution, 12

Student chapter, Sendai (Japan), February2011

[47] , ,- -, Gunma

(Japan), February 2011

[48] Mio Murao, Trial and error, finding a path to quan-tum physics, Women in Science Symposium, Tokyo(Japan), March 2011

( )

[49] , ,, 22 June, 2010

142

Page 144: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.3.

5.3

5.3.1

1 2 BEC

Lee-Huang-Yang

21 2

(BEC)

depletion Lee-Huang-Yang

2–

2BEC –

PhysicalReview A [8]

BEC –

– (QNG)

2QNG

QNGQNG

Physical Review Letter [13]

BEC

BEC2008 UC

-

310

Gross-Pitaevskii(GP)

PhysicalReview A [10]

BEC

F BEC 2F +1

BEC3

( )BEC GP -

Physical Review A [11]

6Li Efimov-

Efimov 23

, 6Li 3- 602 G

685 G 2-

Efimov2

2 Efimov

2

Efimov 3

3

Physical Review Letters 105[9]

143

Page 145: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.3. 5.

5.3.2

Szilard

1929 Szilard(

)Szilard

JarzynskiNature Physics

[12] News and Views

Szilard

Szilard

Szilard

()

PhysicalReview Letters Editor’s Suggestion

Physics Viewpoint[15]

[1] Simone De Liberato Prix Jeune Chercheur DanielGuinier (La Societe Francaise de Physique 2010

7 )

[2] ( 2010 11 )

[3] ( )(2011 3 )

[4] ( )(2011 3 )

[5] Masahito Ueda Outstanding Referee Award(American Physical Society 2011 3 )

( )

[6] T. Sagawa and M. Ueda: Sagawa and Ueda Reply,Phys Rev. Lett.104, 198904-1-1(2010).

[7] M. Tezuka and M. Ueda: Ground states and dy-namics of population-imbalanced Fermi conden-sates in one dimension, New Journal of Physics 12,055029-1-21 (2010). (Part of Focus on Dynamicsand Thermalization in Isolated Quantum Many-Body Systems.)

[8] S. Uchino, M. Kobayashi, and M. Ueda: Bogoli-ubov theory and Lee-Huang-Yang corrections inspin-1 and spin-2 Bose-Einstein condensates in thepresence of the quadratic Zeeman effect, Phys Rev.A 81, 063632-1-29 (2010).

[9] S. Nakajima, M. Horikoshi, T. Mukaiyama, P.Naidon, and M. Ueda: Nonuniversal Efimov Atom-Dimer Resonances in a Three-Component Mixtureof 6Li, Phys Rev. Lett. 105, 023201-1-4 (2010).

[10] Y. Kawaguchi, H. Saito, K. Kudo, and M. Ueda:Spontaneous Magnetic Ordering in a Ferromag-netic Spinor Dipolar Bose-Einstein Condensate,Phys Rev. A 82, 043627-1-17 (2010).

[11] K. Kudo and Y. Kawaguchi: Hydrodynamic equa-tion of a spinor dipolar Bose-Einstein condensate,Phys Rev. A 82, 053614-1-9 (2010).

[12] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki,and M. Sano: Experimental demonstration ofinformation-to-energy conversion and validation ofthe generalized Jarzynski equality, Nature Physics6, 988-992 (2010). (Highlighted by NEWS andVIEWS, and Nature News.)

[13] S. Uchino, M. Kobayashi, M. Nitta, and M. Ueda:Quasi-Nambu-Goldstone modes in Bose-Einsteincondensates, Phys Rev. Lett. 105, 230406-1-4(2010).

[14] P. Zhang, Pascal Naidon, and Masahito Ueda:Scattering amplitude of ultracold atoms near thep-wave magnetic Feshbach resonance, Phys Rev. A82, 062712-1-11 (2010).

[15] S. W. Kim, T. Sagawa, S. De Liberato, and M.Ueda: Quantum Szilard Engine, Phys Rev. Lett.106, 070401-1-4 (2011). [Selected as an Editor’ssuggestion and highlighted in Viewpoint of Physics4, 13 (2011).]

( )

[16] Masahito Ueda Fundamentals and New Frontiersof Bose-Einstein Condensation, World ScientificPub. Co., 2008 7

[17]

vol.46(1), pp.21-28 (2011 1 )

[18]vol.95(6), pp.543-582 (2011

3 )

( )

144

Page 146: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.3.

[19] Takahiro Sagawa Thermodynamics of InformationProcessing in Small Systems ( ).

[20] Shuta Nakajima Few-body physics in ultracold 6Ligases with tunable interactions ( ).

[21] Shinpei Endo Many-body effects of BEC-BCScrossover in an ultracold Fermi gas ( ).

[22] Nguyen Thanh Phuc Phase Diagram of a Three-Dimensional Spin-1 Ferromagnetic Condensate un-der a Quadratic Zeeman Effect ( ).

[23] ().

( )

[24] M. Ueda: Topological Excitations in UltracoldAtomic Gases, The International Workshop: Ul-tracold Fermi Gas: Superfluidity and Strong-Correlation (USS), May 14, 2010, Tokyo, Japan.

[25] M. Ueda: Information thermodynamics, APCTP-KIAS Joint Workshop on Quantum Entanglementand Dynamics in Correlated Many-Body Systems,May 21, 2010, Pohang, Korea.

[26] M. Ueda: Information thermodynamics, The Sec-ond International Conference Nonlinear Waves;Theory and Application, Jun. 26, 2010, Beijing,China (Symposium Talk).

[27] M. Ueda: Topological Excitations in Bose-Einsteincondensates, The Second International ConferenceNonlinear Waves; Theory and Application, Jun.27, 2010, Beijing, China (Symposium Talk).

[28] Y. Kawaguchi and M. Ueda: Symmetry classifica-tion of the ground states of a spin-3 spinor Bose-Einstein condensate, 19th International LaserPhysics Workshop, Jul. 6, 2010, Foz do Iguazu,Brazil.

[29] Y. Kawaguchi, H. Saito and M. Ueda: Spin Dy-namics in Spinor Dipolar BECs, SIAM Confer-ence on Nonlinear Waves and Coherent Structures(NW10)Minisymposium, Aug. 16, 2010, Philadel-phia, USA.

[30] M. Ueda: Topological excitations in Bose-Einsteincondensates, 22nd International Conference onAtomic Physics, Jul. 26, 2010, Cairns, Australia.

[31] M. Ueda: Topological excitations in Bose-Einsteincondensates, Nordita program on quantum solidsliquids and gases, Aug. 18, 2010, Stockholm, Swe-den.

[32] M. Ueda: Information thermodynamics, Interna-tional Symposium on Quantum Thermodynamics,Sep. 17, 2010, Stuttgart, Germany.

[33] M. Ueda: Topological excitations in Bose-Einsteincondensates, International Symposium on ColdAtoms and Condensed Matter, Oct. 5, 2010, Ved-baek, Denmark.

[34] M. Ueda: Symmetry breaking and topological ex-citations in ultracold atomic gases, UC Berkeleyphysics department colloquium talk, Oct. 25, 2010,Berkeley, CA, USA.

[35] T. Sagawa: Generalized Jarzynski Equality underNonequilibrium Feedback Control, STATPHYS-KOLKATA VII, Nov.26, 2010, Kolkata, India.

[36] M. Ueda: Maxwell’s demon, the second law, andthe minimum energy cost for measurement anderasure of information, Maxplank Institute semi-nar, Nov. 29, 2010, Munich, Germany.

[37] M. Ueda: Maxwell’s demon, the second law,and the minimum energy cost for measurementand erasure of information, International Sympo-sium on Quantum Dynamics of Ultracold Atomsand Quantum Technologies (ISQDUAQT), Dec 8,2010, Guangzhou, China.

[38] M. Ueda: Topological excitations in Bose-Einsteincondensates, The 2010 International ChemicalCongress of Pacific Basin Societies (Pacifichem),Dec. 16, 2010, Honolulu, Hawai, USA.

[39] T. Sagawa: Quantum Szilard Engine, 2nd NagoyaWinter Workshop on Quantum Information, Mea-surement, and Foundations, Feb. 16, 2011, Nagoya,Japan.

[40] Y. Watanabe, T. Sagawa and M. Ueda: Un-certainty Relation Revisited from Quantum Esti-mation Theor, 2nd Nagoya Winter Workshop onQuantum Information, Measurement, and Foun-dations, Feb. 16, 2011, Nagoya, Japan.

[41] S. Nakajima, M. Horikoshi, T. Mukaiyama, P.Naidon, and M. Ueda: Atom-Dimer Scatter-ing in an Ultracold Three-Component Mixtureof 6Li, 41st Annual Meeting of the APS Di-vision of Atomic molecular and optical Physics(DAMOP2010), May 28, 2010, Houston, USA.

[42] T. Sagawa and M. Ueda: Generalized JarzynskiEquality under Non-equilibrium Feedback, 3rd In-ternational Workshop on Transmission of Informa-tion and Ebergy in Nonlinear and Comlex Systems(TIENCS), Jul. 8, 2010, Singapore.

[43] T. Sagawa and M. Ueda: Nonequilibrium Thermo-dynamics of Information Processing, StatPhysHK:Compexity, Computation, Information, Jul. 14,2010, Hong Kong.

[44] N. T. Phuc, Y. Kawaguchi, and M. Ueda: PhaseDiagram of Three-Dimensional Spin-1 Ferromag-netic Condensates at Finite Temperatures, Inter-national Conference on Frustrated Spin Systems–Cold Atoms and Nanomaterials (STATPHYS24),Jul. 15, 2010, Hanoi, Vietnam.

[45] Y. Watanabe, T. Sagawa, M. Ueda: Optimal Mea-surement on Noisy Quantum Systems, 10th Inter-national Conference on Quantum Communication,

145

Page 147: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.3. 5.

Measurement and Computation (QCMC), Jul. 20,2010, Brisbane, Australia.

[46] T. Sagawa and M. Ueda: Nonequilibrium Ther-modynamics of Information Processing, STAT-PHYS24: International Conference on StatisticalPhysics of the International Union for Pure andApplied Physics (IUPAP), Jul. 23, 2010, Cairns,Australia.

[47] S. Nakajima, M. Horikoshi, T. Mukaiyama, P.Naidon, and M. Ueda: Non-universal EfimovAtom-Dimer Resonances in a Three-ComponentMixture of 6Li, 22nd International Conference onAtomic Physics (ICAP2010), Jul. 27, 2010, Cairns,Australia.

[48] S. Kobayashi, M. Kobayashi, Y. Kawaguchi, M.Nitta, and M. Ueda: Classification of Topologicalexcitation with Influence of vortices, 22nd Interna-tional Conference on Atomic Physics (ICAP2010),Jul. 27, 2010, Cairns, Australia.

[49] Y. Watanabe: Optimal measurement and maxi-mum fisher information on noisy quantum, Infor-mation Geometry and its Applications III, Aug. 2,2010, Leipzig, Germany.

[50] Y. Kawaguchi, H. Saito, K. Kudo, and M. Ueda:Spin Dynamics in Spinor Dipolar Bose-EinsteinCondensates, International Workshop on Statisti-cal Physics of Quantum Systems, Aug. 3, 2010,Tokyo, Japan.

[51] S. Kobayashi, M. Kobayashi, Y. Kawaguchi, M.Nitta, and M. Ueda: Classification of Topologi-cal excitation with Influence of vortices, Interna-tional Symposium on Quantum Fluids and Solids(QFS2010), Aug. 5, 2010, Grenoble, France.

[52] Y. Watanabe: Optimal Measurement on NoisyQuantum Systems, Workshop on Quantum Com-putation, Oct. 26, 2010, Stockholm, Sweden.

[53] Y. Kawaguchi: Quantum Ferrofluid: Bose-EinsteinCondensate of Tiny Magnets, 7th Japanese-German Fromtiers of Science Symposium, Nov. 12,2010, Potsdam, Germany.

[54] S. Endo and M. Ueda: Approximate three-bodycollision theory in two component Fermi gas, ER-ATO Macroscopic Quantum Control Conferenceon Ultracold atoms and molecules, Jan. 24, 2011,Tokyo, Japan.

[55] S. Kobayashi, M. Kobayashi, Y. Kawaguchi, M.Nitta, and M. Ueda: Abe homotopy classificationof topological excitation under influence of vor-tex, ERATO Macroscopic Quantum Control Con-ference on Ultracold atoms and molecules, Jan. 24,2011, Tokyo, Japan.

[56] S. Nakajima, M. Horikoshi, T. Mukaiyama, P.Naidon, and M. Ueda: Efimov physics in ultra-cold 6Li atoms with tunable interactions, ERATOMacroscopic Quantum Control Conference on Ul-tracold atoms and molecules, Jan. 24, 2011, Tokyo,Japan.

[57] N. T. Phuc, Y. Kawaguchi, and M. Ueda: PhaseDiagram of a Three-Dimensional Spin-1 Ferromag-netic Condensates under a Quadratic Zeeman Ef-fect, ERATO Macroscopic Quantum Control Con-ference on Ultracold atoms and molecules, Jan. 24,2011, Tokyo, Japan.

[58] M. Takahashi, T. Mizushima, and K. Machida:Vortex State in Finite-Range Interaction viaWeakly Interacting Rydberg Atoms, ERATOMacroscopic Quantum Control Conference on Ul-tracold atoms and molecules, Jan. 24, 2011, Tokyo,Japan.

[59] Y. Kawaguchi: Spontaneous Magnetic Orderingin a Ferromagnetic Spinor Dipolar Bose-EinsteinCondensate, ERATO Macroscopic Quantum Con-trol Conference on Ultracold atoms and molecules,Jan. 24, 2011, Tokyo, Japan.

[60] Y. Watanabe: Uncertainty Relation Revis-ited from Quantum Estimation Theory, ERATOMacroscopic Quantum Control Conference on Ul-tracold atoms and molecules, Jan. 24, 2011, Tokyo,Japan.

( )

[61] BEC2010 7 23

.

[62]65 2010 9

24 .

[63] BEC-BCSFLEX 65

2010 9 24 .

[64] P. Naidon, M. Ueda Efimov Physics in lithium 665 2010 9 24

.

[65] BECBogoliubov Lee-Huang-Yang

(II) 65 2010 925 .

[66] Nguyen Thanh Phuc1 BEC

65 2010 9 25.

[67] 2- -

66 2011 3.

[68] Pascal Naidon Efimov3 66

2011 3 .

146

Page 148: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 5.3.

[69]BEC

66 2011 3 .

[70] BCS-BEC

66 2011 3 .

[71]66

2011 3 .

[72]

66 2011 3 .

[73]66 2011 3 .

[74] Pascal Naidon6Li 3 Efimov

662011 3 .

( )

[75]2010 4 16

.

[76] Information Thermodynamics 9(Student Chapter) 2010 6 10

.

[77] Fermi BEC-BCS

2010 8 9.

[78] Normal typicality von Neumann2010 8 9

.

[79]Maxwell

2010 8 10 .

[80]FIRST

2010 8 22 .

[81] Jarzynski2 2010 9 28

.

[82] P. Naidon, M. Ueda Efimov Physics in lithium 6,Colloquia in Laboratoire de Physique Theorique etModeles Statistiques, Oct. 25, 2010, Orsay, France.

[83] P. Naidon, M. Ueda Efimov Physics in lithium6, Colloquia in Laboratoire Aime Cotton, Oct. 28,2010, Orsay, France.

[84] P. Naidon, M. Ueda Efimov Physics in lithium 6,Colloquia in Institut de Physique de Rennes, Nov.3, 2010, Rennes, France.

[85]RIMS

2010 11 5.

[86] P. Naidon, M. Ueda Efimov Physics in lithium6, Colloquia in Laboratoire Kastler-Brossel, EcoleNormale Superieure, Nov. 5, 2010, Paris, France.

[87]

2010 11 6 .

[88] Principles and Applications of Informa-tion Thermodynamics

2010 11 6.

[89] P. Naidon, M. Ueda Efimov Physics in lithium6, Colloquia in Instituto Superior Tecnico, Nov. 9,2010, Lisbon, Portugal.

[90] Jarzynski

2010 11 18 .

[91]FIRST 2010

12 10 .

[92]BCS-BEC

2010 12 17.

[93] S. Kobayashi, M. Kobayashi, Y. Kawaguchi, M.Nitta, and M. Ueda Abe homotopy classification oftopological excitation under influence of vortices

12010 12 19

.

[94] M. Takahashi, T. Mizushima, and K. MachidaModulated Vortices appearing in Bose-EinsteinCondensates with Finite-Range Interactions

12010 12 19

.

[95] Uncertainty Relationon Quantum Estimation Theory

2011 2 23.

[96]12

(Student Chapter) 2011 2 27.

[97]12

(Student Chapter) 2011 2 27.

[98]

2011 2 28 .

[99] Abe vortex2011 3

1 .

147

Page 149: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5.3. 5.

[100] Uncertainty Rela-tion Revisited from Quantum Estimation TheoryKEK 2011 3 4

.

[101] From Maxwell’s Demon To InformationThermodynamics

2011 3 10.

148

Page 150: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6

6.1

6.1.1

◦2005 7 10

CCD (XIS; X-ray Imaging Spectrometer)(HXD; Hard X-ray Detector)

(HXD)HXD

PD HXD XIS

2011 3 11 JAXA

◦ MAXI

MAXI (Monitor of All-sky X-ray Image) 2009 7 16

MAXIJAXA

MAXI2010

MAXI

MAXI MAXI[18, 71, 85]

JAXAMAXI

MAXI

NASA

6.1.2

(BH)

∼ 10%∼ 0.01 keV ∼ 100 MeV

[12, 29, 28, 46]

◦X-1 (Cyg X-1) 1970

BH25 Cyg X-1

(10−3 − 10 Hz)Cyg X-1 Low/Hard

BH ∼ 100

(∼ 100 MeV)∼ 100 keV

6.1.11/f

[48, 54, 70]

0.001

0.01

0.1

1 ) zH(

ytisne

d rew

oP

1-

Observation 3Observation 10Observation 15

(a) 10-60 keV

0.001 0.01 0.1 1 10

(b) 60-200 keV

0.01 0.1 1 10Frequency (Hz)

6.1.1: Power-density spectra of the 10–60 keV(panel a) and 60–200 keV (panel b) X-ray signals fromCyg X-1, measured on 3 occasions with the Hard X-ray Detector onboard Suzaku. The mass accretion rateincreases from Observation 3, through 10, to 15 [48, 54].

Low/Hard BHB

6.1.16.1.2 [33, 31, 69] :

1. ∼ 1< 2 keV

2. >3 keV

y soft Compton)

149

Page 151: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.1. 6.

1

1.2

1.5

2

1

2

5

10

101Energy (keV)

Rat

io

100

Short-termLong-term

6.1.2: Amplitudes of spectral changes of Cyg X-1,measured with Suzaku. Black data points are spectralratios when the source flickers on a time scale of 1 sec,while gray points are ratios between two observations(separated by a few years) with different mass accretionrates [33].

3. Low/Hard(2008)

◦BH

(AGN) AGN BHB

AGN6.1.2

MCG–6-30-1520–40 keV

Kα AGN Kerr BH

[14, 47, 53]

AO5Mkn 509

6.1.3Cyg X-1

AGN

6.1.3

◦(NS) < 109

LMXB (Low-Mass X-ray Binary)BH

% High/Soft

Energy (keV)

Mkn 509

2006

Nov

.15

/ 200

6 A

pr.2

5

6.1.3: Ratios between two Suzaku spectra of theSyefert galaxy Mkn 509, obtained on different occa-sions. Like in the long-term behavior of Cyg X-1 inFig.6.1.2, the ratios are concave, suggesting the pres-ence of multiple Componization components with dif-ferent y-parameters.

Low/HardNS BH

NS BH∼ 1/10 LMXB

BHB ∼ 1/10Low/Ha rd

LMXB Low/HardLMXB

Aquila X-16.1.4

High/Soft1980

NS

Low/Hard NS(30–50 keV)

NS

∼ 100 keV[50, 73, 105]

◦NS ∼ 1012 G

NS NS

[39, 126]NS

NS

MAXI 6.1.5Be GX304−1 28

MAXI 2010 8 13

∼ 54 keV4.7× 1012 G

150

Page 152: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.1.

keV

(P

hoto

nscm

s k

eV )

2-2

-1-1

1 10 100Energy (keV)0.01

0.1

1 Aql X-1

Hard state

Soft state

6.1.4: Suzaku spectra (in the νFν form) of the re-current transient Aquila X-1, obtained in the High/Softstate (gray; 2007 September 28) and the Low/Hardstate (black; 2007 October 30).

[18]NS

6.1.5: A 10–20 keV light curve of the recurrenttransient X-ray pulsar GX304−1, obtained with MAXIover a period of 2009 August 14 through 2011 March11. Flares synchronized with the 130-day orbital periodare observed [18].

◦ SFXT

SFXT (Supergiant Fast X-ray Transient)

NS

2 3

NS

NS

SFXTSFXT

IGR 16195−4945 6.1.6

[49, 72, 106]NS ∼ 1013

SFXT

2-10 keV15-40 keV

Time (ksec)

Cou

nt ra

te (c

/s)

0

1.0

0.5

0 20 40 60

6.1.6: Soft and hard X-ray light curves of the SFXT,IGR J16195−4945, observed with the Suzaku XIS andHXD, respectively [49, 72].

[41, 82]

◦20

1014−15 GNS

(2009 )

( 210 ksec ) SGR 0501+45161RXJ 1708−40

GX 1+4 [39, 41,74, 82, 122, 126]

[2, 5, 8, 17] 2010 3 27SGR 1833−0832

[75]

6.1.7νFν 2 keV

[5, 39, 41, 82, 126]

6.1.4

151

Page 153: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.1. 6.

Energy (keV) 1 10 100

Vek

2mc

hp(

2-s

1-Ve

k 1-)

Vek

2 ta dezila

mro

n

SGR 1806-20 (0.22 kyr)1E 1547.0-5408 (1.4 kyr)

1RXS J170849.0-400910 (9.0 kyr)4U 0142+61 (70 kyr)

6.1.7: Wide-band νFν spectra of representativemagnetars, observed with Suzaku [5, 39, 41]. The spec-tral properties are seen to depend strongly on the char-acteristic age which is indicated in the parentheses.

20(SNR)

SNR

CTB109 SNR SNR6.1.8 ( )

1E2259+586 KeyProjectCTB109 XIS

6.1.8 ( )0.26 keV ( ) 0.57

keV ( )

15 M�[52, 76, 82, 107]

(1.5 − 7) × 1051 erg s−1

CTB109SNR

SNR

1E2259+586 7( 6.1.7) CTB109 SNR

1 2

(GRXE) Fe SiS

∼ 1 keV∼ 7 keV

1980SNR

Energy (keV)1 2 3

6.1.8: (left) A soft X-ray image of the SNR CTB109,obtained with ROSAT (from Skyview Web site). Themagnetar 1E2259+586 is seen at its center. The scaleis about 40′ across. (right) An X-ray spectrum of a partof CTB109 obtained with the Suzaku XIS, fitted with atwo-temperature plasma emission model [52].

GRXE

ChandraGRXE

[34] (WD)(∼ 106 G) 20

3–50 keV WD

[13] 6.1.9( )WD

20 ∼ 0.88 M�

(∼ 106 ) XISHXD 6.1.9( )

(∼ 1.5 keV)

[34, 92] WD

WD

( ) [1]

TeVHESS J1741−302

X Suzaku J174035.6−301416

HESS[15, 68] GRXE

HESSJ1741−302X

152

Page 154: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.1.

10−4

10−3

0.01

0.1

1TV Columbae

Cou

ntss

−1 k

eV−1

MWD= 0.91(0.83−1.00)Msun

ZFe= 0.41(0.38−0.45) Zsun

10 050253Energy (keV)

6

Fe XXV K ¿

Fe XXVI K ¿

Fe I K ¿

700.

20.

4

10−4

10−3

0.01

0.1

1C

ount

s s−1

keV

−1

Low temperature plasmamodel (kT ~1.5 keV)

Total modelFe emission lines

white dwarf binaries

10 050252Energy (keV)

Galactic Ridge Emission

6.1.9: (Top) Broad-band X-ray spectra of the in-termediate polar TV Columbae measured with Suzaku,shown without removing the instrumental responses.They are fitted with a white-dwarf emission modelof which the best-fit parameters are given in the fig-ure [13]. (Bottom) Broad-band spectra of the Galac-tic Ridge X-ray Emission measured with Suzaku, fit-ted with the white-dwarf emission model and a low-temperature plasma component [34]. The systematicmodel deficit in > 10 keV is due to contributions fromthe Cosmic X-ray Background.

π0

X

[121]

4–19GRXE

6.1.5 [3, 4, 10,

16, 55, 88]

Abell 3667> 20 keV

Abell 2319

Abell 3667 20 keV

Abell 3667

[40, 104]

Abell 3667

X2 μG

10 ∼ 20 %

[65]

[40]ASTRO-H

Navarro-Fenk-White

Abell 1795

6.1.10[91]

◦10

[119]XMM-Newton

Chandra Abell 1795

100 kpc (∼ 5.3 keV) (∼ 2.1keV)[91]

153

Page 155: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.1. 6.

1P, Double-β2P, β+Double-β

1011

1012

1013

1014

Inte

grat

ed M

ass D

istri

butio

n (M

)

sola

r

100 100020 50 200 500Radius (h kpc)

A1795 Integrated Mass Profile(Suzaku+Chandra)

71-1

6.1.10: A spherically integrated profile of the totalgravitating mass in the Abell 1795 cluster of galaxies.Effects of different modelings of the plasma temperatureare indicated by black and gray curves [91].

Abell 1795

[91]

Sengul Aell 2147XMM-Newton Abell 1795

4-5 keV[67, 90]

[66, 89]

6.1.6 ASTRO-H

◦ ASTRO-H [24]

ASTRO-H HIIA 2014

X 14 m 2.5 tX

6 keV X4–7 eV

5–80 keV (HXT)

X (HXI)

HXTX

X CCD 160–600 keV

(SGD) 2ASTRO-H

JAXA

CEA HXI SGD

6.1.11: Drawing of the ASTRO-H satellite, to belaunched in 2014. The overall length is 14 m, and theweight is 2.5 t. Also plotted are cross sectional views ofthe HXI (right: 40 cm tall) and SGD (left: 50 cm tall).Two identical units of each instrument are mounted.

◦ HXI SGD [11, 22, 25, 60, 77, 86,87, 99, 109, 111]

HXT HXI 5–70 keV9 1.7

1.5 keVHXI 6.1.11BGO

4 1CdTe

HXT HXI2

SGD 6.1.11 3× 225 × 2 BGO

( CdTe)40

60–600 keVBGO

HXD

◦ 2010

2014 HXI SGD2010

154

Page 156: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.1.

2011 Critical DesignReview (CDR)

6.1.12: (left) A bread-board model for an HXI CdTeimager. (right) A mechanical model for an SGD Si-CdTe Compton Camera.

◦ BGO [36, 78]

HXI/SGDBGO HXI

SGDHXD

10 kgCFRP

BaSO4

BGO2010

2BGO

HXISGD

[36]Avalanche Photo

Diode (APD)

6.1.13: (left) A mechanical model for a BGO crystalto be used in the active shields for the HIX. (right) Vi-bration tests of a BGO crystal for the SGD, performedat ISAS/JAXA on 2010 January 13-14.

◦ [37, 113]

HXI SGDBGO

BGO 2.15APD

kg BGO APD

HXI SGD 10BGO

( [37]) BGO APD

BGO

◦ HXI SGD [38, 79, 110]

HXI SGD Si CdTeAPD

−20SGD

12 cm1 3000 6 W

HXI SGD

5[38] HXI SGD

CFRP

◦ HXI [35, 115, 58]

APDBGO

APD(∼ 2 − 3 μs)

(∼ 0.6 μs)(3 ∼ 5 μs) 3

[35]

◦ (SpaceWire)[42, 80, 44, 45]

SpaceWire

155

Page 157: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.1. 6.

(RMAP )

ASTRO-H SpaceWire

CPU

2010CPU OS

[1] 20112

( )

[2] Enoto, T., Rea, N., Nakagawa, Y. E., Makishima,K., Sakamoto, T., Esposito, P., Gotz, D., Hurley,K., Israel, G. L., Kokubun, M., Mereghetti, S., Mu-rakami, H., Nakazawa, K., Stellar, L., Tiengo, A.,Turolla, R., Yamada, S., Yamaoka, H., Yoshida, A.& Zane, S.: “Wide-Band Suzaku Analysis of thePersistent Emission from SGR 0501+4516 duringthe 2008 Outburst”, Astrophys. J. , 715, Issue 1,665–670, 2010

[3] Kawaharada, M., Okabe, N., Umetsu, K., Tak-izawa, M., Matsushita, K., Fukazawa, Y., Hamana,T., Miyazaki, S., Nakazawa, K., & Ohashi, T.:“Suzaku Observation of A1689: Anisotropic Tem-perature and Entropy Distributions Associatedwith the Large-scale Structure”, The Astrophysi-cal Journal, 714, Issue 1, 423–44, 2010

[4] Finoguenov, A., Sarazin, C., L., Nakazawa, K.,Wik,D., R. & Clarke, T., E.: “XMM-Newton Ob-servation of the Northwest Radio Relic Region inA3667”, The Astrophysical Journal, 715, Issue 2,1143–1151, 2010

[5] Enoto, T., Nakazawa, K., Makishima, K., Rea, N.,Hurley, K. & Shibata, S.: “Broadband Study withSuzaku of the Magnetar Class”, The AstrophysicalJournal Letters, 722, Issue 2, L162–167, 2010

[6] Hayato, A., Yamaguchi, H., Tamagawa, T., Kat-suda, S., Hwang, U., Hughes, J.,P., Ozawa, M.,Bamba, A., Kinugasa, K., Terada, Y., Furuzawa,A., Kunieda, H., &Makishima, K.: “ExpansionVelocity of Ejecta in Tycho’s Supernova RemnantMeasured by Doppler Broadened X-ray Line Emis-sion” The Astrophysical Journal, 725, Issue 1, 894–903

[7] Kubota, K., Ueda, Y., Kawai, N., Kotani, T.,Namiki, M., Kinugasa, K., Ozaki, S., Iijima, T.,Fabrika, S., Yuasa, T., Yamada, S. & Makishima,K.: “Suzaku and Optical Spectroscopic Observa-tions of SS 433 in the 2006 April MultiwavelengthCampaign”, Publ. Astron. Soc. Japan 62, Issue 2,323-333, 2010

[8] Enoto, T., Nakazawa, K., Makishima, K., Naka-gawa, Y. E., Sakamoto, T., Ohno, M., Takahashi,T., T., Yamaoka, K., Murakami, T. & Takahashi,H.: “Suzaku Discovery of a Hard X-Ray Tail in thePersistent Spectra from the Magnetar 1E 1547.0-5408 during its 2009 Activity”, Publ. Astron. Soc.Japan 62, Issue 2, 475–485, 2010

[9] Konami, S., Matsushita, K., Nagino, R., Tashiro,M., Tamagawa, T., Makishima, K.: “AbundancePatterns in the Interstellar Medium of the S0Galaxy NGC 1316 (Fornax A) Revealed withSuzaku” Publ. Astron. Soc. Japan, 62, Issue 6,1435–1443, 2010

[10] Sato, K., Kawaharada, M., Nakazawa, K., Mat-sushita, K., Ishisaki, Y., Yamasaki, N., Y. &Ohashi, T.: “Metallicity of the Fossil Group NGC1550 Observed with Suzaku”, Publ. Astron. Soc.Japan, 62, Issue 6, 1445–1454, 2010

[11] Kokubun, M., Watanabe, S., Nakazawa, K.,Tajima, H., Fukazawa, Y., Takahashi, T., Kataoka,J., Kamae, T., Katagiri, H., Madejski, G. M., Mak-ishima, K., Mizuno, T., Ohno, M., Sato, R., Taka-hashi, H., Tanaka, T., Tashiro, M., Terada, Y.,Yamaoka, K., & the HXI/SGD team: “Hard X-ray and gamma-ray detector for ASTRO-H basedon Si and CdTe imaging sensors”, Nucl. Inst. Meth.Phys. A, 623, Issue 1, 425–427, 2010

[12] Gandhi, P., Dhillon, V. S., Durant, M., Fabian,A. C., Kubota, A., Makishima, K. ( 6 ) et al.:Rapid Optical and X-ray Timing Observations of

GX339−4: Multicomponent Optical Variability inthe Low/Hard State , Mon. Not. Roy. Astr. Soc.,407, Issue 4, 2166–2192, 2010

[13] Yuasa, T., Nakazawa, K., Makishima, K., Saitou,K., Ishida, M., Ebisawa, K., Mori, H. & Yamada,S.: “White dwarf masses in intermediate polarsobserved with the Suzaku satellite”, Astron. As-trophys. 520, A25, 2010

[14] Noda, H., Makishima, K., Uehara, Y., Yamada,S., Nakazawa, K.: “Suzaku Discovery of a HardComponent Varying Independently of the Power-Law Emission in MCG 6-30-15 Publ. Astr. Soc.Japan 63, in press, 2011

[15] Uchiyama, H., Koyama, K., Matsumoto, H., Ti-bolla, O., Kaufmann, S., &Wagner, S.: “No X-RayExcess from the HESS J1741−302 Region except aNew Intermediate Polar Candidate”, Publ. Astron.Soc. Japan, in press, 2011

[16] Watanabe, E., Takizawa, M., Nakazawa, K., Ok-abe, N., Kawaharada, M., Babul, A., Finoguenov,A., Smith, G., P. & Taylor, J., E.: “Suzaku X-rayFollow-up Observation of Weak-lensing-detectedHalos in the Field around ZwCl0823.2+0425”,Publ. Astron. Soc. Japan, in press, 2011

[17] Enoto, T., Makishima, K., Nakazawa, K.,Kokubun, M., Kawaharada, M., Kotoku, J. &Shibazaki, N.: “Soft and Hard X-Ray Emissions

156

Page 158: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.1.

from the Anomalous X-ray Pulsar 4U 0142+61 Ob-served with Suzaku”, Publ. Astron. Soc. Japan, inpress, 2011

[18] Yamamoto, T., Sugizaki, M., Mihara, T., Naka-jima, M.,Yamaoka, K., Matsuoka, M., Morii, M.,& Makishima, K.: “Discovery of a Cyclotron Res-onance Feature in the X-ray Spectrum of GX304−1 with RXTE and Suzaku during OutburstsDetected by MAXI in 2010”, Publ. Astron. Soc.Japan, in press, 2011

[19] Tsuchiya, H., Enoto, T., Yamada, S., Yuasa, T.,Nakazawa, K., Kitaguchi, T., Kawaharada, M.,Kokubun, M., Kato, H., Okano, M. & Makishima,K.: “Long-duration gamma-ray emissions from2007 and 2008 winter thunderstorms”, Journal ofGeophysical Research-Atmosphere, in press, 2011

( )

• Space Telescopes and Instrumentation 2010:Ultraviolet to Gamma Ray. Edited by Arnaud,Monique; Murray, Stephen S.; Takahashi,Tadayuki. Proceedings of the SPIE, 7732, 2010

[20] Mizuno, T., Hiragi, K., Fukazawa, Y., Umeki, Y.,Odaka, H., Watanabe, S., Kokubun, M., Taka-hashi, T., Nakajima, K., Nakazawa, K., Mak-ishima, K., Nakahira, S., Terada, Y., Tajima, H.:“Monte Carlo simulation study of in-orbit back-ground for the soft gamma-ray detector on-boardASTRO-H”

[21] Hanabata, Y., Fukazawa, Y., Yamaoka, K.,Tajima, H., Kataoka, J., Nakazawa, K., Takahashi,H., Mizuno, T., Ohno, M., Kokubun, M., Taka-hashi, T., Watanabe, S., Tashiro, M., Terada, Y.,Sasaki, C., Nakajima, K., Mizushima, T.: “Devel-opment of BGO active shield for the ASTRO-Hsoft gamma-ray detector”

[22] Nishino, S., Fukazawa, Y., Mizuno, T., Takahashi,H., Hayashi, K., Hiragi, K., Mizuno, M., Yamada,S., Kawaharada, M., Kokubun, M., Nakazawa, K.,Watanabe, S., Tanaka, T., Terada, Y.: “On-orbitcalibration status of the hard x-ray detector (HXD)onboard Suzaku”

[23] Nakazawa, K., Takahashi, T., Limousin, O.,Kokubun, M., Watanabe, S., Laurent, P., Arnaud,M., Tajima, H.: “The hard x-ray imager onboardIXO”

[24] Takahashi, T. et al. ( 177 ) including Mak-ishima, K., Nakazawa, K., Uchiyama, H.: “TheASTRO-H Mission”

[25] Tajima, H. et al. ( 29 ) including Makishima,K., Nakazawa, K.: “Soft gamma-ray detector forthe ASTRO-H Mission”

[26] Ozaki, M., Terada, Y., Kokubun, M., Yuasa, T.,Ishisaki, Y. et al., “The Monte Carlo simulationframework of the ASTRO-H X-ray Observatory”

[27] Iwakiri, W., Ohno, M., Kamae, T., Nakagawa, Y.E., Terada, Y., Tashiro, M. S., Yoshida, A., Ya-maoka, K., Makishima, K.: “Timing Analysis ofUnusual GRB 090709A Observed by Suzaku Wide-band All sky Monitor”, Deciphering the AncientUniverse with Gamma-Ray Bbursts. AIP Confer-ence Proceedings, 1279, 89–92, 2010

[28] Hurley, K., Yamaoka, K., Ohno, M., Takahashi, T.,Fukazawa, Y., Tashiro, M., Terada, Y., Murakami,T., Makishima, K., et al.: “The Third Interplane-tary Network”, ibid., 330–333, 2010

[29] Gandhi, P., Dhillon, V. S., Durant, M., Fabian, A.C., Makishima, K., Marsh, T. R., Miller, J. M.;Shahbaz, T., Spruit, H. C.: Rapid timing studiesof black hole binaries in Optical and X-rays: cor-related and non-linear variability X-ray Astronomy2009; Present Status, Multi-Wavelength Approachand Future Perspectives: Proceedings of the Inter-national Conference; AIP Conference Proceedings,1248, 119–122, 2010

[30] Terada, Y., Harayama, A., Morigami, K., Ishida,M., Bamba, A., Dotani, T., Hayashi, T., Okada, S.,Nakamura, R., ; Makishima, K., Mukai, K., Naik,S.: Systematic surveys of the non thermal emissionfrom white dwarfs with Suzaku and INTEGRAL,ibid., 1248, 215–216, 2010

[31] Yamada, S., Makishima, K., Nakazawa, K., Noda,H., Takahashi, H., Dotani, T., Kubota, A.; Ebi-sawa, K., Ueda, Y., Done, C.: “Suzaku wide-bandobservations of black-hole binaries and AGNs: con-tinuum and Fe-K lines” ibid., 1248, 317–320, 2010

[32] Konami, S., Matsushita, K., Sato, K., Nagino, R.,Isobe, N., Tashiro, M. S., Seta, H., Matsuta, K.,Tamagawa, T., Makishima, K.: “Suzaku Observa-tion of the Metallicity in the Interstellar Mediumof NGC 1316” Highlights of Astronomy, Proceed-ings of the International Astronomical Union, 15,286–286, 2010

( )

[33] Shin’ya, Yamada: “X-ray Studies of the Black HoleBinary Cygnus X-1 with Suzaku”,

[34] Takayuki, Yuasa, “Suzaku Studies of White DwarfStars and the Galactic X-ray Background Emis-sion”,

[35] ASTRO-H X

[36] “Mechanical design of the Hard X-rayImager and the Soft -ray Detector onboard theASTRO-H observatory”,

[37] “Studies of APD readout of BGO crystalscintillators for the ASTRO-H mission”,

157

Page 159: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.1. 6.

[38] “Thermal design of the Soft Gamma-ray Detector for the next astronomical satelliteASTRO-H”,

( )

[39] Makishima, K.: “Wide-Band X-ray Observationsof Magnetars , Physics in Intense Fields (2010November 15-18; KEK, Tsukuba)

[40] Nakazawa, K. et al., “Non-thermal phenomenain merging clusters of galaxies as observed with‘Suzaku and to be with ASTRO-H”, Non-thermalphenomena in colliding galaxy clusters 2010 (2010November 15-18; Nice, France)

[41] Makishima, K., Sasano, M., Nakajima, K.,Nakano, T., Nishioka, H., Yuasa, T., Yamada, S.,Nakazawa, K., Hiraga, J., S., Enoto, T., Naka-gawa, Y., E., Mihara, T., Bamba, A., Sato, T.,Terada,Y., Kohzu, T., & Yasuda, T., “Magnetars,X-ray Pulsars, and Related Objects”, The firstyear of MAXI: Monitoring variable X-ray sources4th International MAXI Workshop (2010 Novem-ber 30-December 2; Tokyo, Aoyama Gakuin Uni-versity)

( )

• SpaceWire Conference 2010 (2010 June 22-24; St.Petersburg, Russian Federation)

[42] Yuasa, T., Kokuyama, W., Makishima, K.,Nakazawa, K., Nomachi, M., Odaka, H., Kokubun,M., Takashima, T., Takahashi, T., Fujishiro, I.,and Hodoshima, F., “SpaceWire/RMAP-BasedData Acquisition Framework For Scientific Instru-ments: Overview, Application and Recent Up-dates”

[43] Fujinaga, T., Yuasa, T. et al., “Development ofSpaceWire Based Data Acquisition System for theX-Ray CCD Camera on Board ASTRO-H”

[44] Kouzu, T., Yuasa, T. et al., “Verification of HighResolution Timing System with SpaceWire Net-work Onboard ASTRO-H”

[45] Ozaki, M., Yuasa, T. et al., “SpaceWire DrivenArchitecture for the ASTRO-H Satellite”

• The first year of MAXI: Monitoring variable X-raysources 4th International MAXI Workshop (2010November 30-December 2; Tokyo, AoyamaGakuin University)

[46] Gandhi, P., Makishima, K., Kubota, A., et al,“Constraining accretion from coordinated multi-wavelength rapid timing observations of X-ray bi-naries”

[47] Noda, H., Makishima, K., Yamada, S., &Nakazawa, K., “Interpreting the Suzaku Spectra ofMCG-6-30-15 without Invoking a High Black-HoleSpin”

[48] Torii, S., Makishima, K., Yamada, S., & Nakazawa,K.: “Revealing the spectral/temporal evolution ofCyg X-1 under Suzaku & MAXI collaboration”

[49] Sasano, M., Makishima, K., Yuasa, T., Yamada,S., Nakazawa, & K., Nakajima, “Studies s ofSFXTs with MAXI and Suzaku”

[50] Sakurai, S., Makishima, K., Yamada, S., &Nakazawa, K., “LMXBs in their hard state: stud-ies with Suzaku, MAXI, and ASTRO-H”

[51] M. Ohno, Nakazawa,K., Makishima. K. et al., “All-sky Observations with Suzaku Wide-band All-skyMonitor and MAXI”

[52] Nakano, T., Nishioka,H. , Uchiyama, H., Hiraga,J.,S., Nakazawa, K., & Makishima, K., “Attempts to-ward Understanding the Formation of Magnetars”

•[53] Noda, H., Makishima, K., Yamada, S., Nakazawa

K., “Suzaku Discovery of a Hard Component Vary-ing Independently of the Power-Law Emission inMCG 6-30-15”, High Energy View of AccretingObjects: AGN and X-ray Binaries (2010 October4–15; Crete, Greece)

[54] Torii, S., Yamada, S., Makishima, K., Nakazawa,K., “Geometrical Configuration of Accretion Flowsin Cyg X-1 in the Low/Hard State with Suzaku”,ibid.

( / )

• 2010 9 11 14

[55]:

Abell168911aSG-2

[56]: PoGOLite

: 11pSG-1

[57]: PoGOLite

: 11pSG-2

[58]

HXI/SGD : ASTRO-H

11pSG-3

[59]

HXI/SGD : ASTRO-H

11pSG-4

158

Page 160: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.1.

[60]

HXI/SGD : ASTRO-H X11pSG-5

[61]Jean Swank Keith Jahoda

GEMS Collaboration: XGEMS

11aSG-9

[62]

HXI/SGD : ASTRO-H

12pSL-12

[63] 146DECIGO (27)

13pSH-1

[64]: (SWIM)

IX 214pSH-13

• 2010 9 22 24

[65] :Abell 3667 merger shock

T03a

[66]: Evolution of Galaxy Light Distributions in

Galaxy Clusters T06a

[67] Ozden Sengul, Kazuo Makishima: A study onThermal Conditions at the Central Regions of non-cDClusters of Galaxies T07a

[68]: Suzaku

J 1740.5-3014 J19a

[69] :Cyg X-1

J25a

[70]Low/Hard State Cyg X-1

J26a

[71]

MAXI MAXIXTE J1752-223 J27a

[72] :IGRJ16195-4945

J29a

[73]: Aql X-1 /

J31a

[74]: /X

J61a

[75]: SGR 1833-0832ToO J64a

[76]: CTB109

Q24a

[77]

Limousin OlivierPhilippe Laurent Francois Lebrun ASTRO-H HXI ASTRO-H X

(HXI) (V) W08a

[78]

HXI/SGD: ASTRO-H X

W09a

[79]SGD

: X ASTRO-H γW20a

[80]:

SpaceWire I/F :SpaceWire-to-GigabitEther W31a

[81] ( 144 ) :DECIGO (17) W54a

• 2011 1 5 7

[82] , , , , ,, , , , ,

, , , , ,,

P1-023

[83] ,(WAM)P1-02B

[84] , ,2 P1-120

[85] , , MAXIXTE J1752-223

X

[86] , , , , ,, , , , ,

ASTRO-H X(HXI) P2-011

159

Page 161: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.1. 6.

[87] ASTRO-H Soft Gamma-ray Detec-tor ( ) P2-018

• 2011 3 16 19

[88]

:Abell 1835 T01a

[89]: Evolution of Galaxy Light Distributions in

Galaxy Clusters. II. T05a

[90] Ozden Sengul, Kazuo Makishima: A Study onThermal Conditions at the Central Regions of non-cDClusters of Galaxies (2) T08a

[91] Gu Liyi Kazuo Makishima Xu Haiguang: Two-Phase ICM in the Central Region of the RichCluster of Galaxies Abell 1795: A Joint Chandra,XMM-Newton, and Suzaku View T09a

[92] :X (GRXE)

Q26a

[93]MAXI :

X GX 304−1J22a

[94]: HXD Crab

J45a

[95] (146 ) :DECIGO (18)

W26a

[96] JeanSwank Keith Jahoda

GEMS collaboration: XGEMS

W33a

[97] XIS: X CCD XIS

W38b

[98]

HXI/SGD : ASTRO-H X/

W51b

[99]

HXI/SGD : ASTRO-HX

W62a

[100]

HXI/SGD: X ASTRO-H CdTe

W63a

[101]

HXI/SGD : ASTRO-H BGOAPD

W65a

• 2011 3 25 28

[102]

Patrick P TsaiNicolas Vasquez

WAM :X (HXD-WAM)(VII) 25pGS-11

[103]

:II 25pGX-4

[104]:

X 26aGS-7

[105]: Aql X-1

/ 26aGS-9

[106]:

26aGS-10

[107]:

26aGS-12

[108]

ASTRO-H Collaborations: ASTRO-H (2)27pGS-7

[109]

Roger BlandfordGrzegorz Madejski

Philippe Laurent Olivier LimousinFrancois Lebrun ASTRO-H SGD: ASTRO-H (SGD)

27pGS-8

160

Page 162: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.1.

[110]

SGD : X ASTRO-H27pGS-9

[111]

HXI/SGD : XASTRO-H Si-Pad

27pGS-10

[112]

HXI/SGD : ASTRO-HX

27pGS-11

[113]

: X ASTRO-HBGO APD

27pGS-12

[114]

HXI/SGD: ASTRO-H BGO APD

27pGS-13

[115]

HXI/SGD: X HXI

27pGS-14

[116]

: ASTRO-H

28aGN-10

[117] 146DECIGO (30)

28aGS-1

[118]: (SWIM)

X28aGS-11

•[119]

2010I (2010 5 23

)

[120] 30 DECIGO(2010 6 14 )

[121] : 5◦ × 2◦

Sgr A*(2011 3 7 9 )

( )

[122](2010 6 4 )

[123](2010 7 20 )

[124](2010 9 1 )

[125](2010 11 23 )

[126](2011 4 8 )

161

Page 163: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.2. 6.

6.2

TST-2

β = /ST

2

6.2.1 TST-2

TST-2 200MHz

∼100 kA ∼ 1019 m−3

130 kW

COMSOL

6.2.14

0.1T 0.3T200MHz

6.2.14: Wave electric field excited in the plasma

by the combline antenna.

TST-2 (CS)2.45GHz

EC

21MHz200MHz

EC1kA

EC 1/3

RF12 kA

EC

6.2.15X

X

ECST

2

EC EC6.2.16

EC 3

1

0

162

Page 164: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.2.

-5 0 5 10Vertical Field [mT]

-10

-5

0

5

10

15I p

[kA

]

RFECH+RFECH

6.2.15: Relationship of plasma current and ap-

plied vertical field in plasma current start-up ex-

periment using the combline antenna.

6.2.16: Comparison of reconstructed magnetic

configuration and profiles for low filling pressure

(a)–(d), high filling pressure (e)–(h), and low EC

power (i)–(l) equilibria.

200 MHz

6.2.166.2.16

EC 200MHz 2

EC

TST-2 12 kA

100 kA STCS

200MHz 1.5m

COMSOL

TORLH CQL3D Fokker-Planck

TST-2 0.1T EC0.3T

EC2.45GHz

8.2GHz8.2GHz ≤

25 kW TST-28.2GHz

TST-2

163

Page 165: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.2. 6.

μm– mm

ms200 kHz

,

2

TST-2

E B

100 kHz

TST-21

12

Te‖, Te⊥6.2.17(a) (b)

ne > 3×1018 m−3

15%6.2.17(c) ne < 3×1018 m−3

Te‖ Te⊥ Te‖/Te⊥ > 40%

TST-2Ip � 100 kA

je � 640 kAm−2

6.2.17: Double-pass Raman scattering signal

(a), double-pass Thomson scattering signal (b), and

comparison of Te‖ and Te⊥ (c). Two pulses in (a)

and (b) correspond to the first and second laser

paths.

8 3

EC

6.2.2

QUEST

QUESTTST-2

6.2.18

Nd:YAG

164

Page 166: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.2.

1.65 J 10Hz 6–8 ns9mm 0.45mrad

QUESTQUEST

20m

500mm

6

6.2.18: Schematic of Thomson scattering system

in QUEST.

LHD ICRF

LHD38.47

MHz

6.2.19 (1)

(2)

6.2.19: Frequency spectra without plasma (a)

and with plasma (b).

2

( )

[1] Y. Nagashima, S. Inagaki, K. Kamakaki, H.Arakawa, T. Yamada, S. Shinohara, Y. Kawai,M. Yagi, A. Fujisawa, S. -I. Itoh, K. Itoh and Y.Takase: Development of radially movable multi-channel Reynolds stress probe system for a cylin-drical laboratory plasma, Rev. Sci. Instrum. 82(2011) 033503.

[2] M. Ishiguro, K. Hanada, K. Nakamura, O. Mitarai,H. Zushi, H. Idei, M. Sakamoto, M. Hasegawa, Y.Higashizono, Y. Takase, T. Maekawa, Y. Kishi-moto, S. Kawasaki, H. Nakashima and A. Hi-gashijima: Reconstruction of Vacuum MagneticFlux in QUEST, Plasma Fusion Res. 5 (2010)S2083.

[3] T. Kobayashi, S. Inagaki, H. Arakawa, K. Ka-mataki, Y. Nagashima, T. Yamada, S. Sugita, M.Yagi, N. Kasuya, A. Fujisawa, S. -I. Itoh and K.Itoh: Bispectral Analysis of Density and PotentialFluctuations in a High Neutral Density CylindricalPlasma, Plasma Fusion Res. 5 (2010) S2047.

[4] K. Kamataki, S. -I. Itoh, S. Inagaki, H. Arakawa,Y. Nagashima, T. Yamada, M. Yagi, A. Fuji-sawa and K. Itoh: ECRH Superposition on LinearCylindrical Helicon Plasma in the LMD-U, PlasmaFusion Res. 5 (2010) S2046.

165

Page 167: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.2. 6.

[5] H. Arakawa, S. Inagaki, Y. Nagashima, T. Ya-mada, K. Kamataki, T. Kobayashi, S. Sugita, M.Yagi, N. Kasuya, A. Fujisawa, S. -I. Itoh andK. Itoh: Probability Density Function of Den-sity Fluctuations in Cylindrical Helicon Plasmas,Plasma Fusion Res. 5 (2010) S2044.

[6] T. Yamada, S. -I. Itoh, S. Inagaki, Y. Nagashima,S. Shinohara, N. Kasuya, K. Terasaka, K. Ka-mataki, H. Arakawa, M. Yagi, A. Fujisawa and K.Itoh: Nonlinear Mode Couplings in a CylindricalMagnetized Plasma, Plasma Fusion Res. 5 (2010)S2016.

[7] T. Yamada, R. Imazawa, S. Kamio, R. Hihara,K. Abe, M. Sakumura, Q. Cao, T. Oosako, H.Kobayashi, T. Wakatsuki, B. I. An, Y. Nagashima,H. Sakakita, H. Koguchi, S. Kiyama, Y. Hirano, M.Inomoto, A. Ejiri, Y. Takase and Y. Ono: Merg-ing start-up experiments on the UTST sphericaltokamak, Plasma Fusion Res. 5 (2010) S2100.

[8] A. Ejiri, T. Yamaguchi, J. Hiratsuka, Y. Takase,M. Hasegawa and K. Narihara: Development of abright polychromator for Thomson scattering mea-surements, Plasma Fusion Res. 5 (2010) S2082.

[9] T. Yamaguchi, A. Ejiri, J. Hiratsuka, Y. Takase,Y. Nagashima, O. Watanabe, T. Sakamoto, T.Oosako, B. I. An, H. Kurashina, H. Kobayashi, H.Hayashi, H. Matsuzawa, K. Yamada, H. Kakuda,K. Hanashima and T. Wakatsuki: Development ofa Thomson scattering system in the TST-2 spher-ical tokamak, Plasma Fusion Res. 5 (2010) S2092.

[10] M. Sugihara, K. Oki, R. Ikezoe, T. Onchi, A. San-pei, H. Himura, S. Masamune, T. Akiyama, A.Ejiri, K. Sakamoto, K. Nagasaki and V. Zhuravlev:Density Regimes of Low-Aspect-Ratio RFP Plas-mas in RELAX, Plasma Fusion Res. 5 (2010)S2061.

[11] Y. Nagashima, J. Ozaki, M. Sonehara, Y. Takase,A. Ejiri, K. Yamada, H. Kakuda, S. Inagaki, T.Oosako, B. I. An, H. Hayashi, K. Hanashima, J.Hiratsuka, H. Kobayashi, H. Kurashina, H. Mat-suzawa, T. Sakamoto, T. Yamaguchi, O. Watan-abe and T. Wakatsuki: Fluctuation measurementin the edge plasma on TST-2, Plasma Fusion Res.5 (2010) S2049.

[12] O. Watanabe, A. Ejiri, H. Kurashina, T. Ohsako,Y. Nagashima, T. Yamaguchi, T. Sakamoto, B. I.An, H. Hayashi, H. Kobayashi, K. Yamada, H.Kakuda, J. Hiratsuka, K. Hanashima, T. Wakat-suki and Y. Takase: Comparison of Hydrogen andDeuterium Plasmas in ECH Start-Up Experimentin the TST-2 Spherical Tokamak, Plasma FusionRes. 5 (2010) S2032.

[13] J. Hiratsuka, A. Ejiri, Y. Takase and T. Yam-aguchi: Feasibility of a Multi-Pass Thomson Scat-tering System with Confocal Spherical Mirrors,Plasma Fusion Res. 5 (2010) 044.

[14] H. Kurashina, A. Ejiri, Y. Takase, K. Hanashima,T. Sakamoto, O. Watanabe, Y. Nagashima, T. Ya-maguchi, B. I. An, H. Kobayashi, H. Hayashi, K.Yamada, H. Matsuzawa, H. Kakuda, J. Hiratsuka,T. Wakatsuki and T. Oosako: Electron DensityMeasurements of Non-Inductive Start-Up Plasmasin the TST-2 Spherical Tokamak, Plasma FusionRes. 5 (2010) 024.

[15] J. Ozaki, M. Sonehara, Y. Nagashima, Y. Takase,A. Ejiri, K. Yamada, H. Kakuda, S. Inagaki, T.Oosako, B. I. An, H. Hayashi, K. Hanashima, J. Hi-ratsuka, H.Kobayashi, H.Kurashina, T. Sakamoto,T. Yamaguchi, O. Watanabe and T. Wakatsuki:Evaluation of Edge Electron Temperature Fluctu-ations Using a Conditional Technique on TST-2,Plasma Fusion Res. 5 (2010) 023.

[16] Y. Nagashima, T. Oosako, Y. Takase, A. Ejiri, O.Watanabe, H. Kobayashi, Y. Adachi, H. Tojo, T.Yamaguchi, H. Kurashina, K. Yamada, B. I. An, H.Kasahara, F. Shimpo, R. Kumazawa, H. Hayashi,H. Matsuzawa, J. Hiratsuka, K. Hanashima, H.Kakuda, T. Sakamoto, and T. Wakatsuki: Ob-servation of Beat Oscillation Generation by Cou-pled Waves Associated with Parametric Decay dur-ing Radio Frequency Wave Heating of a Spheri-cal Tokamak Plasma, Phys. Rev. Lett. 104 (2010)245002.

[17] K. Hanada, K. Sato, H. Zushi, K. Nakamura, M.Sakamoto, H. Idei, M. Hasegawa, Y. Takase, O.Mitarai, T. Maekawa, Y. Kishimoto, M. Ishiguro,T. Yoshinaga, H. Igami, N. Nishino, H. Honma,S. Kawasaki, H. Nakashima, A. Higashijima, Y.Higashizono, A. Ando, N. Asakura, A. Ejiri, Y.Hirooka, A. Ishida, A. Komori, M. Matsukawa, O.Motojima, Y. Ogawa, N. Ohno, Y. Ono, M. Peng,S. Sudo, H. Yamada, N. Yoshida and Z. Yoshida:Steady-State Operation Scenario and the First Ex-perimental Result on QUEST, Plasma Fusion Res.5 (2010) S1007.

[18] Y. Nagashima, K. Nagaoka, K. Itoh, A. Fujisawa,M. Isobe, T. Akiyama, C. Suzuki, S. Nishimura, Y.Yoshimura, K. Matsuoka, S. Okamura, Y. Takase,A. Ejiri, S. -I. Itoh, M. Yagi and CHS Group: Ob-servation of Edge Reynolds Stress Increase Preced-ing an L-H Transition in Compact Helical System,Plasma Fusion Res. 5 (2010) 022.

[19] T. Wakatsuki, Y. Nagashima, T. Oosako, H.Kobayashi, B. I. An, H. Kakuda, T. Yamada,R. Imazawa, O. Watanabe, T. Yamaguchi, H.Kurashina, H. Hayashi, K. Yamada, T. Sakamoto,K. Hanashima, J. Hiratsuka, S. Kamio, R. Hihara,K. Abe, M. Sakumura, Q. Cao, M. Inomoto, Y.Ono, A. Ejiri and Y. Takase: Direct Measurementsof High Harmonic Fast Wave Profile in the UTSTSpherical Tokamak Plasma, Plasma Fusion Res. 5(2010) 018.

( )

166

Page 168: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.2.

( )

[20] : Plasma heating and current drive exper-iments using radio frequency waves at 200MHz onthe TST-2 spherical tokamak,

[21] : Electron temperature and density profilemeasurements using Helium line intensity ratio onTST-2,

[22] : Development of advanced Thomson scat-tering system for the TST-2 spherical tokamak,

[23] : TST-2,

[24] : Plasma Start-up and Heating Experi-ments Using Radio Frequency Waves in SphericalTokamaks,

[25] : TST-2,

( )

[26] H. Kakuda, T. Wakatsuki, Y. Takase, C. P.Moeller, A. Ejiri, Y. Nagashima, O. Watanabe, T.Oosako, H. Kobayashi, R. Kumazawa, K. Saito,H. Kasahara, F. Shimpo, T. Muto, T. Seki, G. No-mura, S. Shiraiwa, O. Meneghini, T. Yamaguchi,T. Sakamoto, K. Hanashima, J. Hiratsuka, T.Ambo, R. Shino, and M. Sonehara: 200 MHzFast Wave Experiment Using a Combline Antennain the TST-2 Spherical Tokamak, US-Japan RFPhysics Workshop. Toba, Japan, Feb. 7-9, 2011

[27] T. Wakatsuki, H. Kakuda, Y. Takase, A. Ejiri,Y. Nagashima, O. Watanabe, T. Yamaguchi,H. Kobayashi, H. Kakuda, T. Sakamoto, K.Hanashima, J. Hiratsuka, T. Ambo, R. Shino,M. Sonehara, Y. Ono, M. Inomoto, T. Yamada,S. Kamio, K. Abe, Q. Cao, and M. Sakumura:Plasma Start-up Experiments in TST-2 and DirectMeasurement of HHFW Field Profile in UTST,US-Japan RF Physics Workshop. Toba, Japan,Feb. 7-9, 2011

[28] Y. Nagashima, A. Ejiri, Y. Takase, M. Sonehara,H. Kakuda, T. Oosako, J. Hiratsuka, O. Watan-abe, T. Yamaguchi, H. Kobayashi, T. Wakatsuki,T. Sakamoto, K. Hanashima, T. Ambo, R. Shino,and S. Inagaki: Evaluation of edge electron tem-perature fluctuation by the use of fast voltage scan-ning method on TST-2, 20th International TokiConference, Toki, Japan, Dec. 7 - 10, 2010, P1-62.

[29] Y. Takase, A. Ejiri, H. Kakuda, T. Wakatsuki,P. Bonoli, J. Wright, S. Shiraiwa, O. Meneghini,C. Moeller, T. Mutoh, R. Kumazawa, K. Saito,H. Kasahara, TST-2 Group: Development of aPlasma Current Ramp-up Technique for Spherical

Tokamaks by the Lower-Hybrid Wave, 23rd IAEAFusion Energy Conference, Daejeon, Korea, Oct11-16, 2010 (FTP/P6-15)

[30] H. Idei, M. Sakaguchi, E. I. Kalinnikova, K. Na-gata, A. Fukuyama, H. Zushi ,K. Hanada, M. Ishig-uro , H. Igami, S. Kubo, K. Nakamura, A. Fuji-sawa, M. Sakamoto, M. Hasegawa, Higashizono,S. Tashima, R. Ogata, H. Q. Liu, I. Goda, T.Ryokai, S. K. Sharma, M. Isobe, A. Ejiri, K. Na-gaoka, M. Osakabe, A. Tsushima, H. Nakanishi,T. Morisaki, N. Nishino, Y. Nakashima, H. Watan-abe, K. Tokunaga, T. Tanabe, N. Yoshida, K. N.Sato, S. Kawasaki, H. Nakashima, A. Higashijima,Y. Takase, T. Maekawa, O. Mitarai, M. Kikuchi,K. Toi and Y. Kishimoto: Phased-array AntennaSystem for Electron Bernstein Wave Heating andCurrent Drive Experiments in QUEST, 23rd IAEAFusion Energy Conference, Daejeon, Korea, Oct11-16, 2010 (EXW/P7-31)

[31] A. Ejiri, H. Kurashina, Y. Takase, K. Hanashima,T. Sakamoto, O. Watanabe, Y. Nagashima, T.Yamaguchi, B. I. An, H. Kobayashi, H. Hayashi,K. Yamada, H. Kakuda, J. Hiratsuka, T. Wakat-suki and M. Goto: Non-inductive Plasma Cur-rent Start-up Experiments in the TST-2 SphericalTokamak, 23rd IAEA Fusion Energy Conference,Daejeon, Korea, Oct 11-16, 2010 (EXW/P2-02)

[32] H. Meyer, M. F. M. De Bock, N. J. Conway, S.J. Freethy, K. Gibson, J. Hiratsuka, A. Kirk, C.A. Michael, T. Morgan, R. Scannell, G. Naylor, S.Saarelma, A. N. Saveliev, V. F. Shevchenko, W.Suttrop, D. Temple, R. G. L. Vann and the MASTand NBI Teams: L-H Transition and PedestalStudies on MAST, 23rd IAEA Fusion Energy Con-ference, Daejeon, Korea, Oct 11-16, 2010 (EXC/2-3Ra)

[33] T. Yamada, R. Imazawa, S. Kamio, R. Hihara,K. Abe, M. Sakumura, Q.H. Cao, Y. Takase, Y.Ono, H. Sakakita, H. Koguchi, S. Kiyama, andY. Hirano: Double Null Merging Start-up Exper-iments in the University of Tokyo Spherical Toka-mak, 23rd IAEA Fusion Energy Conference, Dae-jeon, Korea, Oct 11-16, 2010 (EXS/P2-19)

[34] D. Moreau, D. Mazon, J. Ferron, M. Walker, E.Schuster, Y. Ou, C. Xu, Y. Takase, Y. Sakamoto,S. Ide, T. Suzuki, ITPA-IOS Group Members andExperts: Plasma Models for Real-Time Controlof Advanced Tokamak Scenarios, 23rd IAEA Fu-sion Energy Conference, Daejeon, Korea, Oct 11-16, 2010 :(EXW/P2-07)

[35] M. Uchida, T. Maekawa, H. Tanaka, S. Ide, Y.Takase, F. Watanabe, and S. Nishi: Generationof Initial Closed Flux Surface by ECH at Conven-tional Aspect Ratio of R/a 3; Experiments on theLATE device and JT-60U Tokamak, 23rd IAEAFusion Energy Conference, Daejeon, Korea, Oct11-16, 2010 (EXW/P2-12)

167

Page 169: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.2. 6.

[36] Y. Nagashima, Y. Takase, A. Ejiri, J. Ozaki,M. Sonehara, K. Yamada, B. I. An, H. Hayashi,K. Hanashima, J. Hiratsuka, H. Kakuda, H.Kobayashi, H. Kurashina, T. Sakamoto, T. Yam-aguchi, O. Watanabe, and T. Wakatsuki: Evalua-tion of edge electron temperature fluctuation bythe use of conditional techniques in the TST-2spherical tokamak, US Transport Taskforce Work-shop 2010, Annapolis, Maryland, USA, 13-16April, 2010. I-P18

( )

[37] :, 66

2011 325-28 4 27pTH-4

[38]

:

, 662011 3 25-28

4 26pGW-9

[39]

: TST-2, 66

20113 25-28 4

26pGW-10

[40] S. BANERJEEB

:QUEST SOL

, 662011 3 25-28

4 26pGW-11

[41]

: UTST, 66

2011 3 25-284 27pGY-4

[42] Paul Bonoli John C. WrightOrso Meneghini

: TST-2

, 662011 3 25-28

4 27pGY-12

[43]

: TST-2

, 66

2011 3 25-28 428aGZ-9

[44]

: TST-2,

NIFS

2011 3 15

[45] , , , , ,, , , , ,, , , , ,

, , , , :TST-2 UTST

, NIFS

2011 3 15

[46] : ICRF, 2011 113-14

[47] : QUEST, 2011 1

20

[48]

: TST-2,

2011 1 27 28

[49] : ,Web 22

2011 1 29

[50]

:QUEST

, 272010 11 30 - 2 3 02P77

[51]

O. Meneghini

: TST-2200 MHz ,

27 2010 11 30 - 2 302P80

[52]

: UTST

168

Page 170: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.2.

,27 2010 11 30 - 2

3 02P79

[53]

:ST ,

27 2010 11 30 - 23 01P16

[54]

:QUEST AM

, 272010 11 30 - 2 3 01P35

[55]

: QUEST, 27

2010 11 30 - 2 3 02P08

[56]

: TST-2,

27 2010 11 30 - 23 02P41

[57] H. Q. LIU

: QUEST blob, 27

2010 11 30 - 2 303P75

[58]

: TST-2

, 2010 20109 23 -2624pQJ-8

[59]

: QUEST SOLpdf ,

2010 2010 9 23-26 24pQJ-6

[60]

:QUEST

, 20102010 9 23 -26

26pQJ-9

[61] E. Kalinnikova

S. K. Sharma

: QUEST

: 20102010 9 23 -26

26pQJ-8

[62]

: QUEST, 2010

2010 9 23 -2626pQJ-7

[63]

: TST-2200MHz

, 20102010 9 23 -26

26pQJ-6

[64] , TST-2 : TST-2 , 5QUEST 2010 8 30 -31

[65] : TST-2 200MHz , 5QUEST 2010 8 30 -31

[66]:

, 5 QUEST 2010 830 -31

[67] :, 8

2010 6 10 -11 10A-25p

[68] :, 8

2010 6 10 -1111B-12p

[69]

: TST-2 ECST , 8

2010 6 10-11 11A-37p

[70]

: UTST, 8

2010 610 -11 11A- 36p

[71]

E. Kalinnikova H. Liu

169

Page 171: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.2. 6.

S. K. Sharma: QUEST

, 82010 6 10 -11 10A-24p

170

Page 172: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.3.

6.3

LCGT2010 10

DECIGO

DECIGO

[3, 8, 10, 11, 12, 13, 14, 15, 17, 57, 59]

6.3.1

LCGT

LCGTLarge-scale Gravitational Wave Telescope

2010 10LCGT

3km

20K

RSE TAMA2

200Mpc

1 10

LCGT[19, 43, 49, 56, 58]

LCGT

LCGTLCGT

LCGT RSE

[42]

6.3.2 DECIGO

DECIGO, DPF

DECIGO(DECi-hertz Interferometer GravitationalWave Observatory)

2027DECIGO

1000 km 3

DECIGO

DECIGO 2

DECIGO(DPF)

500 km 350 kgDPF

DPF JAXA1

[2, 9, 26, 37, 38, 45, 46, 55]

DPF Fabry-Perot

DPF 2Fabry-Perot

Fabry-Perot2

30cm DPF0.1-1Hz

2010 BBM2 pitch yaw

Fabry-Perot 5

2Fabry-Perot

171

Page 173: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.3. 6.

-SWIMμν FPGA

[20, 25, 28, 39, 48]

DPF

DPF

DPF

Satellite-Satellite Tracking in thehigh-low mode (SST-hl)

SatelliteGravity Gradiometry (SGG)

SGG Fabry-Perot

GPS

SST-hl

Fabry-Perot

GPS

SGG 120

SST-hl SGG50

DPF

[21, 29, 31, 32]

DPF

DPF

Squeeze film dampingSqueeze film damping

Squeeze film dampingSqueeze film damping

Squeeze film damping

2 mm

1mm Squeeze film damping1/4

DPFSqueeze film damping

[40, 47]

SWIMμν

SWIM (SpaceWire Interface demonstration Mod-ule) , SpaceWire

JAXA() (SDS-1)

2009 1 232010 9 (

)

SWIM(SWIMμν)

SWIMμν ,80mm

2

-

-

172

Page 174: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.3.

2

[5, 16, 22, 23, 27, 30, 41, 54]

6.3.3

Torsion-bar Antenna (TOBA)TOBA

100 HzTOBA 1 Hz

1 Hz

1 HzLISA

DECIGO

TOBA

TOBA

25

0.1 – 1.0 Hz

TOBA

[1, 4, 6, 7, 24, 35, 50]

SWIMμν

SWIMμν

SWIMμν

/

/

6.3.4

,,

,

,, 2

OPO (Optical Parametric Oscillator), ,

, SHG(Second-Harmonic Generator)

, 10Hz ∼10 kHz , −10 dB

2010 , SHG, OPO , OPO

,[18, 34, 51]

6.3.5

ULE

Q

Q18K

ULE

173

Page 175: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.3. 6.

[33]

ULE

[53]

[60]

6.3.6

QS/N

5 mm (missing-mass)12 (attractor)

2010

1×10−15 m/√Hz

PLL0.1%

[36, 52]

Newton

Yb2 nm

100 MHz2

2

100 MHz GPSAOM 7

10nK

α [44]

[1] Best Student Poster Award at theGravitational-wave Physics and Astronomy Work-shop (University of Wisconsin-Milwaukee, Jan. 26,2011).

( )

[2] Seiji Kawamura, Masaki Ando, Naoki Seto, ShuichiSato, Takashi Nakamura, Kimio Tsubono et al.,

174

Page 176: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.3.

and the DECIGO working group: The Japanesespace gravitational wave antenna: DECIGO,Class. Quantum Grav. 28 (2011) 094011.

[3] J. Abadie, et al., Search for gravitational wavesassociated with the August 2006 timing glitch ofthe Vela pulsar, Physical Review D, 83, 042001,2011.

[4] Koji Ishidoshiro, Masaki Ando, Akiteru Takamori,Hirotaka Takahashi, Kenshi Okada, NobuyukiMatsumoto, Wataru Kokuyama, Nobuyuki Kanda,Yoichi Aso, and Kimio Tsubono: First Observa-tional Upper Limit on Gravitational Wave Back-grounds at 0.2 Hz with a Torsion-Bar Antenna,Phys. Rev. Lett. (2011) (in press).

[5] Wataru Kokuyama, Kenji Numata, and JordanCamp: Simple iodine reference at 1064 nm for ab-solute laser frequency determination in space ap-plications, Applied Optics, 49, 6264-6267 (2010).

[6] K. Ishidoshiro, M. Ando, A. Takamori, K. Okada,K. Tsubono: Gravitational-wave detector realizedby a superconductor, Physica C 470 (2010) 1841-1844.

[7] Masaki Ando, Koji Ishidoshiro, Kazuhiro Ya-mamoto, Kent Yagi, Wataru Kokuyama, KimioTsubono, and Akiteru Takamori: Torsion-Bar An-tenna for Low-Frequency Gravitational-Wave Ob-servations, Phys. Rev. Lett. 105 (2010) 161101.

[8] J. Abadie, et al., Calibration of the LIGO gravita-tional wave detectors in the fifth science run Nu-clear Instrument and Methods in Physics ResearchA, 624, 223, 2010.

[9] M. Ando, S. Kawamura, N. Seto, et al., DECIGOand DECIGO pathfinder Classical and QuantumGravity, 27 084010, 2010.

[10] J. Abadie, et al., First search for gravitationalwaves from the youngest known neutron star As-trophysical Journal, 722 1504, 2010.

[11] J. Abadie, et al., Predictions for the rates of com-pact binary coalescences observable by ground-based gravitational-wave detectors Classical andQuantum Gravity, 27 173001, 2010.

[12] . Abadie, et al., All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo runPhysical Review D, 81 102001, 2010.

[13] B. Abbott, et al., Search for gravitational-wavebursts associated with gamma-ray bursts usingdata from ligo science run 5 and virgo science run1 Astrophysical Journal, 715 1438, 2010.

[14] J. Abadie, et al., Search for gravitational-waveinspiral signals associated with short gamma-raybursts during ligo’s fifth and virgo’s first sciencerun Astrophysical Journal, 715 1453, 2010.

[15] B. Abbott, et al., Searches for gravitational wavesfrom known pulsars with science run 5 LIGO dataAstrophysical Journal, 713 671, 2010.

( )

[16] :SWIMμν 65-12

(2010) 987-990.

[17] :42-2 (2010) 10.

( )

[18]2011 .

( )

[19] Yoichi Aso, Measuring Coating Thermal Noisewith Cryogenic Sapphire Cavities, 2010 Gravita-tional Wave Advanced Detector Workshop, Kyoto,May 2010.

[20] Yuta Michimura, Yoichi Aso, Koji Ishidoshiro,Shuichi Sato, Masaki Ando, Akitoshi Ueda, SeijiKawamura, Kimio Tsubono: Development of theinterferometer module for DECIGO Pathfinder,The 8th International LISA Symposium (July2010, California, USA).

[21] A. Shoda, Y. Michimura, W. Kokuyama, Y. Aso,K. Tsubono, M. Ando, A.Araya, S. Sato, Sensitiv-ity Estimates for the Observation of the Earth’sgravity field by DECIGO Pathfinder, 8th LISASymposium (June 28, 2010, Stanford University).

[22] Wataru Kokuyama, Masaki Ando, TakeshiTakashima, et al.: In-orbit operation of a compacttorsion-bar gravitational wave detector: SWIMμν ,8th International LISA Symposium (June 28, 2010,Stanford University).

[23] Wataru Kokuyama, Kenji Numata, and JordanCamp: Simple Iodine Wavemeter for LISA, 8th In-ternational LISA Symposium (June 28, 2010, Stan-ford University).

[24] A Shoda, K Okada, K Ishidoshiro, M Ando, YAso, K Tsubono, Search for a Stochastic Gravi-tational Wave Background with Torsion-bar An-tenna, Gravitational-wave Physics and Astron-omy Workshop, (January 26th, 2011, Universityof Wisconsin-Milwaukee).

( )

[25] , , , , ,, , , : DECIGO

Pathfinder , 11(2011 1 ,

).

175

Page 177: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.3. 6.

[26] , , , ,DECIGO Pathfinder– – 11

(2011 1 5 JAXA/ISAS).

[27] , , , , ,, , , , ,, , , , ,, , , ,

, , , , : SDS-1/SWIM

11 (2011 1 5JAXA/ISAS).

[28] , , , , ,, , , : DECIGO

Pathfinder , 1(2011 3 ,

).

[29] , , , ,DECIGO Pathfinder– – 1

(2011 3 1 JAXA/ISAS).

[30] , , , , ,, , , , ,, , , , ,, , , ,

, , , , : SDS-1/SWIM

1 (2011 31 JAXA/ISAS).

[31]DECIGO pathfinder

2011 1 5 .

[32]DECIGO pathfinder

2011 3 1 .

[33], ,

2011 2011 3 .

[34],

IV , 20112011 3 .

[35],

II ,2011 2011 3 .

[36],

II , 20112011 3 .

[37]

,DECIGO (30) ,

2011 2011 3 .

[38]

, DECIGOpathfinder (2) ,

2011 2011 3 .

[39],

DECIGO PathfinderIII , 2011 2011 3 .

[40], DPF

II , 2011 2011 3.

[41]

,(SWIM)

X , 20112011 3 .

[42]

LCGT Collaboration, LCGT ,2011 2011 3 .

[43]LCGT Collaboration, LCGT

(I) , 20112011 3 .

176

Page 178: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.3.

[44],

, 20112011 3 .

[45]

/

, DECIGO(27) , 2010

2010 9 .

[46]

, DECIGOpathfinder (1) ,

2010 2010 9.

[47], DPF, 2010 2010 9

.

[48], DECIGO PathfinderII , 2010

2010 9 .

[49]

LCGT Collab-oration Members, LCGT

XIII , 2010 20109 .

[50],

, 2010 2010 9.

[51],

III , 20102010 9 .

[52],

, 20102010 9 .

[53] ,

II , 2010 2010 9.

[54]

,(SWIM)

IX 2 , 20102010 9 .

[55]

, DECIGO pathfinder, 2010

2010 9 .

[56] Stefan BallmerCLIO Collaboration,

CLIO(30) (IV) ,2010 2010 9.

[57] ,2010 (2010 8 ,

1 ).

[58] , The LCGT Collaboration,58

,.

[59] ,(2010 10 , ).

( )

[60] , ,,

, 2011/3/11.

177

Page 179: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.4. 6.

6.4

1

6.4.1

Kardar-Parisi-Zhang (KPZ)

6.4.20: (a) DSM2 (b)

GUE

GOE Tracy-

Widom

178

Page 180: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.4.

DSM2

DSM2 6.4.20arougheningDSM2

DSM2 KPZ

6.4.20b

6.4.20b[1, 12, 13, 36, 67]

[17, 23, 44, 52, 56]

6.4.21

6.4.21:

2

z

[10]

[39]

6.4.22 (b)

6.4.22 (a)

[24]

6.4.22: (Tb) (Ps)

(a) Ps 1

(b) Tb

179

Page 181: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.4. 6.

( 6.4.23(a))

[15, 16, 73]F.Merkt

[22, 42, 70]

( 6.4.23(b), [76])J.M.Schleier-Smith

(heaping)

[57, 74]

6.4.23: (a)

33% 100Hz 153m/s2 (b)

1300 nm

3kBT

28Jarzynski

[3]

1 Langevin

Langevin Harada-Sasa

Langevin

Langevin

SN

Harada-Sasa

180

Page 182: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.4.

[49, 27, 59]

σf 1

σf ≤ D(q||p)D(q||p) +D(p||q) ≤ 1, (4.1.1)

[9, 50, 28]

6.4.2

Experimental verification of self-thermophoresis

Self-propulsion is the motion of an object in aparticular direction by consuming energy withoutexternal forces. It is a typical example of nonequi-librium systems, which have recently been develop-ing but are still not well understood as equilibriumsystems. Recent studies suggest that once the en-ergy consumption of an object can be used to createits local gradient, a new kind of self-propulsion, socalled self-phoretic motion, can be realized. How-ever, the relation between phoretic motion and self-phoretic motion is not clear due to lack of experi-mental verifications.

Our work for answering these questions is to cre-ate a Janus particles comprised of half-coated bygold as an energy consumer to create a local tem-perature gradient. We experimentally showed that

the Janus particle is able to move under isotropiclaser illumination. The particle has an intrinsic di-rection, namely polarity, and accordingly createsa local temperature gradient. The mechanism issimilar to thermophoresis but the temperature gra-dient is not externally applied. Such so-called self-thermophoretic motion has only been predicted the-oretically, while there are no experimental evidences.My results provide supporting evidence for motionscaused by self-phoretic mechanism, indeed sharingthe same properties with its corresponding phoreticmotion. Such an experimental verification betweenphoretic motion and self-phoretic motion is lackingin the present studies of self-phoretic motions [4,19, 75].

6.4.24: Self-thermophoresis of optical Janus par-

ticle, temperature distribution: experiment and

theory.

181

Page 183: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.4. 6.

Janus

Janus

Janus insetFluc-

tuation theorem FTJanus

FT

[20, 25, 43, 48, 53]

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5

To

rque

[p

N n

m]

Applied voltage [V]

: FT

: Stokes' law

6.4.25: (FT)

Inset Janus

6.4.26:

Ficoll ( ) PEG

( )

10μm

Soret

[31, 32, 34][11]

FicollPEG

( 6.4.26)

SoretFicoll PEG Soret

FicollSoret PEG

182

Page 184: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.4.

[26, 58]

Langevin

Lanvegin

[7, 21, 37, 38, 47, 62, 64, 68, 69, 72]

Langevin

6.4.27

[8, 40, 51, 62, 64, 68, 72]

6.4.3

( 6.4.28(a))

Brower[2, 29, 18,

54]

a b

time

dis

pla

cem

ent

position

pote

ntia

l

0.5

20

2

1

6.4.27: (a)

x(t) y(t)

[8] (b) (a)

y(t)[ ]

x(t)[ ] x(t)[ ]

( 6.4.28(b))

-2 0 2 4 6 8 10

-1

0

1

y

8 10 12 14 16 18 20

-1

0

1

x

(a)

(b)

y

6.4.28: (a)

10μm (b)

183

Page 185: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.4. 6.

6.4.29 (A)

6.4.29 (B-D)

[30, 41, 45, 55, 63]

0 10 20 30 40 50 60-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

time (min)

mo

me

nt

(fJ)

30

210

60

240

90 270

0

120

300

150

330

180

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(A) (B) (C)

(D)

Pl (fJ)

Ps (

fJ)

6.4.29: (A):

(B-D):

(B)

(C)

(D)

z4 x,y,z,t

[5] Physical Review

Letters (December 7, 2010)

6.4.30: z

( )

[1] Kazumasa A. Takeuchi and Masaki Sano: Univer-sal Fluctuations of Growing Interfaces: Evidencein Turbulent Liquid Crystals, Physical Review Let-ters, 104, 230601 (2010).

[2] Toru Hiraiwa, Miki Y. Matsuo, Takahiro Ohkuma,Takao Ohta, and Masaki Sano: Dynamics of adeformable self-propelled domain, Europhys. Lett.91, 20001 (2010).

[3] Shoichi Toyabe, Takahiro Sagawa, Masahito Ueda,Eiro Muneyuki, and Masaki Sano: Experimentaldemonstration of information-to-energy conversionand validation of the generalized Jarzynski equal-ity, Nature Physics, 6, 988 (2010).

[4] Hong-Ren Jiang, Natsuhiko Yoshinaga, MasakiSano: Active Motion of Janus Particle by Self-thermophoresis in Defocused Laser Beam, Phys.Rev. Lett. 105, 268302 (2010). (selected for an Ed-itor’s Suggestion and highlighted with a Viewpointin Physics of APS.)

[5] Helene Delanoe-Ayari, Jean-Paul Rieu, andMasaki Sano: 4D Traction Force Microscopy Re-veals Asymmetric Cortical Forces in MigratingDictyostelium Cells, Phys. Rev. Lett., 105, 248103(2010).

[6] Takahiro Harada, Hisa-Aki Tanaka, Michael J.Hankins, and Istvan Z. Kiss: Optimal Waveformfor the Entrainment of a Weakly Forced Oscilla-tor, Phys. Rev. Lett. 105, 088301 (2010).

184

Page 186: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.4.

[7] Makito Miyazaki and Takahiro Harada: Bayesianestimation of the internal structure of proteinsfrom single-molecule measurements, J. Chem.Phys., 134, 085108 (2011).

[8] Makito Miyazaki and Takahiro Harada: Go-and-Back method: Effective estimation of the hiddenmotion of proteins from single-molecule time series,J. Chem. Phys., 134, 135104 (2011).

[9] Kyogo Kawaguchi and Masaki Sano: Efficiencyof Free Energy Transduction in Autonomous Sys-tems, arXiv:1103.1961.

[10] Marguerite Bienia and Masaki Sano: Non-destructive ultrasonic velocimetry for cen-tral region velocity fields in turbulentRayleigh-Benard convection of mercury, FlowMeasurement and Instrumentation, DOI10.1016/j.flowmeasinst.2011.03.009, online publi-cation, Mar-24 (2011).

( )

[11] :, 59, 490-491 (2010).

( )

[12] Kazumasa A. Takeuchi and Masaki Sano:Geometry-dependent universality in growinginterfaces – Evidence in liquid-crystal turbu-lence –, StatPhysHK Complexity, Computation,Information, July 13-16, 2010, Hong Kong, China.

[13] Kazumasa A. Takeuchi and Masaki Sano: Univer-sal fluctuations of growing interfaces: evidence inturbulent liquid crystals, Statphys24, Jul. 19-23,2010, Cairns, Australia.

[14] Masaki Sano, Nonequilibrium depletion force ina temperature gradient, Statphys24, July 19-23,2010, Cairns, Australia.

[15] Hiroyuki Ebata and Masaki Sano: Dynamics ofself-replicating holes in a vertically vibrated densesuspension Statphys24, Cairns Australia, July 19-23, 2010.

[16] Hiroyuki Ebata and Masaki Sano: Self replicatingpatterns in vertically vibrated wet granules In-ternational Symposium on Non-Equilibrium SoftMatter 2010, Nara, August 17-20, 2010.

[17] Masafumi Kuroda and Masaki Sano: Turbulencein Liquid Crystal Excited by Vibrating Wire, In-ternational Symposium on Non-Equilibrium SoftMatter 2010, Nara, Japan.

[18] Miki Y. Matsuo, Hirokazu R. Tanimoto, andMasaki Sano: Anomalous motion of active de-formable particle, International Symposium onNon-Equilibrium Soft Matter 2010, Nara, August17-20, 2010.

[19] Hong-Ren Jiang, Natsuhiko Yoshinaga and MasakiSano: Active Motion of Janus Particle by Self-thermophoresis in Defocused Laser Beam, Work-shop on chemi-Thermo-EM phoresis in ComplexFluid, Pohang, Korea, Aug. 24-29, 2010.

[20] Ryo Suzuki and Masaki Sano: An experiment oncollective motion of Janus particles under AC elec-tric field, International Workshop on StatisticalPhysics and Biology of Collective Motion, MaxPlanck Institute for the Physics of Complex Sys-tems, Nov. 8-12, 2010.

[21] Makito Miyazaki and Takahiro Harada: Bayesianestimation of the internal structure of pro-teins from single-molecule measurements, The4th Mechanobiology Workshop and BiophysicalSociety Joint Meeting, November 9-12, 2010,Mechanobiology Institute Singapore, Singapore.

[22] Hiroyuki Ebata, Miki Y. Matsuo, and MasakiSano: Self-propelled deformable holes in verticallyvibrated wet granules Recent Progress in Physicsof Dissipative Particles, Kyoto, November 24-26,2010.

[23] Masafumi Kuroda and Masaki Sano: Turbulencein Liquid Crystal Excited by Vibrating Wire, Ko-rea Univ. and The Univ. of Tokyo 1st Joint Work-shop on Bio-Soft Matter, Feb. 21-23, 2011, Tokyo,Japan.

[24] Yutaro Matsui and Masaki Sano: Heat Trans-fer Characteristics of Gas and Liquid Two-PhaseThermal Convection in the Presence of the FirstOrder Phase Transition, Korea Univ. and TheUniv. of Tokyo 1st Joint Workshop on Bio-SoftMatter, Feb. 21-23, 2011, Tokyo, Japan.

[25] Ryo Suzuki, Hong-Ren Jiang, and Masaki Sano:Self-Propelling Asymmetrical Colloids in AC Elec-tric Field -Controllable Artificial MicroswimmersKorea Univ. and The Univ. of Tokyo 1st JointWorkshop on Bio-Soft Matter, Feb. 21-23, 2011,Tokyo, Japan.

[26] Yohei Nakayama and Masaki Sano: Laser-inducedTemperature Gradient can manipulate ColloidalParticles Under A Polymer Solution, Korea Uni-versity - The University of Tokyo 1st Joint Work-shop on Bio-Soft Matter, Feb. 21-23, 2011, Tokyo,Japan.

[27] Sosuke Ito and Masaki Sano: A fluctuation of acolloidal particle under feedback control with error,Korea University - The University of Tokyo 1 stJoint Workshop on Bio-Soft Matter, Feb. 21-23,2011, Tokyo, Japan.

[28] Kyogo Kawaguchi and Masaki Sano: InformationTransmission in Autonomic Systems, Korea Uni-versity - The University of Tokyo 1st Joint Work-shop on Bio-Soft Matter, Feb. 21-23, 2011, Tokyo,Japan.

[29] Miki Y. Matsuo and Masaki Sano: Geometricalmodel of a self-propelled broken interface and its

185

Page 187: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.4. 6.

application to cell motility, Korea Univ. and TheUniv. of Tokyo 1st Joint Workshop on Bio-SoftMatter, Feb. 21-23, 2011, Tokyo, Japan.

[30] Hirokazu R. Tanimoto and Masaki Sano: Dynam-ics of traction stress and shape modes of migratingcells -exploring the force-shape relationship: Ko-rea Univ. and The Univ. of Tokyo 1st Joint Work-shop on Bio-Soft Matter, Feb. 21-23, 2011, Tokyo,Japan.

[31] M. Sano: Non-equilibrium transport of colloidalsoft matter: from anomalous transport to self-propelled dynamics, International Symposium onNonequilibrium Softmatter 2010, Aug. 17-20, 2010,Nara, Japan.

[32] Masaki Sano: Tunable Thermophoresis of Col-loids using Nonequilbrium Depeletion Effect, AsiaPacific Center for Theoretical Physics (APCTP)Workshop on Chemi-Thermo-EM Phoresis inComplex Fluids, Aug. 25-28, 2010, Pohang, Ko-rea.

[33] Masaki Sano: Cell locomotion: experiments andmodeling, International Workshop EmergingTopics in Nonlinear Science , Sept. 12 18, 2010,Schloss Goldrain, Italy.

[34] Masaki Sano: Micromanipulation of Colloids andBiological Cells based on Nanoscale Hydrody-namic Effects, The Seventh International Confer-ence on Flow Dynamics (ICFD2010), Nov. 1-3,2010, Sendai, Japan.

[35] Masaki Sano: Information and fluctuation in smallworlds: From active soft matter to cell mechanics,1st Korea University - The University of TokyoJoint Workshop on Bio-Soft Matter, Feb. 21-23,2011, Tokyo, Japan.

[36] Kazumasa A. Takeuchi and Masaki Sano: Dynam-ics of Turbulent Interfaces and Universality in theElectroconvection of Liquid Crystals, East AsianPostGraduate Workshop on Soft Matter, Apr. 28-30, 2010, Hong Kong, China.

( )

[37] : 1 :10

( ), 2010 51

[38] : 1 :

5( ) 2010 5 24-25

[39] :2010

2010 9 9-11 .

[40] :48

2010 9 20-22

[41] : On the amoeba-kerato modetransition 2010 9 20-22 .

[42] :2010

2010 ), 20109 23-26 .

[43] :, 2010

), 2010 9 23-26 .

[44] :2010

), 2010 9 23-26 .

[45] : ,2010 ), 2010 9

23-26 .

[46] :

2010 ), 2010 923-26 .

[47] :

( ),2010 11 18

[48] :,

, , 2010 11 1820 .

[49] , : Harada-Sasa ,- , , 2010 1118 20 .

[50] : Information Transmission inAutonomic Systems, -

2010 11 18-20 .

[51] : :3

2010 11 27-28

[52] :9

2010 12 11

[53] 201012 11 9

[54] , :2011, ,

2010 2 7 .

[55] :2011, , 2010 2 7 .

186

Page 188: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.4.

[56] :66

2011 3 25-28 [ ].

[57] : heaping66

2011 3 25-28 [].

[58] :66

2011 3 25-28 [ ].

[59] , :,

66 , 2011 3 25-28 [].

[60] :, 5, 2011 6-8 .

, .

[61] : ,, 2010

12 20 , .

[62] :13

IBIS20102010 11 4-6 .

[63] :2010 11 26-28 .

[64] :

IV , 2011 3 22-25 [].

[65] :,

, , 2010 6 11, .

[66] :,

, ,6 , 2010 6 5 , .

( )

[67] Kazumasa A. Takeuchi: Growing interfaces inliquid-crystal turbulence: universal scaling andfluctuations, Hong Kong Baptist University De-partment of Physics , 2010 4 27 .

[68] :1

2010 4 28

[69] :1

20105 10

[70] : Dynamics of deformed holesin vertically vibrated dense suspensions,

, , 201010 13 .

[71] :2010 10 28 .

[72] : Parameter estimation on single-moleculetime series Manfred Opper2010 11 5

[73] Hiroyuki Ebata and Masaki Sano: Self-replicatingpatterns in vertically vibrated dense suspensions,Japan-Slovenia Seminar on Nonlinear Science, Os-aka Prefecture University, November 8-9, 2010.

[74] : Heaping2010

2010 12 16 .

[75] Hong-Ren Jiang and Masaki Sano: From nonequi-librium soft matter to active matter, AcademiaSinica, Taipei, Taiwan, Feb. 15, 2010

[76] , , :, 2010,

, 2011 3 15 .

[77] : Non-equilibrium transport of colloidalsoft matter: From anomalous transport to self-propelled dynamics, ,

, 2010 5 12 , .

( )

[78] : :, EMP 4 ,

2010 6 5 , .

[79] : :, EMP 5

, 2011 2 11 , .

187

Page 189: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.5. 6.

6.5

6.5.1

10 K

ALMA

ALMA (Atacama Large Millimeter/submillimeterArray) ALMA 5000 m

12 m 54 7m 12

2011 10 2013ALMA

2

C+, N+

CH, H2D+, HD+

2

20095 Herschel

ASTE 10 m2011

1998 20051.2 m

6.5.2

HCOOCH3

100 AUIRAS16293-

2422L1527

IRAS15398-3359 WCCC Warm Carbon-Chain Chemistry WCCC

CH4

WCCC

L1527 CH3D

(CH4)

CH3D SMT 10m L1527

(JK = 10 − 00; 232.6 GHz)60

L1527WCCC CH4

CH3D WCCC

TMC-1A

(Class 0)

188

Page 190: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.5.

L1527Class I TMC-1A 45 m

IRAM 30

(6.3km s−1) (5.8 km s−1)

5.8 km s−1

TMC-1A L1527

Class I WCCC

Lupus-1A

Lupus-1A100 m Lupus-1A

C6H C8H HC9N1976

TMC-1

Lupus-1ATMC-1

TMC-1TMC-1

C4H−

Lupus-1A

4

1015

1014

1013

1012

1011

1010

109

Number of Carbon Atoms

Col

umn

Den

sity

[cm

-2]

HCnN (n odd)

CnH (n even)

CnH (n odd)

CnH- (n even)

TMC-1Lupus-1A

5 6 7 8 9 10 11

6.5.31: Column densities of carbon-chain

molecules in TMC-1 and Lupus-1A

D/H 10−5

0.01− 0.1

100 yr 104 - 105 yr

class 0 IRAS16293-2422 L155145 m

DCO+/H13CO+

DNC/HN13C

GMC

(GMC)

GMC

GMC

GMC

45 m M51GMC 90 GHz

CCH HNCOCH3OH CS C18O 13CO

GMC

6.5.3

45 m L1157B1 L1527(WCCC )

ASTE 10 mBHR71 (IRAS15398-

3359, RCrA IRS7B, G28.34)

L1527

L1527 140 pc WCCC3 mm

189

Page 191: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.5. 6.

45 m∼ 0.5

km/s4

83-92 GH 5 mK

13C

HCOOCH3 CH3OCH3 IRAS16293-2422

L1527WCCC

L1157 B1

L1157 B145 m

L1157 B1 IRAS20386+6751 440 pc

81.5-94.5 GHz 96.3-97.5 GHz

94.5-96.3 GHz 97.5-115.5 GHz28

120 L1157 B1

6.5.32: The PN(J = 2-1) spectra observed to-

ward the B1, B2, and protostar positions in L1157

1 CCS(JN =

98 − 87 89 − 78 87 − 76 76 − 65)

5 kms−1 CCS

CCS

2 PN ( 6.5.32) PN

Sgr B2 Ori KL W51

PN

PN (J = 2-1) L1157 B1 L1157 B2 2L1157PN

70 GHz 2SB

45 m70 GHz 2SB SIS

70 GHzCH2, NS

80-115 GHz

45 m72 GHz

300 K S801/2 2

8

ASTE

ASTE 10 m 345 GHz

class 0R CrA IRS7B WCCC IRAS

15398-3359 G28.34 (MM1 MM4MM9) BHR71

R CrA IRS7B 332 - 364GHz r.m.s (TMB) 11-21 mK

( 6.5.33) 1716

R CrA IRS7B H2COCH3OH

CNCCH IRAS

16293-2422WCCC

190

Page 192: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.5.

G28.34BHR71

6.5.33: Spectral line survey with ASTE

6.5.4

SISNb

750 GHz750

GHz

HEBHEB

(1)(2)

NbTiN NbNHEB

HEB

800 GHz 1.5 THzHEB nm

nm

NbTiN NbN NbTiN

NbTiNNbN

HEBNbN

NbNAlN

NbNNbTiN NbN+AlN 2

HEB

HEB

NbTiN800 GHz 470 K 1.5

THz 570 KNbN+AlN 450 K 1100 K

1.5 THz NbTiN570 K 8

6.5.34: I-V curve and the RF response of the 1.5

THz waveguide HEB mixer

ASTE

ASTE 10 m

900 GHz/1.3-1.5 THz

191

Page 193: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.5. 6.

2

HEB ASTE10 m7 m

3 m Herschel 22011

HEB

HEB IF nm

NbTiN

400 8 nmNbTiN T c 6.8 K 10.1 K

AlNT c 13.3 K

HEB

HEB

HEB

HEB

1.9 THz HEB

1 μm 0.2 μm 6 nm NbTiN2

4K1.9 THz

CW ( μW)NbTiN

0.1-0.15μm 3-5 nm

IFAlN

3 THz

2 THz

(QCL)(NICT)

3.1 THz

34 μW74 K

QCLHEB

3 THz QCLHEB He

Y-factor5600 K

(DSB)2100 K 3 THz HEB

THz QCL

THz HEB NbNNbTiN

( )

[1] T. Sakai, N. Sakai, T. Hirota, and S. Yamamoto,A Survey of Molecular Lines toward Massive

Clumps in Early Evolutionary Stages of High-massStar Formation , Astrophys. J., 714, 1658 (2010).

[2] N. Sakai, T. Shiino, T. Hirota, T. Sakai, and S. Ya-mamoto, Long Carbon-chain Molecules and TheirAnions in the Starless Core, Lupus-1A , Astro-phys. J., 718, L85 (2010).

[3] T. Hirota, N. Sakai, and S. Yamamoto, Deple-tion of CCS in a Candidate Warm-carbon-chain-chemistry Source L483 , Astrophys. J., 720, 1370(2010).

[4] N. Sakai, T. Sakai, T. Hirota, and S. Yamamoto,Distribution of Carbon-Chain Molecules in L1527, Astrophys. J., 722, 1633 (2010).

[5] Watanabe, Y., Sorai, K., Kuno, N., and Habe, A.,Refined molecular gas mass and star-formation

efficiency in NGC 3627 , MNRAS, 411, 1409-1417(2011).

[6] O. Saruwatari, N. Sakai, S.-Y. Liu, Y.-N. Su, T.Sakai, and S. Yamamoto, Compact MolecularOutflow from NGC2264 CMM3: A Candidate for

192

Page 194: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.5.

Very Young High-mass Protostar , Astrophys. J.,729, 147 (2011).

[7] M. Sugimura, T. Yamaguchi, T. Sakai, T. Umem-oto, N. Sakai, S. Takano, Y. Aikawa, N. Hirano,S.-Y. Liu, T.J. Millar, H. Nomura, Y.-N. Su, S.Takakuwa, and S. Yamamoto, Early Results ofthe 3 mm Spectral Line Survey toward the Lynds1157 B1 Shocked Region , Publ. Astron. Soc.Japan in press.

[8] H. Maezawa, T. Yamakura, T. Shiino, S. Ya-mamoto, S. Shiba, N. Sakai, Y. Irimajiri, L. Jiang,N. Nakai, M. Seta, A. Mizuno, T. Nagahama, andY. Fukui, Stability of a Quasi-Optical Supercon-ducting NbTiN Hot-Electron Bolometer Mixer at1.5 THz Frequency Band , IEEE Transactions onApplied Superconductivity, 2011, in press.

( )

[9]Vol. 20, No. 1, 2011

( )

[10] Development of Terahertz Quantum Cas-cade Lasers and Application to Heterodyne Re-ceivers for Astronomical Observations ,(2011 3 )

[11] L11572011 3

( )

[12] Sakai, N. Chemical Diversity of Low-Mass StarForming Regions , The Early Phase of Star Forma-tion EPoS 2010, Castle Ringberg, Germany, June2010.

[13] Sakai, N. Chemical Diversity of Low-Mass StarForming Regions , The 5th Zermatt ISM Sympo-sium, Zermatt, Switzerland, Sep. 2010.

[14] Watanabe,Y., Sakai, N., Lindberg, J., Jorgensen,J., Bisschop, S., and Yamamoto,S., ”Line surveyof RCrA IRAS7B in the 345GHz window withASTE”,Workshop on Interstellar Matter 2010,Sapporo, Japan, September 13 -15, 2010

[15] Watanabe,Y., Sorai,K., Kuno,N., and Tosaki, T.,”Molecular Gas and Star Formation in Barred Spi-ral Galaxy NGC 3627”, The 5th Zermatt ISMSymposium, Zermatt, Switzerland, September,2010

[16] T. Yamaguchi, M. Sugimura, N. Sakai, T. Sakai,T. Umemoto, S. Takano, S. Yamamoto, H. No-mura, Y. Aikawa, N. Hirano, S.-Y. Liu, Y.-N. Su,S. Takakuwa, T.J. Millar, and NRO 45 m Line Sur-vey Group, Line Survey of L1157 B1 Shocked Re-gion , The 5th Zermatt ISM Symposium, Zermatt,Switzeland, September 2010.

[17] S. Shiba, N. Sekine, Y. Irimajiri, I. Hosako, T.Koyama, H. Maezawa, and S. Yamamoto, ”De-velopment of THz Coherent Sources Using Quan-tum Cascade Lasers,” Progress in Electromag-netics Research Symposium 1P9-36(poster), Mar-rakesh, Morocco, March 2011

[18] N. Sakai, Recent Progress of Carbon-ChainChemistry in Molecular Clouds , Workshop forInterstellar Matter 2010, ILTS, Hokkaido Univer-sity, Sapporo, Japan, Sep. 2010

[19] S. Yamamoto, Chemical Evolution of Low-MassStar Forming Regions , 2010 Western Pacific Geo-physics Meeting, Taipei, Taiwan, June, 2010.

( )

[20] :13C2010 5

[21]CCS HC3N

P27b 2010 9

[22]45 m

L1527Q29c 2010 9

[23]

Sheng-Yuan Liu, Yu-Nung Su, NRO45 m L1157

Q30c 2010 9

[24]THz-QCL

2010 12

[25] Chemical Diversity of Low-Mass StarForming Regions2010 5

[26] 402010 8

193

Page 195: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.6. 6.

6.6

(1)(2) (

)

(3) (4)

(alignment)(orientation)

13

6.6.1

I2

(T. Suzuki et al., Phys. Rev. Lett. 92, 133005(2004))

(T. Kanai et al.,Nature (London) 435, 470 (2005))

1 3

Trot

(Y. Sugawara et al., Phys.Rev. A 77, 031403(R) (2008))

(A. Goban et al., Phys.Rev. Lett. 101, 013001 (2008))

2

(T. Kanai and H. Sakai, J. Chem.Phys. 115, 5492 (2001))

3

2OCS(K. Oda et al. Phys. Rev. Lett. 104,

213901 (2010)) C6H5I

2Nd:YAG ( λ = 1064 nm)

2 (λ = 532 nm) 1/22

22

1064 nm 1.6 × 1012 W/cm2

532 nm 5.0 × 1011 W/cm2

90 atm He1 Torr C6H5I

velocity map 22

Ti:sapphire( ∼ 3 × 1014 W/cm2)

C6H5I 2

I+ (C6H

+5 2

) 2

Ti:sapphireTi:sapphire

22Ti:sapphire

2

CCD

194

Page 196: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.6.

φ = 0 〈cos θ〉 (θ2 )

φ 〈cos θ〉2π

2C6H5I

General valve 9 atm Ar

Even-Lavie valve90 atm He

General valve 〈cos2 θ〉 0.65Even-Lavie valve

0.92 Even-Lavievalve

2

Even-Lavie valve OCS C6H5I0.01

Boltzmannthermal ensemble right

way wrong way

2

(hexapole focuser)(molecular

deflector)6 mm 100 mm (

)

Stark

() C6H5INe

(Q )0.6 mm

Q

( 310 mm2 )

Stark

CH3I ArKr

|J,K,M〉 = |1,±1,∓1〉 , |2,±1,∓2〉 , |2,±1,∓1〉

(

)

He-Ne

2

6.6.2

2(T. Kanai and

H. Sakai, J. Chem. Phys. 115, 5492 (2001))

(Y. Sugawara et al., Phys. Rev. A 77,031403(R) (2008))

2(M.

Muramatsu et al., Phys. Rev. A 79, 011403(R)(2009))

thermalensemble |J,M〉 (M

J )

6.6.1

2

J K |J,K,M〉

195

Page 197: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.6. 6.

|J,K,M〉|J,K,M〉

3

3(

H. Tanji, S. Minemoto, and H.Sakai, Phys. Rev. A 72, 063401 (2005))

2

() 3

L-alanineTrot = 0.1 K L-alanine 3

3

6.6.3

( Carrier-Envelope Phase: CEP)

1CEP

CEPCEP

τ ∼ 25 fs

Ti:sapphire (τ ∼ 25 fs λ ∼ 800 nm)

CEP f -to-2f

alignment anti-alignment

CCD

CEP

ΔT

visibility alignmentanti-alignment

N2 CO2

N2

(Highest Occupied Molecular Orbital:HOMO) σg CO2

πg

CEP 7 fs

6.6.4 3

ItataniN2

Fourier slicetheorem N2

(J. Itatani et al. Nature (London) 432,867 (2004)

CO2

(T. Kanai et al., Nature (London) 435,470 (2005))

CO2 HOMO (πg)O

196

Page 198: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.6.

2

( ) 1

Morishita Schrodinger

(T. Morishita et al. Phys. Rev.Lett. 100, 013903 (2008))

S(ω)W (E)

σ(ω) S(ω) = W (E)σ(ω)S(ω)

W (E)σ(ω)

σ(ω)

Anh-Thu LeAr, Kr, Xe

W (E) σ(ω)σ(ω)

(S. Minemotoet al., Phys. Rev. A 78, 061402(R) (2008))

800 nm 3 (267 nm)

N2 O2 CO2

3800 nm

100 fs Ti:sapphire

40nm 2

1/2

3

3

31/4

31

CCD3

3

CO2

πg CO2

HOMO

6.6.5

23 4

12

4( )

( )

(21000003 )

[1] 20113 .

( )

[2] Keita Oda, Masafumi Hita, Shinichirou Minemoto,and Hirofumi Sakai, “All-optical molecular orienta-tion,” Physical Review Letters 104, 213901 (2010).

[3] Yuichiro Oguchi, Shinichirou Minemoto, and Hi-rofumi Sakai, “Dependence of the generation effi-ciency of high-order sum and difference frequencies

197

Page 199: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.6. 6.

in the extreme ultraviolet region on the wavelengthof an added tunable laser field,” Journal of thePhysical Society of Japan 80, 014301 (2011).

[4] Hiroki Mizutani, Shinichirou Minemoto, YuichiroOguchi, and Hirofumi Sakai, “Effect of nuclearmotion observed in high-order harmonic genera-tion from D2/H2 molecules with intense multi-cycle 1300 nm and 800 nm pulses,” Journal ofPhysics B: Atomic, Molecular and Optical Physics44, 081002 (2011) (Fast Track Communication).

[5] Kosaku Kato, Shinichirou Minemoto, and Hi-rofumi Sakai, “High-order harmonic generationfrom aligned molecules with 1300-nm and 800-nmpulses,” submitted.

[6] Shinichirou Minemoto and Hirofumi Sakai, “Mea-suring polarizability anisotropies of rare gas di-atomic molecules by laser-induced molecular align-ment technique,” submitted.

( )

[7] Shinichirou K. Minemoto, Kosaku Kato, and Hiro-fumi Sakai, “High-order harmonic generation fromaligned molecules with intense femtosecond 800-and 1300-nm pulses,” Ultrafast Phenomena XVII,ed. by M. Chergui, D. M. Jonas, E. Riedle, R. W.Schoenlein, A. J. Taylor, Oxford University Press,pp. 33-35 (2011).

[8] Kosaku Kato, Shinichirou Minemoto, and Hi-rofumi Sakai, “Degree-of-alignment dependenceof high-order harmonic generation from CO2

molecules,” Ultrafast Phenomena XVII, ed. by M.Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein,A. J. Taylor, Oxford University Press, pp. 56-58(2011).

( )

[9] Yuichi Fujimura and Hirofumi Sakai, “Electronicand Nuclear Dynamics in Molecular Systems,” (

) Section 1.10 “Alignment and Orientation ofMolecules,” Chapter 2 “Experimental Setups andMethods,” and Chapter 4 “Molecular Manipula-tion techniques with Laser Technologies and TheirApplications,” World Scientific Pub. Co. Inc., inpress.

( )

[10]Journal of the Vacuum Society of Japan

( ) 53, No. 11, pp. 668–674 (2010).

( )

[11] Kosaku Kato, “High-order harmonic generationfrom aligned molecules with 800-nm and 1300-nmfemtosecond pulses,” Master’s thesis, March 2011.

[12]2011 3 .

[13]2011 3 .

( )

[14] Hirofumi Sakai, “All-optical approach to orientgas-phase molecules (Highlighted Keynote Lec-ture),” 8th International Conference of Computa-tional Methods in Science and Engineering (IC-CMSE 2010), Psalidi, Kos, Greece, October 6,2010.

[15] Hirofumi Sakai, “Molecular orientation with an all-optical technique,” The 13th International Sym-posium of Stereodynamics of Chemical Reactions(Stereodynamics 2010), Santa Cruz, California,USA, December 1, 2010.

[16] Hirofumi Sakai, “Title to be announced,” Inter-national Symposium on Attoscience and Ultra-fast Quantum Control (SASQC11), London, UK,September 2011.

[17] Hirofumi Sakai, “Title to be announced,” 9th In-ternational Conference of Computational Meth-ods in Science and Engineering (ICCMSE 2011),Halkidiki, Greece, October, 2011.

[18] Shinichirou Minemoto, Kosaku Kato, and Hiro-fumi Sakai, “High-order harmonic generation fromaligned molecules with intense femtosecond 800-and 1300-nm pulses,” 17th International Confer-ence on Ultrafast Phenomena, Snowmass, Col-orado, USA, July 21, 2010.

[19] Kosaku Kato, Shinichirou Minemoto, and Hi-rofumi Sakai, “Degree-of-alignment dependenceof high-order harmonic generation from CO2

molecules,” 17th International Conference on Ul-trafast Phenomena, Snowmass, Colorado, USA,July 20, 2010.

[20] Y. Sakemi, S. Minemoto, K. Kato, and H. Sakai,“Carrier-envelope-phase effects on high-order har-monic generation from atoms and molecules,” topresent at 3rd International Conference on At-tosecond Physics, Sapporo, Hokkaido, Japan, July,2011.

( )

[21]2

2010 22 712010 9 14 .

198

Page 200: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.6.

[22]J,K,M 2

31 2011 1 9.

[23]

312011 1 10 .

[24]

662011 3 25 .

[25]3

2011 23 582011

3 25 .

[26]

2011 2358

2011 3 25 .

[27]

3 2011 23 582011

3 25 .

[28]

2011 23582011 3 25 .

[29] Jehoi Mun, Midai Suzuki, Ryo Yamashiro, TetsuroHoshino, Tomoya Mizuno, Shinichirou Minemoto,Toshio Kasai, Akira Yagishita, Hirofumi Sakai,“Development of a hexapole focuser for controllingmolecular orientation,” 27

2011 68 .

199

Page 201: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.7. 6.

6.7

X

” ”

6.7.1

Bose-Einstein

Bose-Einstein (BEC)

(Cu2O) 1s

Lyman

Lyman

(2 K) BEC(1017 cm−3

2

() s

1/v

100

80

60

40

20

0

σ ine

l (nm

2 )

0.80.60.40.20.0Kth (nm-1)

1.0 5 10 20 40 60 80Temperature (K)

(c)

σinel ∝ Kth-1

4πaB2

6.7.35:1s

1017 cm−3

BEC 2 K

[4]

31016

cm−3 BEC

30.8 K

BEC 109

BoseBEC

BEC[8]

1020cm−3

200

Page 202: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.7.

[22]

[29]

4

6

6.7.2

,

() 6.7.36(a)(b)

26 ( 6.7.36(c))

Physical Review Letters[7] Physical Review

Focus NPG(Nature Publishing Group) AsiaMaterials

6.7.36: (a (b)SEM (c)

THz

THzSi

THzTHz

THz

ns msTHz

Si

NiO

3

[ 6.7.37(a)]

3NiO

[ 6.7.37(b)]

201

Page 203: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.7. 6.

6.7.37: (a)

−2h3

3hh

(b) (C) (L) θ(c) θ

[6.7.37(b)] [6, 37]

NiO[38]

THz

” ”

THz

THz6.7.38 THz

THz[23]

6.7.38: (a)THz20 (b)

6.7.3

Yb 3

3

Yb30fs

3

3 FROG Frequency ResolvedOptical Gating

2 33

3

[5]

X

100

202

Page 204: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.7.

1

[62]

”(H22 H25 )”

X”

”X

[1] 14

2010 10 28

( )

[2] T. Unuma, Y. Ino, M. Kuwata-Gonokami, G. Bas-tard, and K. Hirakawa: Transient Bloch oscillationwith the symmetry-governed phase in semiconduc-tor superlattices, Phys. Rev. B 81, 125329/1-6(2010).

[3] T. Unuma, Y. Ino, M. Kuwata-Gonokami, E. M.Vartiainen, K.-E. Peiponen, and K. Hirakawa: De-termination of the time origin by the maximumentropy method in time-domain terahertz emissionspectroscopy, Optics Express, 18, 15853-15858(2010).

[4] K. Yoshioka, T. Ideguchi, AndreMysyrowicz, andM. Kuwata-Gonokami: Quantum inelastic colli-sions between paraexcitons in Cu2O, Phys. Rev.B, 81, 041201/1-4(R) (2010).

[5] N. Kuse, Y. Nomura, A. Ozawa, M. Kuwata-Gonokami, S. Watanabe, and Yohei Kobayashi:Self-compensation of third-order dispersion for ul-trashort pulse generation demonstrated in an Ybfiber oscillator, Optics Letters, 35, 3868-3870(2010).

[6] T. Higuchi, N. Kanda, H. Tamaru, M. Kuwata-Gonokami: Selection rules for light-induced mag-netization of a crystal with threefold symmetry:The case of antiferromagnetic NiO, Phys. Rev.Lett., 106 047401/1-4 (2011).

[7] K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto,Y. Arakawa, and M. Kuwata-Gonokami: Circu-larly Polarized Light Emission from SemiconductorPlanar Chiral Nanostructures, Phys. Rev. Lett.,106 057402/1-4 (2011).

[8] K. Yoshioka, E. Chae, and M. Kuwata-Gonokami:Transition to a Bose-Einstein condensate and re-laxation explosion of excitons at sub-Kelvin tem-peratures, Nature Communications to be pub-lished

( )

[9] : , Vol.39 No.4 pp.199-201 (2010).

( )

[10] :2011 3

)

[11] :2011 3

)

[12] : Cu2O2011 3 )

( )

[13] M. Kuwata-Gonokami: High-Density Excitons inSemiconductors. In: Bhattacharya P, Fornari R,Kamimura H, (eds.), Comprehensive Semiconduc-tor Science and Technology, 2 pp.213-255 Amster-dam: Elsevier

( )

[14] K. Konishi, N. Kanda, M. Kuwata-Gonokami: Po-larization control with planner chiral grating struc-tures, SPIE-The International Society for OpticalEngineering, (Brussels, Belgium), April, 2010.

203

Page 205: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.7. 6.

[15] N. Kanda, K. Konishi, and M. Kuwata-Gonokami:THz polarization control with chiral grating struc-tures, The 7th Asia-Pacific Laser Symposium,(Jeju island, Korea), May, 2010.

[16] M. Kuwata-Gonokami: Advanced photons for con-densed matter, The 4th Yamada Symposium Ad-vanced Photon and Science Evolution, (Osaka,Japan), June, 2010.

[17] M. Kuwata-Gonokami: Stability of an ensemble ofexcitons in a quantum degenerate regime in a bulksemiconductor of Cu2O - Search for Bose-EinsteinCondensation of excitons, The 41th Winter Col-loquium on the PHYSICS of QUANTUM ELEC-TRONICS, (Snowbird, USA), Jan., 2011.

[18] M. Kuwata-Gonokami: Search for exciton BECin a Cu2O crystal, ERATO Macroscopic Quan-tum Control Conference on Ultracold Atoms andMolecules, UCAM2011, (Koshiba Hall, Japan),Jan., 2011.

[19] K. Konishi, M. Nomura, N. Kumagai, S.Iwamoto, Y. Arakawa and M. Kuwata-Gonokami:Circularly-Polarized Light Emission from Semi-conductor Planar Chiral Photonic Crystals,CLEO/QELS:2010, (San Jose, USA), May, 2010.

[20] N. Kuse, M. Kuwata-Gonokami, Y. Nomura, S.Watanabe, Y. Kobayashi: Experimental Study ofPulse Evolution in a 30-fs Mode-Locked Yb-FiberOscillator, CLEO/QELS:2010, (San Jose, USA),May, 2010.

[21] K. Yoshioka, T. Ideguchi, and M. Kuwata-Gonokami: Quantum mechanical inelastic collisionof cold paraexcitons in cuprous oxide, InternationalConference on Excitonic and Photonic Processes inCondensed and Nano Materials, EXCON’10, (Bris-bane, Australia), July, 2010.

[22] J. Omachi, T. Suzuki, N. T. Long, K. Yoshioka,N. Naka, and M. Kuwata-Gonokami: Mid-infrareddielectric response of electron-hole droplets in dia-mond, International Conference on Excitonic andPhotonic Processes in Condensed and Nano Ma-terials, EXCON’10, (Brisbane, Australia), July,2010.

[23] N. Kanda, P. Obraztsov, Y. Okane, T. Higuchi,K. Konishi, A. V. Tyrnina, Yu. P. Svirko, andM. Kuwata-Gonokami: Terahertz Emission fromNano Carbon and Graphite Films, NanocarbonPhotonics and Optelectronics (NPO) 2010, (Na-tional Park Koli, Finland), Aug., 2010.

[24] H. Hirabayashi, N. Naka, K. Tanaka, M. Kuwata-Gonokami, Y. P. Svirko, and Alexander N.Obraztsov: Three-dimensional Raman imagingof diamond nanotips, International Workshop”Nanocarbon Photonics and Optoelectronics” (Na-tional Park Koli, Finland), Aug., 2010.

[25] K. Konishi, M. Kuwata-Gonokami, M. No-mura, N. Kumagai, S. Iwamoto, and Y.Arakawa: Circularly-Polarized Photoluminescencefrom Semiconductor Chiral Photonic Nanostruc-tures, NANOMETA2011, (Tirol, Austria), Jan.,2011.

[26] K. Yoshioka, and M. Kuwata-Gonokami: Quan-tum degenerate state of trapped 1s paraexcitonsin Cu2O at sub-Kelvin temperature, 5th Interna-tional Conference on Spontaneous Coherence inExcitonic Systems (ICSCE-5), (Ecole Polytech-nique Federale de Lausanne, Switzerland), Feb.,2011.

[27] K. Yoshioka, T. Ideguchi, and M. Kuwata-Gonokami: Quantum-mechanical inelas-tic collisions of Wannier-Mott excitons,CLEO/QELS:2010, (San Jose, USA), May,2010.

[28] K. Yoshioka, I. Park, M. Kuwata-Gonokami:Photoconductivity of Cu2O in the presence ofhigh density 1s paraexcitons, International Work-shop on Nonlinear Optics and Excitation Kineticsin Semiconductors, NOEKS10, (Paderborn, Ger-many), Aug., 2010.

[29] J. Omachi, T. Suzuki, K. Kato, K. Yoshioka, N.Naka, and M. Kuwata-Gonokami: Observationof polyexcitons in diamond, International Work-shop on Nonlinear Optics and Excitation Kineticsin Semiconductors, NOEKS10, (Paderborn, Ger-many), Aug., 2010.

[30] N. Naka, Y. Hazama, T. Kitamura, J. Omachi, M.Kuwata-Gonokami, H. Stolz: Photoluminescencestudy on excitonic fine structure in diamond, In-ternational Workshop on Nonlinear Optics and Ex-citation Kinetics in Semiconductors, NOEKS10,(Paderborn, Germany), Aug., 2010.

[31] N. Kanda, K. Konishi, M. Kuwata-Gonokami: Dy-namics of Photo-induced Terahertz Optical Activ-ity in Metal Chiral Gratingsl, NANOMETA2011,(Tirol, Austria), Jan., 2011.

[32] K. Yoshioka, E. Chae, and M. Kuwata-Gonokami:Stability of Bose-Einstein condensation of darkexcitons in cuprous oxide ERATO MacroscopicQuantum Control Conference on Ultracold Atomsand Molecules, UCAM2011, (Koshiba Hall,Japan), Jan., 2011.

( )

[33] :

2010 4

204

Page 206: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.7.

[34] :

COE IT

GCOE 2010 201010

[35] :66

2011 3

[36] : Yb

71 2010 9

[37]:

20102010 9

[38]:

THz 20102010 9

[39] :2010

2010 9

[40] :Cu2O

2010 2010 9

[41] D Heinrich Stolz:

20102010 9

[42] : GaAs/AlAsTHz

III 20102010 9

[43] :

2010 2010 9

[44] , , , , Y.P. Svirko,A.N. Obraztsov:

662011 3

[45]:

2010 12

[46]

2010 12

[47]

201012

[48]

2010 12

[49] :66

2011 3

( )

[50] :

-

2010 5

[51] :2010 6

[52] : --

2010 7

[53] :DYCE 2010

2010 10

[54] :

DYCE 2010 2010 10

[55] : Cu2ODYCE 2010

2010 10

[56] :NiO THz DYCE

2010 2010 10

[57] :DYCE 2010 2010

10

[58] :DYCE 2010 2010

10

[59] , , , , Y.P. Svirko,A.N. Obraztsov: CVD

3 212010 12

[60]FIRST 2010

2010 12

[61]:

FIRST2010 2010

12

205

Page 207: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.7. 6.

[62] :FIRST

2010 2010 12

[63] :4 DYCE 2011 1

[64] :GCOE

2011 2

[65] :

2011 3

206

Page 208: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.8.

6.8

6.8.1

ChR2 TRPA1

GluRIIA Lola

ChR2 dTRPA1

6.8.2

207

Page 209: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.8. 6.

mhc

nompC

GRASP

CPG Central Pattern GeneratorCPG

CPG

chordotonal neurons chos

chos choschos

chos

chos

chos6 15

21 chos

96

chosCPG

chos15 21 2

chos15 2 19

216, 17, 18

2 6

chos

GRASP

208

Page 210: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.8.

GRASPGRASP GFP

sp-GFP1-10 sp-GFP11GFP

sp-GFP1-10sp-GFP11

GFP

sp-GFP11cha-gal4

spGFP1-10GRASP

cha-gal4

gal4 GRASPGRASP

G-CaMP

gal4

gal4

20

gal4 GRASP

TRP

6.8.3

G-CaMPG-CaMP Ca2+

G-CaMP

209

Page 211: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.8. 6.

Channelrhodopsin2 (ChR2)

ChR2

ChR2

ChR2

A4

210

Page 212: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.8.

Gal4-UASCa2+ G-

CaMP

Gal4

Gal4

gal4

(original)3

(shuffle)

Shuffleoriginal

original shufflepaired-t test

(p 0.001)

6.8.4

( )

[1] Morimoto T, Nobechi M, Komatsu A, MiyakawaH and Nose A. Subunit-specific and homeostaticregulation of glutamate receptor localization byCaMKII in Drosophila neuromuscular junctions.Neuroscience 165, 1284-1292 (2010).

[2] Inaki, M, Shinza-Kameda, M, Ismat, A., Frasch,M and Nose, A. Drosophila Tey represses tran-scription of a repulsive cue Toll and generatesneuromuscular target specificity. Development 137,2139-2146 (2010).

( )

[3] Optical dissection of neural dynamics inDrosophila larvae with halorhodopsin

[4]

[5]

[6]

( )

[7] Kohsaka, H., Nii, R., Nakagawa, Y., Inada, K. andNose, A.: Imaging activity propagation in the lar-val motor circuits that regulate peristalsis. Neu-roFly2010 13th European Drosophila neurobiol-ogy conference , 2010.9.1-5. Manchester, UK

[8] Okusawa, S., Kohsaka, H. and Nose, A.: For-mation and plasticity of feedback neurons forDrosophila larval peristalsis movements. KoreaUniversity - The University of Tokyo 1st JointWorkshop on Bio-Soft Matter, 2011.2.21-23, Tokyo

[9] Kohsaka, H., Nii, R., Nakagawa, Y. and Nose, A.:Imaging and manipulating neural activities withinthe motor circuit of the Drosophila larvae. Ko-rea University - The University of Tokyo 1st JointWorkshop on Bio-Soft Matter. 2011.2.21-23, Tokyo

[10] Inaki, M., Shinza-Kameda, M., Frasch, M., andNose, A.: Generation of synaptic specificity bytarget repulsion Roles and transcriptional regula-tion of local inhibitory cues. Cold Spring HarborAsia Francis Crick Symposium on Neuroscience,2010.4.12-17, Suzhou, China

[11] Nose, A.: Dynamics of molecules, synapses and cir-cuits that generate motor function. Korea Univer-sity - The University of Tokyo 1st Joint Workshopon Bio-Soft Matter, 2011.2.21-23, Tokyo

( )

[12] Inada, K., Kohsaka, H., Takasu, E. and Nose,A.:Temporal perturbation of neural activity inDrosophila larvae undergoing locomotion. 33

2010.9.2-4

211

Page 213: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.8. 6.

[13] Nakagawa, Y., Kohsaka, H. and Nose, A.: Func-tional localization of neuronal components control-ling larval peristaltic movements in Drosophila.33 2010.9.2-4

[14]

2010.10.19

[15]

2010.8.18

[16] Kohsaka, H., Nii, R., Nakagawa, Y., Inada, K.and Nose, A.: Imaging activity propagation inthe Drosophila motor circuits that regulate larvalperistalsis. Neuro 20102010.9.3

[17]2010.9.10

( )

[18]2010.4.3-4

[19]brain club 2010.6.4

[20]2011.1.25

( )

[21] Nose, A.: Axon Target recognitionOkinawa Institute of Science and

Technology, Developmental Neurobiology Course,2010.7.12-23,

( )

[22] 2011 3 20

212

Page 214: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.9.

6.9

6.9.1 1

nm

( )

LEDCCD

0.3 nm-

( )6.9.39

S2

6.9.39S2

6.9.39:

6.9.2 1

ATP

213

Page 215: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.9. 6.

tag-of-war

1

pN1 2pN

220 nm

ATP

5pN

AMPPNPADP

AMPPNP ADP

6.9.3

1001 2

11 8

100

2

4

2

2

2

6.9.4

invivo

EB1

. end-bindingprotein , EB1

EB1

6.9.40 EB1

EB1-GFP

CSUEB1-GFP

EB1-GFP

EB1

6.9.40

GFP-EB1GFP-EB1

in vivo In vivo

214

Page 216: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6. 6.9.

6.9.40: EB1

( )

[1] Junji Imamura, *Yasuhiro Suzuki, KohsukeGonda, Chandra Nath Roy, Hiroyuki Gatanaga,Noriaki Ohuchi and Hideo Higuchi Single Par-ticle Tracking Confirms That Multivalent TatProtein Transduction Domain-induced HeparanSulfate Proteoglycan Cross-linkage Activates Rac1for Internalization J. Biol. Chem. 286, 10581-10592(2011)

[2] Hirota Y., A. Meunier, S.Huang, T. Shimozawa,O.Yamada, Y.S Kida, M. Inoue, T. Ito, H. Kato,M. Sakaguchi, T. Sunabori, M. Nakaya, S. Non-aka, T. Ogura, H. Higuchi, H. Okano, N.Spassky,and *K. Sawamoto. Planar polarity of multiciliatedependymal cells involves the anterior mi-gration ofbasal bodies regulated by non-muscle myosin II.Development 137, 3037-3046 (2010)

[3] Kaya M. and *H. Higuchi. Non-linear elasticity andan 8 nm working stroke of single myosin moleculesin myofilaments. Science 329, 686-689 (2010)

[4] Fujita H, H. Hatakeyama, TM. Watanabe, M.Sato, H. Higuchi and * M. Kanzaki. Identifica-tion of Three Distinct Functional Sites of Insulin-mediated GLUT4 Trafficking in Adipocytes Us-ing Quantitative Single Molecule Imaging. Mol.Biol. Cell 21, 2721-2731 (2010)

[5] Watanabe TM, H. Tokuo, K. Gonda, H. Higuchiand * M. Ikebe. Myosin-X induces filopodiaby multiple elongation mechanism. J. Biol. Chem.285, 19605-14 (2010)

( )

[6] , ,,

SURGERY FRONTIER Vol 11,50-57 20113)

[7] 1

51 (1), 30-31.

[8] Tomohiro Shima, Kazuo Sutoh, Takahide KonFunctional Analysis of the Dynein Motor DomainDynein handbook, (2011.2)

( )

[9] Motoshi Kaya and Hideo Higuchi Measurementof elasticity in single myosins and actin filamentsby novel fluorescence imaging and optical trappingtechniques. Actin, the Cytoskeleton, and the Nu-cleus Workshop, 2010 Singapore.

[10] T. Shimozawa and S. Ishiawat. Detection of struc-tural distortion in single actin filaments induced bytensile force under fluorescence microscopy The4th Mechanobiology Workshop and BiophysicalSociety Joint Meeting Actin, the Cytoskeleton,and the Nucleus 36-Pos Nov. 9-12, 2010 Singa-pore.

[11] F. Kobirumaki, T. Shimozawa, K. Gonda and H.Higuchi. in vivo imaging of Microtubule dynam-ics: fluorescence observation of engrafted EB1-GFP expressing tumor cells in living mice. The4th International Symposium on Nanomedicine(ISNM2010) Nov. 29 - Dec. 1, 2010 Okazaki,Japan.

[12] F. Kobirumaki, T. Shimozawa, K. Gonda and H.Higuchi. Dynamics of Microtubule Tips in vivo:tracking the EB1-GFP comets in tumor tissues ofliving mice. The 16th Takeda Science FoundationSymposium on Bioscience Casting light on lifeDec. 1-2, 2010 Tokyo, Japan.

[13] Hideo Higuchi, Single molecule biophysics of mo-tor proteins. 1st Korea Universty-Tokyo Univer-sity Joint Workshop Feb. 23, 2011,Tokyo,Japan

215

Page 217: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6.9. 6.

[14] Motoshi Kaya, Hideo Higuchi Non-liner elas-ticity of single skeletal myoshins is a key prop-erty for corrective force generation in muscle. 1stKorea Universty-Tokyo University Joint WorkshopFeb. 23, 2011,Tokyo,Japan

[15] Tomohiro Shima, The mechanism for coordina-tion between two heads of cytoplasmic dynein. 1stKorea Universty-Tokyo University Joint WorkshopFeb. 23, 2010,Tokyo,Japan

[16] Togo Shimozawa Dynamics of MicrotubuleTips in vivo:tracking the EBI-GFP cometesin tumor tissues of living mice. 1st KoreaUniversty-Tokyo University Joint Workshop Feb.23, 2011,Tokyo,Japan

[17] T. Kambara, T, Shima, H. Higuchi, Un-binding force of cytoplasmic dynein. 1st KoreaUniversty-Tokyo University Joint Workshop Feb.23, 2011,Tokyo,Japan

[18] T. Kambara, T, Shima, H. Higuchi, Unbindingforce of cytoplasmic dynein. 55th Annual Meetingof the Biophyscial Society, Baltimore, MD, USA,March 8, 2011

[19] Tomohiro Shima, Kohji Ito, Takahide Kon, Mo-toshi Kaya, Hideo Higuchi, Kazuo Sutoh Twomotor domains of cytoplasmic dynein directly in-teract each other 55th Annual Meeting of theBiophyscial Society, Baltimore, MD, USA, March9, 2011

( )

[20] F. Kobirumaki, T. Shimozawa, K. Gonda, and H.Higuchi. Analysis of microtubule growing endsdynamics by fluorescence imaging of EB1-GFP inmice tumor cells 1P328,1J1255

48 , ,2010.9.20

[21] Takuya Yamada,Takuya Kobayashi,TomohiroShima ,Motoshi Kaya,Hideo Higuchi. Kineshinneck linker Stiffness ,48 , ,2010.9.22

[22] Tomohiro Shima, Takahide Kon, Motoshi Kaya,Hideo Higuchi, Kazuo Sutoh Two motor domainsof cytoplasmic dynein directly interact each other.

48 , ,2010.9.22

[23]3

2010.11.27 - 28

[24]invivo

2011.1.7

[25]

2011.1.8

[26]

Wako 2010.7

[27]

19 II

2010.9

[28] 1 -- 2010.10.5

[29] 1 --2010.12.9

( )

[30] JAPAN2010.7.7

[31] ( )2010.8.7

[32] 2010.8.13

[33]2010.8.13

[34] 2010.8.23

[35] /2010 08.26

[36] 2010.8.26

[37] nature japan jobs2010.8.27

[38]2010.8.31

[39] 2010.9.2

[40] 2010.9.6

[41] vol.652010.9.18

[42]2010.09.22

( )

[43] 2010-1245662010 5 31

216

Page 218: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

7

( )

IT4

(( ) ( ))

7.1 (

)

2010 4 2011 3

• (414 )

• (114 )

•(

)

16 1 6 21

• 40

•1. ( )

2.

3. ( )

4.

5.

7.2 ( )

• ()

• ()

•• WG

• 1

7.3 IT ( )

•• (

)

• (

)

••

7.4 (

)

• I( )3 I

I

• II( )3 II

• II( )3 II

• I( )3 I

22

• 3 ( I II)( )

• ( )I II

217

Page 219: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

7.5. 7.

7.5

• ( )

• ( )

• ( )

• ( )

[1] 222011 3 ).

[2] :( 2010 9 ).

[3] : 25( 2010

11 ).

218

Page 220: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

II

Summary of activities in 2010

Page 221: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å
Page 222: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. THEORETICAL NUCLEAR PHYSICS GROUP

1 Theoretical Nuclear Physics Group

Subjects: Structure and reactions of unstable nuclei, Monte Carlo Shell Model, Molecular

Orbit Method, Mean Field Calculations, Quantum Chaos

Quark-Gluon Plasma, Lattice QCD simulations, Structure of Hadrons, Color

superconductivity

Relativistic Heavy Ion Collisions, Relativistic Hydrodynamics, Color Glass Con-

densate

Member: Takaharu Otsuka, Tetsuo Hatsuda, Tetsufumi Hirano, Noritaka Shimizu and

Shoichi Sasaki

In the nuclear theory group, a wide variety of subjects are studied. The subjects are divided into threemajor categories: Nuclear Structure Physics, Quantum Hadron Physics and High Energy Hadron Physics.

Nuclear Structure Physics

In the Nuclear Structure group (T. Otsuka and N. Shimizu), quantum many-body problems for atomicnuclei, issues on nuclear forces and their combinations are studied theoretically from many angles. Thesubjects studied include (i) structure of unstable exotic nuclei, (ii) shell model calculations including MonteCarlo Shell Model, (iii) collective properties and IBM, (iv) reactions between heavy nuclei, (v) other topicssuch as Bose-Einstein condensation, quantum chaos, etc.

The structure of unstable nuclei is the major focus of our interests, with current intense interest on novelrelations between the evolution of nuclear shell structure and characteristic features of nuclear forces, forexample, tensor force, three-body force, etc. Phenomena due to this evolution includes the disappearance ofconventional magic numbers and appearance of new ones. We have published pioneering papers on the shellevoltion in recent years. The tensor force effect has been clarified in [1], while striking effect of three-bodyforce has been shown in [2] for the first time. The structure of such unstable nuclei have been calculatedby Monte Carlo Shell Model and conventional shell model with further developments, for example, a newextrapolation method [3]. Their applications have been made in collaborations with experimentalists ininternationally distributed, e.g., [4, 5].

The mean-field based formulation of the Interacting Boson Model is a new original approach beingdeveloped [6]. This approach is so general and powerful that its applications are being spread very fast inbig collaborations [7].

We are studying on time-dependent phenomena like fusion and multi-nucleon transfer reactions in heavy-ion collisions. A new insight on the role of fast charge equilibration at the initial stage of the reaction hasbeen presented [8].

Quantum Hadron Physics

In Quantum Hadron Physics group (T. Hatsuda and S. Sasaki), many-body problems of quarks and gluonsare studied theoretically on the basis of the quantum chromodynamics (QCD). Main research interestsare the quark-gluon structure of hadrons, lattice gauge theories and simulations, matter under extremeconditions, quark-gluon plasma in relativistic heavy-ion collisions, high density matter, neutron stars andquark stars, chiral symmetry in nuclei, color superconductivity, and many-body problem in cold atoms andin graphene. Highlights in research activities of this year are listed below:1. Lattice QCD studies on hadron interaction [9]2. Lattice QCD studies on baryon-baryon potential [10]3. Random matrix theory for high density matter [11]4. Boson-fermion mixture in ultracold atoms [12]5. Gap formation in monolayler graphene [13]6. Resummation of perturbation theory [14]

221

Page 223: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. THEORETICAL NUCLEAR PHYSICS GROUP

High Energy Hadron Physics

In High Energy Hadron Physics group (T. Hirano), the physics of the quark-gluon plasma and dynamics ofrelativistic heavy ion collisions are studied theoretically based on relativistic hydrodynamics and relativistickinetic theories. Main subjects include (1) hydrodynamic description of the space-time evolution of thequark-gluon plasma in relativistic heavy ion collisions [15, 16, 18], (2) transport description of hadronsand their dissipation (3) analyses of the quark-gluon plasma through hard probes such as jets and heavyquarks/quarkonia , (4) color glass condensate for high energy colliding hadrons/nuclei, and (5) quantumnon-abelian votex in dense QCD matter [17]

References

[1] Takaharu Otsuka, Toshio Suzuki, Michio Honma, Yutaka Utsuno, Naofumi Tsunoda, Koshiroh Tsukiyama,and Morten Hjorth-Jensen, “Novel Features of Nuclear Force and Shell Evolution in Exotic Nuclei”, Phys.Rev. Lett.,104, 012501 (2010) (Selected for a Viewpoint in Physics)

[2] T. Otsuka, T. Suzuki, J.D. Holt, et al., “Three-Body Forces and the Limit of Oxygen Isotopes”, Phys. Rev.Lett., 105, 032501 (2010)

[3] N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe, M. Honma, “Novel extrapolation method in theMonte Carlo shell model”, Phys. Rev., C82, 061305 (2010)

[4] P. Fallon, E. Rodriguez-Vieitez, A.O. Macchiavelli, et al., “Two-proton knockout from Mg-32: Intruder ampli-tudes in Ne-30 and implications for the binding of F-29, F-31”, Phys. Rev., C81, 041302 (2010).

[5] A.N. Deacon, J.F. Smith, S.J. Freeman, et al., “Cross-shell excitations near the ”island of inversion”: Structureof Mg-30”, Phys. Rev., C82, 034305 (2010)

[6] K. Nomura, N. Shimizu, T. Otsuka, “Formulating the interacting boson model by mean-field methods”, Phys.Rev., C81, 044307 (2010)

[7] K. Nomura, T. Otsuka, R. Rodriguez-Guzman, et al., “Structural evolution in Pt isotopes with the interactingboson model Hamiltonian derived from the Gogny energy density functional”, Phys. Rev., C83, 014309 (2011)

[8] Y. Iwata, T. Otsuka, J.A. Maruhn, et al., “Suppression of Charge Equilibration Leading to the Synthesis ofExotic Nuclei”, Phys. Rev. Lett., 104, 252501 (2010)

[9] T. Kawanai and S. Sasaki, “Charmonium-nucleon potential from lattice QCD”, Phys. Rev. D82, 091501(R)(2010).

[10] T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, K. Sasaki [HAL QCDcollaboration], “Baryon-baryon interactions in the flavor SU(3) limit from full QCD simulations on the lattice”,Prog. Theor. Phys. 124, 591 (2010).

[11] G. Akemann, T. Kanazawa, M.J. Phillips, T. Wettig, “Random matrix theory of unquenched two-colour QCDwith nonzero chemical potential”, JHEP 1103, 066 (2011)

[12] Kenji Maeda, “Large N expansion for Stronglycoupled Boson-Fermion Mixtures”, Ann. Phys. 326, 1032-1052(2011).

[13] Y. Araki, “Chiral Symmetry Breaking in Monolayer Graphene by Strong Coupling Expansion of Compact andNon-compact U(1) Lattice Gauge Theories”, Ann. Phys. (2011) in press.

[14] T. Hayata, “Rescaled Perturbation Theory”, Prog. Theor. Phys. 124, 1097 (2010).

[15] A. Monnai and T. Hirano: “Relativistic Dissipative Hydrodynamic Equations at the Second Order for Multi-Component Systems with Multiple Conserved Currents”, Nucl. Phys. A 847, 283 (2010).

[16] T. Hirano, P. Huovinen and Y. Nara: “Elliptic flow in U+U collisions at√sNN = 200 GeV and in Pb+Pb

collisions at√sNN = 2.76 TeV: Prediction from a hybrid approach”, Phys. Rev. C 83, 021902(R) (2011).

[17] Y. Hirono, T. Kanazawa and M. Nitta: “Topological Interactions of Non-Abelian Vortices with Quasi-Particlesin High Density QCD”, to appear in Phys. Rev. D (arXiv:1012.6042[hep-ph]).

[18] H. Song, S. A. Bass, U. W. Heinz, T. Hirano and C. Shen: “200 A GeV Au+Au collisions serve a nearly perfectquark-gluon liquid”, to appear in Phys. Rev. Lett. (arXiv:1011.2783 [nucl-th]).

222

Page 224: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. THEORETICAL PARTICLE AND HIGH ENERGY PHYSICS GROUP

2 Theoretical Particle and High Energy Physics Group

Research Subjects: The Unification of Elementary Particles & Fundamental Interactions

Members: Takeo Moroi, Tsutomu Yanagida, Koichi Hamaguchi, Yutaka Matsuo

The main research interests at our group are in string theory, quantum field theory and unificationtheories. String theory, supersymmetric field theories, and conformal field theories are analyzed relatingto the fundamental problems of interactions. In the field of high energy phenomenology, supersymmetricunified theories are extensively studied and cosmological problems are also investigated.

We list the main subjects of our researches below.

1. High Energy Phenomenology.

1.1 LHC Phenomenology [2] [19] [14] [16]

1.2 Dark Matter [15] [1] [4]

1.3 Supersymmetric models [6] [17] [3]

1.4 B meson mixing [5] [21]

1.5 Anomaly puzzle [7]

1.6 Inflation Model [18]

1.7 Holographic QCD

1.8 Chiral fermion on the lattice [8] [9]

2. Superstring Theory.

2.1 F theory [12] [13]

2.2 Correspondence between 4D supersymmetric gauge theory and 2D gravity [10]

2.3 AdS/CFT Correspondence, Kerr/CFT Correspondence [20]

References

[1] K. Ishiwata, S. Matsumoto and T. Moroi, “Decaying Dark Matter in Supersymmetric Model and Cosmic-RayObservations,” JHEP 1012, 006 (2010).

[2] T. Ito and T. Moroi, “Spin and Chirality Determination of Superparticles with Long-Lived Stau at theLHC,” Phys. Lett. B 694, 349 (2011).

[3] S. K. Kang, T. Morozumi and N. Yokozaki, “Effects of Large Threshold Corrections in Supersymmetric Type-ISeesaw Model,” JHEP 1011, 061 (2010) [arXiv:1005.1354 [hep-ph]].

[4] K. Hamaguchi and N. Yokozaki, “Soft Leptogenesis and Gravitino Dark Matter in Gauge Mediation,” Phys.Lett. B 694, 398 (2011) [arXiv:1007.3323 [hep-ph]].

[5] M. Endo and N. Yokozaki, “Large CP Violation in Bs Meson Mixing with EDM constraint in Supersymmetry,”JHEP 1103, 130 (2011) [arXiv:1012.5501 [hep-ph]].

[6] T. T. Yanagida, K. Yonekura, “A Conformal Gauge Mediation and Dark Matter with Only One Parameter,”Phys. Lett. B693, 281-286 (2010). [arXiv:1006.2271 [hep-ph]].

[7] K. Yonekura, “Notes on Operator Equations of Supercurrent Multiplets and Anomaly Puzzle in SupersymmetricField Theories,” JHEP 1009, 049 (2010). [arXiv:1004.1296 [hep-th]].

[8] Y. Kikukawa and K. Usui, “Reflection Positivity of Free Overlap Fermions,” Phys. Rev. D 82, 114503 (2010)[arXiv:1005.3751 [hep-lat]].

[9] Y. Kikukawa and K. Usui, “Reflection Positivity of N=1 Wess-Zumino model on the lattice with exact U(1)Rsymmetry,” arXiv:1012.5601 [hep-lat].

223

Page 225: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. HAYANO GROUP

[10] S. Kanno, Y. Matsuo and S. Shiba, “Analysis of correlation functions in Toda theory and AGT-W relation forSU(3) quiver,” Phys. Rev. D 82, 066009 (2010) [arXiv:1007.0601 [hep-th]].

[11] T. Kawano and F. Yagi, “a-Maximization in N = 1 Supersymmetric Spin(10) Gauge Theories,”Int. J. Mod. Phys. A25, 5595 (2010).

[12] H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, ”Flavor Structure in F-theory Compactifications,” JHEP1008, 036 (2010).

[13] H. Hayashi, T. Kawano, Y. Tsuchiya, T. Watari, “More on Dimension-4 Proton Decay Problem in F-theory-Spectral Surface, Discriminant Locus and Monodromy-,” Nucl. Phys. B840, 304-348 (2010).

[14] R. Sato, S. Shirai, ”LHC Reach of Low Scale Gauge Mediation with Perturbatively Stable Vacuum,”Phys.Lett.B692:126-129, 2010.

[15] R. Saito, S. Shirai, ”Primordial Black Hole as a Source of the Boost Factor,” Phys.Lett.B697:95-100,2010.

[16] E. Nakamura, S. Shirai, ”Discovery Potential for Low-Scale Gauge Mediation at Early LHC,” JHEP 1103:115,2011.

[17] M. Ibe, R. Sato, T. T. Yanagida and K. Yonekura, “Gravitino Dark Matter and Light Gluino in an R-invariantLow Scale Gauge Mediation,” arXiv:1012.5466 [hep-ph].

[18] N. Haba, S. Matsumoto and R. Sato, “Sneutrino Inflation with Asymmetric Dark Matter,” arXiv:1101.5679[hep-ph].

[19] M. Endo, K. Hamaguchi, K. Nakaji, “Probing High Reheating Temperature Scenarios at the LHC with Long-Lived Staus,” JHEP 1011, 004 (2010). [arXiv:1008.2307 [hep-ph]].

[20] T. Nishioka, H. Tanaka, “Lifshitz-like Janus Solutions,” JHEP 02 (2011) 023

[21] M. Endo, S. Shirai and T. T. Yanagida, “Split Generation in the SUSY Mass Spectrum and Bs − Bs Mixing,”to appear in PTP. [arXiv:1009.3366 [hep-ph]].

3 Hayano Group

Research Subjects: Precision spectroscopy of exotic atoms and nuclei

Member: Ryugo S. Hayano and Takatoshi Suzuki

1) Antimatter study at CERN’s antiproton decelerator

Antiprotonic helium laser spectroscopy Atomic transition frequencies in antiprotonic helium (togetherwith those in hydrogen) yield information on the Rydberg constant and the proton-to-electron massratio, thereby contributing to the CODATA 2006 recommended values of the fundamental physicalconstants.

In order to further improve the antiprotonic helium laser spectroscopy precision, we have devel-oped new Doppler-free spectroscopy methods with which it should be possible to determine the(anti)proton-to-electron mass ratio with a relative standard uncertainty better than 10−10 (i.e., bet-ter than the current CODATA value) within a few years.

Antihydrogen Spectroscopic comparison of hydrogen and antihydrogen (p − e+) atoms is considered tobe one of the most stringent test of the CPT symmetry. At CERN, we can now routinely formantihydrogen atoms by mixing antiprotons and positrons, and our current goal is to capture antihy-drogen atoms by using a superconducting octupole magnet system. At the same time, developmentof an “antihydrogen beam”, with which we plan to measure the antihydrogen ground-state hyperfinesplitting, is in progress.

p-nucleus annihilation cross section at ultra-low energies At high energies, it is known that the p-nucleus annihilation cross sections scale as σann ∝ A2/3 where A is the nuclear mass number. However,at very low energies, this scaling is expected to be violated, but no such measurements have been donedue to the lack of ultra-low-energy antiproton beams. Using a radio-frequency quadrupole decelerator(“inverse linac), we have started the σann measurements at 100 keV. In 2010, we developed a beam

224

Page 226: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. HAYANO GROUP

profile monitor for the ultra-low-energy antiproton beams, and succeeded in precisely guiding thebeams to our targets using this monitor and ion-optical calculations. We are now developing detectorsto measure the cross sections, and we will carry the measurement of the p-nucleus annihilation crosssections.

2)Laser spectroscopy of radioactive francium isotopes at the ISOLDE facility

at CERN

Laser spectroscopy is a crucial tool for studying properties of nuclear ground states. At the ISODLEfacility at CERN, the new CRIS collaboration of Manchester, Leuven, Birmingham, Orsay, Max PlanckInstitute of Quantum Optics, and Tokyo has proposed to measure the isotope shifts and hyperfine structuresof francium isotopes by collinear resonant ionization spectroscopy (CRIS). The CRIS method may provideevidence of the anomalous structure in neutron deficient francium isotopes.

For the CRIS method, we plan to use a nanosecond titanium-sapphire laser developed by the ASACUSAexperiment at CERN. This laser will be operated with a high output power of ∼kW and a narrow linewidthof 100 MHz, and thus allow the measurement of the isotope shifts (∼10 GHz) and hyperfine structures(∼100 MHz) of francium isotopes with relatively low yields (several ions/s). In 2010, we have started toset up the laser for the experiment in 2011.

3) Precision X-ray spectroscopy of kaonic atoms

The X-ray spectroscopy of kaonic atoms is a complementary tool to study kaon-nucleon/nucleus interac-tion. The advent of a new type of high-resolution x-ray detector, SDD, its combination with high-intensitybeamline provides clean kaon beam and various trackers/counters technique, enables us to study kaonicatoms with unprecedented precision.

X-ray spectroscopy of kaonic atoms at DAΦNE In fiscal year 2010, we analyzed the data of hydro-gen and helium-3 target measurement carried out during the beam time of SIDDHARTA experimentin fiscal year 2009. For kaonic hydrogen atom, we are finalizing the conclusion on its 1s-level shiftand width with respect to the energy level determined only by the electromagnetic interaction. Theresult will be published in the coming months. On the other hand, from the first measurement ofkaonic helium-3 X-ray in SIDDHARTA experiment, we determined with a precision of less than 10eV that the 2p-level shift of kaonic helium-3 atom is a small one close to zero. To establish a con-crete conclusion on the 2p-level shift of kaonic helium-3 atom, the result from E17 experiment underpreparation at J-PARC is necessary.

X-ray spectroscopy of kaonic helium at J-PARC The 2p-level shifts in kaonic helium 3 and kaonichelium 4, and the isotopic shift between them give a strong constraint to the kaon-nucleas interaction.A recent x-ray measurement by SIDDHARTA group implied a finite isotopic shift which can not beexplained by the optical model framework. Then, the J-PARC E17, which is the first experiment tobe carried out at K1.8BR beamline in the J-PARC hadron experimental facility, is now proposingkaonic helium 4 measurement, in addition to the originally proposed kaonic helium 3 measurement,to precisely determine the isotopic shift. In fiscal year 2010, we proceeded the kaon beam tuning ofK1.8BR beamline and succeeded in operating SDDs (silicon drift x-ray detectors) under the beamcondition . The damage to our detectors by the earthquake is limited and the E17 is expected to runsoon after the recovery of the facility.

4) Study of kaonic nuclei

Study of kaonic nucleus via the stopped K− reaction on helium 4 In FSY 2005, we have performedKEK-PS E549, to measure (semi-)inclusive 4He(K−

stopped, N) spectra, and obtained strict upper

limits for the formation of narrow KNNN states with total isospin T = 0/1. Meanwhile, the4He(K−

stopped, Y N/Y d) semi-exclusive spectra exhibitted unresolved wide strengths which are well

separable from multi-nucleon processes. They could be the signal of non-mesonic Y N/Y NN decay of

225

Page 227: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. OZAWA GROUP

strongly-bound KNN/KNNN states. In FSY 2010, we have further identified Σ0NNN final statesby the study of ΛNN triple coincidence events, and found that the proton momentum spectrum fromthe final states is clearly deviated from the one expected from the two-nucleon absorption process,and most likely to be the signal of those multibaryonic states. As a byproduct, we have identified the

four-nucleon absorption process of K− meson at rest, K−4He → Λt for the first time.

Search for K−pp and K−pn deeply-bound kaonic states at J-PARC The J-PARC E15, to be sched-uled after E17 at K1.8BR beamline, will use the 3He(K−, N) reaction to search for K−pp/K−pn.E15 is a kinematically complete experiment in which all reaction products are detected exclusivelyespecially for K−pp → Λp channel, and it aims to provide decisive information on the nature of thesimplest kaonic nucleus. In FSY 2010, we have installed the Cylindrical Drift Chamber (CDC) intothe solenoid magnet, tested the performance of the system (Cylindrical Detector System - CDS) withthe activated magnetic field, and performed the CDS calibration with 0.9 GeV/c K− beam, so thatΛ → pπ− and K0

s → π+π− reactions were successfully reconstructed.

5) Precision spectroscopy of pionic atoms

We are planning a precise pionic-atom spectroscopy experiment with BigRIPS at RIBF. The goal is tostudy 1s and 2s pionic states in 121Sn by the 122Sn(d,3He) reaction. The measurement will help us betterunderstand the strong interaction between the pion and the nucleus, which leads to quantitative evaluationof the magnitude of the quark condensate at the normal nuclear density.

In October 2010 we performed a pilot experiment to construct ion optics for the dispersion matchingwith the (d,3He) reaction and to check performance of the focal plane detectors which will be used in theproduction experiment. The beam was provided by the SRC with an energy of 250 MeV/nucleon andan intensity of ∼ 4 × 1011/s. This high intensity deuteron beam hits the target, 10 mg/cm2 122Sn, andproduces a large number of protons of ∼ 200 kHz as background at the focal plane.

We could construct the BigRIPS optics by using the 14N beam and the thick Cu target and confirmthe optics of the beam transfer line was consistent with the designed optics. We also confirmed that alldetectors worked with high intensity beam as we expected. We could measure the track with the designresolution by MWDCs and identify 3He in the large background of protons by TOF and energy loss ofscintillators.

6) Study of muonium production targets

Ultra-slow polarized muon beam whose energy of 0.5∼30keV is anticipated as a new “microscope formagnetism” for the investigation of the surface magnetism. The ultra slow muon beamline was establishedin the RIKEN RAL muon facility. In this site, 15∼20/s ultra-slow muons can be generated while initialmuon beam intensity reaches to 1.3 ×106 /s. In order to increase the intensity of the ultra-slow muons,improvements of the escaping efficiency of the muonium from the muonium formation target (3%), andlaser ionization (∼ 10−5) are needed. As for muonium formation target, silica-based or alumina-basedmaterials are promising. In order to develop the new muonium formation target, we fabricated samples of(i)Silica nanoporous plate(ii)Alumina nanoporous plate (iii)Silica Aerogel, and measured muon-muoniumconversion rate and muonium diffusion of them in TRIUMF. As a result, sample(iii) has muon-muoniumconversion rate of 70% compared to heat-tungsten foil(T= 3000 K) that have been used in RIKEN RALfacility. Meanwhile, energy of emitted muonium is comparable with thermal energy of room temperatureso that the density distribution of muonium around the target surface suppose to be higher than that ofconventional muonium target. In the next year, with a new laser system, we will perform practical test ofnew muonium production target in the RIKEN-RAL muon facility.

4 Ozawa Group

Research Subjects: Experimental study of non-perturbative QCD

226

Page 228: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. OZAWA GROUP

Member: Kyoichiro Ozawa

Study of quark-gluon-plasma at RHIC

In 10 years operation of Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory(BNL), many new phenomena related to hot and dense nuclear matter have been discovered. We performedthe PHENIX experiment at RHIC and produced many new results on a wide range of physics subjects,including charged and neutral hadron production, single electron production, event isotropy, and manyother topics.

In spite of these fruitful results, there are still remaining questions to be answered to further characterizethe state of matter formed at RHIC. In particular, chiral properties of the dense matter produced has notbeen obtained, and should be provided. For the study of the chiral properties, vector mesons, such as φ, ωand ρ are interesting mesons because the restoration of approximate chiral symmetry at high temperaturemay modify their mass and width. These modifications can be shown directly in the line shape of the e+e−mass spectra. Here, the measurements with lepton decays are essential, since leptons are not interact withthe medium and carry direct information about conditions and properties of the medium. However, largebackground in electron pairs due to π0 Dalitz decays and γ conversion make the measurement difficult inthe past RHIC data. In the last year, we have successfully installed and operated a new detector, which iscalled Hadron Blind Detector(HBD), to suppress the background.

In this year, we have focused on rejection of gamma conversions at HBD itself, since such conversionscan be a serious background in high multiplicity environment due to a scintillation light. As a result, wehave successfully developed analysis scheme to reject such background statistically.

Study of mechanism of hadronic mass generation at J-PARC

The chiral property of QCD in dense(ρ �= 0) nuclear matter has also attracted wide interest in the fieldof hadron physics. In hot and/or dense matter, broken chirtal symmetry is subject to be restored eitherpartially or completely and, hence, the properties of hadrons can be modified. To observe such an effect,measurements of the in-medium decay of vector mesons are highly desirable for the direct determinationof the meson properties in matter. We are planning two new experiments at J-PARC to measure vectormeson mass at normal nuclear density.

One new experiment aim to collect 100 times larger statistics of φ meson than that collected by the KEKexperiment. We can discuss the velocity dependence of the mass spectra of vector mesons more preciselyand compare with the theoretical predictions. We are also able to use larger and smaller nuclear targetsas lead and proton, For this experiment, new detector based on Gas Electron Multiplier (GEM), which isoriginally developed at CERN, is under developing. Using GEM, we are investigating 2 dimensional trackerfor high rate counting. A prototype is reconstructed and reasonable signals are observed.

In this year, large sizes (20cm and 30cm) of GEM foils are developed and tested. An test experiment isperformed at LNS test beam line at Tohoku Univ. Position resolutions of large size GEMs are evaluatedusing an electron beam. As shown in Fig. 2.1.5, a position resolution of 100 μm is obtained both for 20cm and 30 cm GEMs.

Also, we propose combined measurements of nuclear ω bound state and direct ω mass modification.Nuclear ω bound states are measured in p(π−, n)ω reaction and decays of generated ω meson are alsomeasured with ω → π0γ mode. Such exclusive measurement can supply essential information to establishpartial restoration of the chiral symmetry in nucleus.

We constructed TOF counters in this year and tested them at LEPS beam line at Spring-8 to evaluateits timing resolution and neutron efficiency. The timing resolution of 60 ps is obtained. Analysis for theneutron efficiency is on-going.

Tests of EM Calorimeter is performed at LNS GeV-γ beam line at Tohoku University. As a EM Calorime-ter, we are planning to use CsI crystals, which is used at KEK-E246. Photon readout on CsI crystal ischanged from Photo Diode to Avalanche photo diode to cope with high counting rate at J-PARC. Then,energy resolution of CsI crystal and Avalanche photo diode is evaluated using an electron beam. Resultsare shown in Fig. 2.1.6. Obtained energy resolution is enough for our purpose.

227

Page 229: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. KOMAMIYA GROUP

5 Komamiya group

Research Subjects: (1) Preparation for an accelerator technology and an experiment

for the International linear e+e− collider ILC; (2) Experiment for studying

gravitational quantum effects and searching for new medium range force using

ultra-cold neutron beam; (3) Physics analyses in the ATLAS experiment at the

LHC pp collider; (4) Data analyses for the BES-II experiment at BEPC-I, and

TOF detector construction for BES-III experiment at BEPC-II;

Member: Sachio Komamiya, Yoshio Kamiya

We, particle physicists, are entering an exciting period in which new paradigm of the field will be openedon the TeV energy scale by new discoveries expected in experiments at high-energy frontier colliders, LHCand ILC.

1) Preparation for the International e+e− Linear Collider ILC: ILC is the energy frontier machine fore+e− collisions in the near future. In 2004 August the main linac technology was internationally agreedto use superconducting accelerator structures. In 2007 March, the Reference Design Report was issued bythe Global Design Effort (GDE) and hence the project has been accelerated as an international big-scienceproject. The technical design will be completed in the end of 2012. We are working on ILC acceleratorrelated hardware development, especially on the beam delivery system. We are developing the Shintakebeam size monitor for the ATF2, which is a test accelerator system for ILC located at KEK. The Shintakebeam size monitor is able to measure O(10)[nm] beam size, by using a high power laser interferometer. Theelectron beam is emitted to the interference fringe of the split laser beams. The total energy of photons,which are emitted from the inversed Compton scattering of beam electrons with the laser beam interferencefringe, is measured by a multilayer CsI(Tl) detector in the down stream. The phase of the fringe is movedstep-by-step, the total photon energy is measured in each step, and the beam size is extracted from a fittingof modulation pattern of the total photon energy as a function of the phase. Also we have been studyingpossible physics scenario and the large detector concept (ILD) for an experiment at ILC.

2) Experiment for studying quantum bound states due to the earth’s gravitational potential and searchingfor new short-range force using ultra-cold neutron beam: A detector to measure gravitational bound statesof ultra-cold neutrons is developed. We decided to use CCD’s for the position measurement of the UCN’s.The CCD is going to be covered by a 10B layer to convert neutron to charged nuclear fragments. The UCNsare going through a neutron guide of 100 [μ] height and their density is modulated in height as formingbound states within the guide due to the earth’s gravity. In 2008 we tested our neutron detector at ILLGrenoble. In 2009 we started the test experiment at ILL. We are analyzing the data. We will improve ourdetector and measure the modulation of the neutron density distribution in 2011.

3) ATLAS experiment at LHC: The epoch of new paradigm for particle physics is going to open withthe experiments at LHC. LHC started its operation in the end of 2009. The high energy collision at 7 TeV(CMS) has been started in the end of March 2010. The ATLAS detector is continuously recording data athigh energies. Some of our students work on data analysis at LHC. Search for supersymmetric particleswith the missing transverse energy and with b-quark signal.

4) BES-II/-III experiment at IHEP: The group has considered the BES-III experiment at the Beijinge+e− collider BEPC-II as the candidate for the middle term project before ILC. We have made a researchand development for TOF detector for the BES-III experiment together with IHEP, USTC. We successfullycompleted a test of over 500 photomultipliers in 1[T] magnetic field and they are already installed to theBES-II detector. We have studied the data analysis of baryon-pair production in Jψ decay using 5.8MBES-II J/ψ events. Now BEPC-II is operating smoothly and BES-III detector is taking large samples ofψ′ and J/ψ data.

6 Minowa-Group

Research Subjects: Experimental Particle Physics without Accelerators

228

Page 230: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

7. AIHARA/YOKOAMA GROUP

Member: MINOWA, Makoto and INOUE, Yoshizumi

Various kinds of astro-/non-accelerator/low-energy particle physics experiments have been performedand are newly being planned in our research group.

We started a new R and D study of a compact mobile anti-electron neutrino detector with plasticscintillators to be used at a nuclear reactor station, for the purpose of monitoring the power and plutoniumcontent of the nuclear fuel. It can be used to monitor a reactor from outside of the reactor containment withno disruption of day-to-day operations at the reactor site. This unique capability may be of interest for thereactor safeguard program of the International Atomic Energy Agency(IAEA). We have built a prototypedetetctor of a size of 1700 × 667 × 551 mm3 and weight of 270kg. It is now deployed at Hamaoka NuclearPower Station of Chube Electric Power Co., Inc.

We are running an experiment to search for axions, light neutral pseudoscalar particles yet to be discov-ered. Its existence is implied to solve the so-called strong CP problem. The axion would be produced in thesolar core through the Primakoff effect. It can be converted back to an x-ray in a strong magnetic field inthe laboratory by the inverse process. We search for such x-rays coming from the direction of the sun withthe TOKYO AXION HELIOSCOPE, aka Sumico. Sumico consists of a cryogen-free 4T superconductingmagnet with an effective length of 2300 mm and PIN photodiodes as x-ray detectors. By now, we putupper limits of gaγγ < (5.6–13.4) × 10−10GeV−1 to axion - photon coupling constant for the axion massma < 0.27 eV and 0.84 eV < ma < 1.00 eV. The latter is a newly explored mass region which CERNAxion Solar Telescope(CAST) group that started later has not reached yet. We planned to continue themeasurement in which we scan the mass region from 1 eV upward.

An experiment is being performed for a search for hidden sector photons kinetically mixing with theordinary photons. The existence of the hidden sector photons and other hidden sector particles is predictedby extensions of the Standard Model, notably the ones based on string theory. The hidden sector photonis expected to come from the direction of the sun. It would be produced in the solar core or in the space byoscillation of the ordinary photon, and can transmute into the photon again in a long vacuum chamber inthe laboratory. A photon sensor in the chamber would readily detects the ordinary photon. The detectoris now ready and piggybacked onto the Sumico helioscope. We let the detector track the sun to searchfor the hidden sector photons coming from the sun and found no significant signal for the hidden sectorphoton. We put upper limits to the mixing angle χ of the normal photon and the hidden sector photon inthe unexplored parameter region around the hidden sector photon mass region around a few millielectronvolts. This is the world’s first solar hidden sector photon search experiment with a dedicated solar hiddensector photon telescope.

7 Aihara/Yokoama Group

Research Subjects: Study of CP-Violation and Search for Physics Beyond the Standard

Model in theB Meson and the τ Lepton Systems (Belle & Belle II), Dark Energy

Survey at Subaru Telescope (Hyper Suprime-cam), Long Baseline Neutrino

Oscillation Experiment (T2K), R&D for the Next Generation Neutrino and

Nucleon Decay Experiment (Hyper-Kamiokande), Measurement of Neutrino-

nucleus Interactions (SciBooNE), and R&D for Hybrid Photodetectors.

Staff Members: H. Aihara, M. Yokoyama, H. Kakuno and T. Abe

One of the major research activities in our group has been a study of CP-violation and a search forphysics beyond the Standard Model in the B meson and the τ lepton systems using the KEK B-factory(KEKB). This past year, we began a study of anomalous magnetic moment of the τ lepton, (g−2)τ , whichis sensitive to physics beyond the Standard Model. Using ∼ 900 million τ -τ pairs recorded with the Belledetector, we intend to improve a precision of (g − 2)τ measurement by a factor of ∼ 10 over previousmeasurements.

The Super KEKB project started in 2010. The upgraded accelerator, Super KEKB, will have 40 timesmore luminosity than KEKB. The Belle detector is also being upgraded as Belle II detector with cutting-edge technology. One of key elements for the success of Belle II will be the reduction and control of

229

Page 231: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

8. ASAI GROUP

the background from accelerator. We measured the background level of KEKB with a special run. Byextrapolating it to the Super KEKB condition with a simulation, we estimated the background level atBelle II. The optimization of interaction region is in progress based on our results.

As an observational cosmology project, we are involved in building a 1.2 Giga pixel CCD camera (HyperSuprime-Cam) to be mounted on the prime focus of the Subaru telescope. With this wide-field camera,we plan to conduct extensive wide-filed deep survey to investigate weak lensing. This data will be used todevelop 3-D mass mapping of the universe. It, in turn, will be used to study Dark Energy.

The T2K long baseline neutrino oscillation experiment started in April 2009. We have searched forνμ → νe oscillation using data collected from January to June 2010. One candidate of electron neutrinoevent is observed at the Super-Kamiokande detector, while 0.3 background events are expected. With moredata, we expect to lead the study of neutrino oscillation.

In order to pursue the study of properties of neutrino beyond T2K, we have started the design of nextgeneration water Cherenkov detector, Hyper-Kamiokande (HK). One of the main goals of HK is the searchfor CP violation in leptonic sector using accelerator neutrino and anti-neutrino beams. The sensitivity toCP violating phase is studied with full simulation. It is shown that with HK and J-PARC accelerator, CPviolation can be observed after five years of experiment for a large part of possible parameter space.

In order to reduce the uncertainty in the neutrino oscillation measurements, we have been analyzingdata from SciBooNE, an experiment performed at Fermilab to study neutrino-nucleus interaction. Wehave measured the cross section of the inclusive νμ charged current interaction on carbon. Using thismeasurement, we have also searched for neutrino oscillation together with MiniBooNE collaboration.

We have been developing hybrid photodetector (HPD) combining a large-format phototube technologyand avalanche diode as photo-electron multiplier. This year, we have developed 8-inch HPD with all glassdesign, together with a compact high voltage supply and readout electronics. This device can be deployedfor large water Cherenkov detectors, envisioned as the next generation proton-decay/neutrino detectors.

1. H. Fujimori, H. Aihara, S. Mineo, H. Miyatake, S. Miyazaki, H. Nakaya, T. Uchida, “Back-EndReadout Electronics for Hyper Suprime-Cam,” IEEE Nuclear Science Symposium Conference Record,N14-9, 2010.

2. Y. Nakajima et al. [SciBooNE Collaboration], “Measurement of inclusive charged current interactionson carbon in a few-GeV neutrino beam,” Phys. Rev. D 83, 012005 (2011).

3. T.Abe, H. Aihara, M. Iwasaki, K. Kasimura, S. Mineo, T. Uchida, M. Tanaka, Y. Kawai, H.Kyushima, M. Suyama, M. Shiozawa “R&D status of large aperture Hybrid Avalanche Photo-Detector,” Nucl.Instrum.Meth.A623:279-281,2010.

8 Asai group

Research Subjects: (1) Particle Physics with the energy frontier accelerators (LEP and

LHC) (2) Physics analysis in the ATLAS experiment at the LHC: (Higgs, SUSY

and Extra-dimension) (3) Particles Physics without accelerator: tabletop size

(4) Positronium and QED

Member: S.Asai

• (1) LHC (Large Hadron Collider) has the excellent physics potential. Our group is contributing tothe ATLAS group in the Physics analyses: focusing especially on three major topics, the Higgs boson,Supersymmetry and Extra-dimension.

– Higgs: We are focusing on Higgs boson whose masses is lighter than 140 GeV. H → γγ , ττand WW are the promising channels. We search for the Higgs with these three modes andNo evidence was observed. We need more luminosity for Higgs hunting and we can reach theluminosity of discovery within 2 years.

230

Page 232: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

9. AOKI GROUP

– SUSY: We contributes SUSY study at the ATLAS experiment as a convener. We have developedmethods of the data-driven background estimation for all channels, and we found out that wecan estimate background number//distributions from the data itself with accuracy of 10-30%even in the early of the state. Now we have real data and search for the SUSY with the variousevent topologies, and no evidence was observed in all topologies. We set stringent limit on thedark matter.

– Extra-dimension If the extra-dimension is compactified at a few TeV scale, Mini-black hole andKK excitation are interesting signals. We search for these topologies and we have set the limitof about 2TeV for the planck scale.

• (2) Small tabletop experiments have the good physics potential to discover the physics beyond thestandard model, if the accuracy of the measurement or the sensitivity of the research is high enough.We perform the following tabletop experiments:

– Search for extra-dimension with positronium → invisible.

– Search for CP violation of the lepton sector using positronium.

– Precise measurement Search HFS of the positronium.

– Developing high power (>500W) stable sub THz RF source

– Spin-rotation of positronium

9 Aoki Group

Subject: Theoretical condensed-matter physics

Members: Hideo Aoki, Takashi Oka

Our main interests are many-body effects in electron systems, i.e., superconductivity, magnetism andtopological systems, for which we envisage a materials design for correlated electron systems andnovel non-equilibrium phenomena should be realised. Studies in the 2010 academic year include:

• Superconductivity

— Superconductivity in iron-based compounds

— Superconductivity in solids of aromatic molecules

— High-Tc cuprate revisited and anologues designed[1]

— Collective modes in multi-band superconductors [2]

• Magnetism

— Design of ferromagnetism in cold atoms [3] and organics [4]

— Multiferroic multiband systems

• Topological systems: Quantum Hall systems[12] and graphene

— Graphene QHE and chiral symmetry[5,6]

— Optica (THz) Hall effect in graphene[7]

— Many-body and quantum-dot states in graphene [8]

• Non-equilibrium and nonlinear phenomena in correlated electron systems

— Non-linear transport in the dielectrically broken Mott insulator [9,10]

— Dynamical repulsion-attraction conversion in intense ac fields [11]

— Photovoltaic Hall effect in graphene

[1] H. Sakakibara, H. Usui, K. Kuroki, R. Arita and H. Aoki: Two orbital model explains why thesingle-layer Hg cuprate have higher superconducting transition temperature than the La cuprate, Phys.Rev. Lett. 105, 057003 (2010).

231

Page 233: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

10. MIYASHITA GROUP

[2] Y. Ota, M. Machida, T. Koyama and H. Aoki: Leggett’s collective modes in multiband superfluidsand superconductors — Multiple dynamical classes, Phys. Rev. B 83, 060507(R) (2011).

[3] M. Okumura, S. Yamada, M. Machida and H. Aoki: Phase-separated ferromagnetism in spin-imbalanced Fermi atoms loaded on an optical ladder, Phys. Rev. A 83, 031606(R) (2011).

[4] Y. Suwa, R. Arita, K. Kuroki and H. Aoki: First-principles study of ferromagnetism for an organicpolymer dimethylaminopyrrole, Phys. Rev. B 82, 235127 (2010).

[5] T. Kawarabayashi, Y. Hatsugai, T. Morimoto and H. Aoki: Generalized chiral symmetry and stabilityof zero modes for tilted Dirac cones, Phys. Rev. B 83, 153414 (2011).

[6] H. Watanabe, Y. Hatsugai and H. Aoki: Half-integer contributions to the quantum Hall conductivityfrom single Dirac cones, Phys. Rev. B 82, 241403(R) (2010).

[7] Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki and R. Shimano: Optical Hall effect inthe integer quantum Hall regime, Phys. Rev. Lett. 104, 256802 (2010).

[8] P. A. Maksym, M. Roy, M. F. Craciun, S. Russo, M. Yamamoto, S. Tarucha and H. Aoki: Proposalfor a magnetic field induced graphene dot, J. Phys.: Conf. Ser. 245, 012030 (2010).

[9] T. Oka and H. Aoki: Dielectric breakdown in a Mott Insulator: many-body Schwinger-Landau-Zenermechanism studied with a generalized Bethe ansatz, Phys. Rev. B 81, 033103 (2010).

[10] M. Eckstein, T. Oka and P. Werner: Dielectric breakdown of Mott insulators in dynamical mean-fieldtheory Phys. Rev. Lett. 105, 146404 (2010).

[11] N. Tsuji, T. Oka, P. Werner and H. Aoki: Changing the interaction of lattice fermions dynamicallyfrom repulsive to attractive in ac fields, Phys. Rev. Lett., to be published.

[12] Hideo Aoki: Integer quantum Hall effect (a chapter in Comprehensive Semiconductor Science &Technology ed by P. Bhattacharya, R. Fornari and H. Kamimura, Elsevier, 2011).

10 Miyashita Group

Research Subjects: Statistical Mechanics, Phase Transitions, Quantum Spin systems,

Quantum Dynamics, Non-equilibrium Phenomena

Member: Seiji Miyashita and Keiji Saito

1. Cooperative Phenomena and Phase TransitionStudy on phase transitions and critical phenomena is one of main subjects of the statistical mechanics.

We have studied various types of ordering phenomena in systems with large fluctuation. In the last year,we studied the following aspects of phase transitions. [1]

One is the phase transition in long-range Interacting systems. So far, phase transitions of spin systemshave been studied mainly on the fixed lattice. However, we pointed out that difference of local latticestructure, e.g. the sizes of the high-spin (HS) and the low-spin (LS) in the spin-crossover materials causeslattice distortions. This degree of freedom of lattice deformation causes an effective long range interactionfor ordering of bistable states. We have pointed out that the critical property of this type of models belongsto the universality class of the mean-field model, and also that its dynamical critical properties, such as thespinodal phenomena, are described by the corresponding mean-field theory. In the last year, in particular,we studied on the spatial ordering patterns of the system with long range interaction. In the long rangeinteraction system with periodic boundary condition, the system does not show compact ordering clustereven at the critical point in contrast to the usual short range systems in which the correlation lengthdiverges and infinite clusters appear. [41, 45] We studied how the correlation length changes if both shortand long range interactions exists. We derived a scaling relation of the correlation length as function ofthe ratio of the short and long range interactions, and confirmed by a Monte Carlo simulation. We alsostudied how switching between the two ordered state occurs in system with open boundary condition, andfound a scale-invariant property. [3, 4, 41, 45]

We also studied in which condition systems with long range interaction are described by the mean-fieldtheory. It is known that in the cases where the interaction energy per spin diverges, where the extensivityis not satisfied and the so-called Kac procedure is necessary, the thermal properties are described by themean-field theory if the order parameter is not conserved. We investigate the condition in detail, and

232

Page 234: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

10. MIYASHITA GROUP

confirmed this property. Moreover, we found that even in this case, the properties in a fixed value of orderparameter cannot be described by the mean-filed theory in some parameter region. This indicates that theuniform configuration for the state of mean-field state becomes unstable inn such parameter region. Weare studying the properties of such states. [5, 31, 39]

Hiroko Tokoro made experimental studies on novel magnetic materials in collaboration with Ohkoshilaboratory (chemistry department). [6, 58, 59]

We also studies the general structure of the so-called mixed phase which has been found in the generalized6-state clock model with a quasi-degenerate energy structure. We found various new type phases and phasetransitions. [37, 43] We also studied on the classification of the first order phase transitions in the Pottsmodel with the so-called transparent states.

2. Quantum Statistical Mechanics

Cooperative phenomena in quantum systems are also important subject in our group. In quantum sys-tems, they show interesting non-classical behavior. We have studied quantum phase transitions in spinsystems and also itinerant electron systems. In particular, the mechanism of Nagaoka ferromagnetism pro-vides an interesting magnetic property in system where we control the chemical potential of the itinerantelectrons (Hubbard model). We proposed a system in which the transition between magnetic and non-magnetic state takes place with this mechanism and the property of the model is studied by the DMRGmethod. [50]

As a study on the exact solvable models, we studied the exact property of spin chain by making use ofalgebraic Bethe anzatz. In particular, we investigated properties of boundary states of S = 1 spin chain.[22, 23, 26, 27, 28, 29] We also studied a nontrivial symmetry in a one-dimensional S = 1 bilinear-biquadraticmodel by an exact diagonalization method. [57].

We also studied the dynamical properties and also response. Coherent dynamics of quantum systemshas also various characteristic features, and attracts interests from the view point of quantum informationprocessing. We have studied such novel quantum phases and quantum responses. [2] Parts of the subjectare studied as an activity of the JST CREST project (Quantum-mechanical cooperative phenomena andtheir applications). [47]

Quantum response to external fields is one of the important subjects in our group, and we have studiedresonant spectrum of interacting system by proposing a direct numerical method for the Kubo formula, andextended it to systems with dissipative dynamics.[48, 49] In the last year, we studied the line spectrum ofa spin chain with an alternative Dzyaloshinsky-Moriya interactions at high temperature limit, and analyzedit in the relation with the autocorrelation function of the spin torque which shows a deviation from thegaussian relaxation at long time. We discussed an extension of the Kubo-Tomita theory. [7]

We also studied hybridization of a spin system in the cavity and the cavity photon which attracts interestsfrom the view point of coupling of photon information and materials. We published a paper with the relatedexperiments[8], which has been reviwed as a possible realization of the Quantum RAM. We extended thestudy to detailed structure of the line shape by studying the energy structure of hybridized systems.

Moreover, we studied origins of decoherence of the Rabi oscillation which is regarded as an evidence ofquantum coherence. We classified the characterization of the origins of the decoherence, e.g. the localdistribution of magnetic field and the magnetic anisotropy, and the dipolar-dipolar interactions among thespins, etc. We are applying it to the related experiments.

How the equilibrium (canonical distribution) is realized is also a big topic in statistical mechanics. Wehave study an isolated spin system and study the dynamics explicitly, and observed how the local systemapproaches to a stationary state and it is resemble to the canonical distribution as a function of strengthand type of the interaction between the local system and the rest system. [9]

We have studied quantum effect in the conveyance process of particle dragged by a potential well. Westudied origins of the non-adiabatic transition during the process, and analyzed them from the view pointsof the resonant state for systems with the quantum tunneling.[56]

We also studied dynamical properties of quantum systems under transverse field in the context of thequantum annealing. [10, 11]

On the duality between particle and wave in quantum mechanics, we studied in what condition we canrealize the wave nature in a model of particles. [12, 13]

As to the transport phenomena, we studied universal feature of the current fluctuation. We deriveda generated cumulant function and examine the proposal of the additivity principle of Derrida. We alsostudied the AC conductance of the heat conductivity. [14, 15, 16, 17, 18, 19, 20, 52, 53, 54, 55]

233

Page 235: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

11. OGATA GROUP

11 Ogata Group

Research Subjects: Condensed Matter Theory

Member: Masao Ogata, Hiroyasu Matsuura

We are studying condensed matter physics and many body problems, such as strongly correlated electronsystems, high-Tc superconductivity, Mott metal-insulator transition, magnetic systems, low-dimensionalelectron systems, mesoscopic systems, organic conductors, unconventional superconductivity, and Tomonaga-Luttinger liquid theory. The followings are the current topics in our group.

• High-Tc superconductivity

Inhomogeneity and two-gap features in high-Tc superconductors.

Mott metal-insulator transition and superconductivity.[6]

• New superconductor: Iron-pnictide

Effects of nonmagnetic impurities in iron-pnictide superconductors.[1]

Quasi-particle interference patterns in d-wave superconductors.

Orbital-selective superconductivity and the effect of lattice distortion.[5]

• Organic conductors

Modeling and magnetism in one-dimensional Fe-phthalocyanine compounds.

Novel spin-liquid states in an anisotropic-triangular spin-system.

Static nonequilibrium state of the competing charge orders under an electric field.

• Theories of anisotropic superconductivity

Spatial patterns of the two-dimensional FFLO superconductivity near zero temperature.

• Dirac electrons

Dissipationless current due to the interband effects of magnetic field in Dirac fermion systems.

Spin-polarized currents in Dirac fermion systems.

• Four-state classical Potts model with a novel type of frustrations

• Theories on heavy fermion systems

A renormalization-group study for the two-level Kondo model with conduction electrons.[2]

Competition between the Kondo-Yoshida singlet and the crystal-field singlet for f2 configuration.[3]

Crossover from local Fermi liquid to heavy Fermi liquid.[4]

[1] T. Kariyado and M. Ogata: J. Phys. Soc. Jpn. 79, 083704 (2010).

[2] H. Matsuura, S. Tanikawa, and K. Miyake: J. Phys. Soc. Jpn. 79, 074705 (2010).

[3] S. Nishiyama, H. Matsuura, and K. Miyake: J. Phys. Soc. Jpn. 79, 104711 (2010).

[4] H. Watanabe and M. Ogata: Phys. Rev. B 81, 113111 (2010).

[5] N. Arakawa and M. Ogata: to appear in J. Phys. Soc. Jpn.. “Orbital-Selective Superconductivity andthe Effect of Lattice Distortion in Iron-Based Superconductors”

[6] H. Yokoyama, T. Miyagawa, M. Ogata: submitted to J. Phys. Soc. Jpn.. “Effect of Doublon-HolonBinding on Mott transition—Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models”

12 Tsuneyuki Group

Research Subjects: Theoretical Condensed-matter physics

Member: Shinji Tsuneyuki and Yoshihiro Gohda

Computer simulations from first principles enable us to investigate properties and behavior of materialsbeyond the limitation of experiments, or rather to predict them before experiments. Our main subject is

234

Page 236: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

13. FUJIMORI GROUP

to develop and apply such techniques of computational physics to investigate basic problems in condensedmatter physics, especially focusing on prediction of material properties under extreme conditions like ultra-high pressure or at surfaces where experimental data are limited. Our principal tool is molecular dynamics(MD) and first-principles electronic structure calculation based on the density functional theory (DFT),while we are also developing new methods that go beoynd the limitation of classical MD and DFT.

In FY2010, we predicted theoretically novel two-dimensional interface ferromagnetism at AlN/MgB2(0001)using DFT calculations (Y. Gohda and S. Tsuneyuki, Phys. Rev. Lett. 106, 047201 (2011)). First-principles electron transport calculations demonstrate that this interfacial spin polarization is responsiblefor quantum spin transport. The magnetization can be controlled by applied gate bias voltages.

We also developed or improved several methodologies for first-principles study of electronic, structuraland dynamical properties of materials. One of the major achievements is that we obtained first convergedresults of the electronic structure calculation of a large-gap insulator by the Transcorrelated (TC) method,a wave funtion theory we have developed for several years.

In summary, our research subjects in FY2010 were as follows:

• New methods of electronic structure calculation

– Generalized anharmonic lattice model of crystals for investigating thermal conductivity

– First-principles wavefunction theory for solids based on the Transcorrelated method

– FMO-LCMO method: a new method of electronic structure calculation of huge biomoleculesbased on the fragment molecular orbital (FMO) method

• Applications of first-principles electronic structure calculation

– Two-Dimensional Intrinsic Ferromagnetism at Nitride-Boride Interfaces

– Oxygen vacancy and hydrogen impurities in BaTiO3

– Electric dipole layer at the water-electrode interface

13 Fujimori Group

Research Subjects: Photoemission Spectroscopy of Strongly Correlated Systems

Member: Atsushi Fujimori and Teppei Yoshida

We study the electronic structure of strongly correlated systems using high-energy spectroscopic tech-niques such as angle-resolved photoemission spectroscopy and soft x-ray magnetic circular dichroism us-ing synchrotron radiation. We investigate mechanisms of high-temperature superconductivity [1], metal-insulator transitions, giant magnetoresistance, carrier-induced ferromagentism, spin/charge/orbital order-ing in strongly correalted systems such as transition-metal oxides [2], magnetic semiconductors [3], andtheir interfaces.

[1] S. Ideta, K. Takashima, M. Hashimoto, T. Yoshida, A. Fujimori, H. Anzai, T. Fujita, Y. Nakashima, A.Ino, M. Arita, H. Namatame, M. Taniguchi, K. Ono, M. Kubota, D. H. Lu, Z.-X. Shen, K. M. Kojima, andS. Uchida: Enhanced superconducting gaps in the tri-layer high-temperature Bi2Sr2Ca2Cu3O10+δ cupratesuperconductor, Phys. Rev. Lett. 104 227001–1-4, (2010).

[2] T. Yoshida, M. Hashimoto, T. Takizawa, A. Fujimori, M. Kubota, K. Ono, and H. Eisaki: Massrenormalization in the band width-controlled Mott-Hubbard systems SrVO3 and CaVO3 studied by angle-resolved photoemission spectroscopy, Phys. Rev. B 82, 085119–1-5 (2010).

[3] V.R. Singh, Y. Sakamoto, T. Kataoka, M. Kobayashi, Y. Yamazaki, A. Fujimori, F.-H. Chang, D.-J.Huang, H.-J. Lin, C.T. Chen, H. Toyosaki, T. Fukumura, and M. Kawasaki: Bulk and surface magnetizationof Co atoms in rutile Ti1−xCoxO2−δ thin films revealed by x-ray magnetic circular dichroism, J. Phys.Condens. Mat. 23, 176001–1-5 (2011).

235

Page 237: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

14. UCHIDA GROUP

14 Uchida Group

Research Subjects: High-Tc superconductivity

Member:Uchida Shin-ichi (professor), Kakeshita Teruhisa. (research associate)

1. Project and Research Goal

The striking features of low-dimensional electronic systems with strong correlations are the “fractional-ization” of an electron and the “self-organization” of electrons to form nanoscale orders. In one dimension(1D), an electron is fractionalized into two separate quantum-mechanical particles, one containing its charge(holon) and the other its spin (spinon). In two dimensions (2D) strongly correlated electrons tend to formspin/charge stripe order.

Our study focuses on 1D and 2D copper oxides with various configurations of the corner-sharing CuO4

squares. The common characteristics of such configurations are the quenching of the orbital degree offreedom due to degraded crystal symmetry and the extremely large exchange interaction (J) betweenneighboring Cu spins due to large d − p overlap (arising from 180 Cu-O-Cu bonds) as well as to thesmall charge-transfer energy. The quenching of orbitals tends to make the holon and spinon to be well-defined excitations in 1D with quantum-mechanical character, and the extremely large J is one of thefactors that give rise to superconductivity with unprecedentedly high Tc as well as the charge/spin stripeorder in 2D cuprates. The experimental researches of our laboratory are based upon successful synthesis ofhigh quality single crystals of cuprate materials with well-controlled doping concentrations which surpassesany laboratory/institute in the world. This enables us to make systematic and quantitative study of thecharge/spin dynamics by the transport and optical measurements on the strongly anisotropic systems. Wealso perform quite effective and highly productive collaboration with world-leading research groups in thesynchrotron-radiation, μSR and neutron facilities, and STM/STS to reveal electronic structure/phenomenaof cuprates in real- and momentum-space.

2. Accomplishment

(1) Ladder Cuprate

Significant progress has been made in the experimental study of a hole-doped two-leg ladder systemSr14−xCaxCu24O41 and undoped La6Ca8Cu24O41 :

1) From the high pressure (P) study we constructed and x-P phase diagram (in collaboration with Prof. N.Mori’s group). We find that the superconductivity appears as a superconductor-insulator transition onlyunder pressures higher than 3GPa and that the superconducting phase is restricted in the range of x largerthan 10. In lower P and smaller x regions the system is insulating.

2) The pairing wave function in the superconducting phase has an s-wave like symmetry which is evidencedby a coherence peak at Tc in the nuclear relaxation rate, revealed by the first successful NMR measurementunder high pressure.

3) The origin of the insulating phase dominating the whole x−P phase diagram is most likely the chargeorder of doped holes or hole pairs as suggested by the presence of a collective charge mode in the x=0,Sr14Cu24O41, compound in the inelastic light scattering (with G. Blumberg, Bell Lab.), microwave andnonlinear conductivity (with A. Maeda and H. Kitano, U. of Tokyo), and inelastic X-ray scattering (withP. Abbamonte and G. A. Sawatzky).

4) In the undoped compound La6Ca8Cu24O41 spin thermal conductivity is remarkably enhanced to thelevel of silver metal along the ladder-leg direction due to the presence of a spin gap and to a ballistic-likeheat transport characteristic of 1D.

(2) Observation of Two Gaps, Pseudogap and Superconducting Gap, in Underdoped High-Tc

Cuprates.

The most important and mysterious feature which distinguishes cuprate from conventional superconduc-tors is the existence of pseudogap in the normal state which has the same d-wave symmetry as thesuperconducting gap does. We employed c-axis optical spectrum of Yba2Cu3O6.8 as a suitable probe forexploring gaps with d-wave symmetry to investigate the inter-relationship between two gaps. We find thatthe two gaps are distinct in energy scale and they coexist in the superconducting state, suggesting that thepseudogap is not merely a gap associated with pairs without phase coherence, but it might originate froma new state of matter which competed with d-wave superconductivity.

236

Page 238: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

15. HASEGAWA GROUP

(3) Nanoscale Electronic Phenomena in the High-Tc Superconducting State

The STM/STS collaboration with J. C. Davis’ group in Cornell Univ. is discovering numerous unexpectednanoscale phenomena, spatial modulation of the electronic state (local density of states, LDOS), in thesuperconducting CuO2 planes using STM with sub-A resolution and unprecedentedly high stability. Theseinclude (a) “+” or “×” shaped quasiparticle (QP) clouds around an individual non-magnetic Zn (magneticNi) impurity atom, (b) spatial variation (distribution) of the SC gap magnitude, (c) a “checkerboard”pattern of QP states with four unit cell periodicity around vortex cores, and (d) quantum interference ofthe QP. This year’s highlights are as follows:

1) Granular structure of high-Tc superconductivity

The STM observation of “gap map” has been extended to various doping levels of Bi2Sr2CaCu2O8+δ. Theresult reveals an apparent segregation of the electronic structure into SC domains of ∼3mm size with localenergy gap smaller than 60meV, located in an electronically distinct background (“pseudogap” phase) withlocal gap larger than 60meV but without phase coherence of pairs. With decrease of doped hole density, the(coverage) fraction of the superconducting area decreases or the density of the number of superconductingislands decreases. Apparently, this is related to the doping dependence of superfluid density as well as thedoping dependence of the normal-state carrier density.

2) Homogeneous nodal superconductivity and heterogeneous antinodal states

Modulation of LDOS is observed even without vortices, at zero magnetic field. In this case, the mod-ulation is weak and incommensurate with lattice period, showing energy (bias voltage) dependence. Thedispersion is explained by quasiparticle interference due to elastic scattering between characteristic regionsof momentum-space, consistent with the Fermi surface and the d-wave SC gap determined by ARPES(angle-resolved-photoemission).

These dispersive quasiparticle interference is observed at all dopings, and hence the low-energy states,dominated by the states on the Fermi arc formed surrounding the gap nodes, are spatially homoge-neous(nodal superconductivity). By contrast, the quasiparticle states near the antinodal region degradein coherence with decreasing doping, but have dominant contribution to superfluid density. This suggeststhat the volume fraction of spatial regions all of whose Fermi surface contributes to superfluid decreaseswith reduced doping. The result indicates the special relationship between real-space and momentum-spaceelectronic structure.

15 Hasegawa Group

Research Subject: Experimental Surface/Nano Physics

Members: Shuji HASEGAWA and Toru HIRAHARA

Surfaces of materials are platforms of our research where rich physics is expected due to the low-dimensionality and symmetry break down. (1) electronic/spin/mass transports, (2) atomic/electronicstructures, (3) phase transitions, (4) electronic excitations, (5) spin states and magnetism, and (6) epi-taxial growths of coherent atomic/molecular layers/wires on semiconductor surfaces, topological surfaces,and nano-scale phases such as surface superstructures and ultra-thin films. We use ultrahigh vacuumexperimental techniques such as electron diffraction, scanning electron microscopy, scanning tunneling mi-croscopy/spectroscopy (STM/S), photoemission spectroscopy, in-situ four-point-probe conductivity mea-surements with four-tip STM and monolithic micro-four-point probes, and surface mageto-optical Kerreffect measurements. Main results in this year are as follows.

(1) Surface electronic transport: Current-induced spin polarization effect in strong spin-orbit-interactionmaterials. Control of surface electronic states and their conductivity of topological insulators. Anisotropictransport on a quasi-one-dimensional metallic surface.

(2) Surface phases, ultra-thin films, and phase transitions: Order-disorder phase transition, charge-density-wave transition, Mott transition on various metal-induced surface superstructures of Si. Quantum-well state in ultra-thin metal films. Rashba effect in surface state and hybridization with quantum-wellstates in thin films.

(3) Surface magnetism: Monolayer ferromagnetic surfaces. Diluted magnetic surface states.

(4) Construction of new apparatuses: Green’s-function STM (low-temperature four-tip STM), micro-four-point probes apparatus at mK under strong magnetic field.

237

Page 239: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

16. GROUP

[1] S. Yamazaki, Y. Hosomura, I. Matsuda, R. Hobara, T. Eguchi, Y. Hasegawa, and S. Hasegawa: MetallicTransport in a Monatomic Layer of In on a Silicon Surface, Physical Review Letters 106, 116802 (Mar, 2011).

[2] N. Miyata, R. Hobara, H. Narita, T. Hirahara, S. Hasegawa, and I. Matsuda: Development of surface magneto-transport measurement with micro-four-point probe method and the measurement of Bi nanofilm on Si(111),Japanese Journal of Applied Physics 50, 036602 (Mar, 2011).

[3] I. Matsuda, K. Kubo, F. Nakamura, T. Hirahara, S. Yamazaki, W. H. Choi, H. W. Yeom, H. Narita, Y. Fukaya,M. Hashimoto, A. Kawasuso, S. Hasegawa, and K. Kobayashi: Electron compound nature in a surface atomiclayer of two-dimensional triangle lattice, Physical Review B 82, 165330 (Nov, 2010).

[4] T. Hirahara, Y. Sakamoto, Y. Takeichi, H. Miyazaki, S. Kimura, I. Matsuda, A. Kakizaki, and S. Hasegawa:Anomalous transport in an n-type topological insulator ultrathin Bi2Se3 film, Physical Review B 82, 155309(Oct. 2010) (selected as Editors uggestions).

[5] H. Morikawa, K. S. Kim, Y. Kitaoka, T. Hirahara, S. Hasegawa and H. W. Yeom: Conductance transition andinterwire ordering of Pb nanowires on Si(557), Physical Review B 82, 045423 (Jul, 2010).

[6] A. Nishide, Y. Takeichi, T. Okuda, A. A. Taskin, T. Hirahara, K. Nakatsuji, F. Komori, A. Kakizaki, Y.Ando, and I. Matsuda: Spin-polarized surface bands of a three-dimensional topological insulator studied byhigh-resolution spin- and angle-resolved photoemission spectroscopy, New Journal of Physics 12, 065011 (Jun,2010).

[7] Y. Niinuma, Y. Saisyu, T. Hirahara, R. Hobara, S. Hasegawa, H. Mizuno, and T. Nagamura: Developmentof an UHV-SMOKE system using permanent magnets, e-Journal of Surface Science and Nanotechnology 8,298(Jun, 2010).

[8] T. Hirahara, Y. Sakamoto, Y. Saisyu, H. Miyazaki, S. Kimura, T. Okuda, I. Matsuda, S. Murakami, and S.Hasegawa: Ttopological metal at the surface of an ultrathin Bi1−xSbx alloy film, Physical Review B 81, 165422(Apr, 2010)(selected as Editors’ Suggestions).

[9] Y. Sakamoto, T. Hirahara, H. Miyazaki, S. Kimura, and S. Hasegawa: Spectroscopic evidence of a topologicalquantum phase transition in ultrathin Bi2Se3 films, Physical Review B 81, 165432 (Apr, 2010).

[10] K. He, Y. Takeichi, M. Ogawa, T. Okuda, P. Moras, D. Topwal, A. Harasawa, T. Hirahara, C. Carbone, A.Kakizaki, and I. Matsuda: Direct spectroscopic evidence of spin-dependent hybridization between Rashba-splitsurface states and quantum-well states, Physical Review Letters 104, 156805 (Apr, 2010).

16 Group

Research Subjects: Low Temperature Physics (Experimental):

Quantum fluids and solids with strong correlations and frustration,

Scanning tunneling microscopy and spectroscopy of two dimensional electron

systems and superconductors.

Member: Hiroshi Fukuyama, Tomohiro Matsui

Our current interests are (i) quantum phases with strong correlations and frustration in two dimensional(2D) helium three (3He), (ii) novel phenomena related to Graphene, monatomic sheet of carbon atoms. Weare investigating these phenomena at ultra-low temperatures down to 50 μK, using various experimentaltechniques such as NMR, calorimetry, scanning tunneling microscopy and spectroscopy (STM/STS), lowenergy electron diffraction (LEED) and transport measurement, etc.

1. Ground-state of two dimensional 3He:

It is an interesting open question to ask whether the critical point, i.e., the gas-liquid transition,exists in strictly 2D 3He. The previous quantum many-body calculations predict interestingly that3He has the critical point but 4He does not in pure 2D case. We have measured low-temperature heatcapacities (C) of the second-, third- and fourth-layer 3He adsorbed on a graphite surface preplated

238

Page 240: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

16. GROUP

with monolayer 4He to elucidate if the ground state of each layer is gas or liquid phase. The elucidationis based on the fact that the coefficient (γ) of T -linear term in C(T ) in degenerated fermion system isdetermined by the surface area over which the fermions spread and the quasi-particle effective mass.It had been found until last year that there is the critical point over third layer and 3He atoms form2D paddles at low densities (ρ < 1.5 nm−2). This year, we found that even the second layer, where theconfinement potential from the substrate is stronger, does not have the critical point, too. Moreover,the density of the 2D paddle is comparable with that in third layer. Therefore, we can conclude thatthe ground state of 2D 3He is the liquid phase, and that the interaction between 3He atoms in 2D isattractive in average.

2. Other ongoing experiments on 2D 3He:

We are preparing a new sample cell for high-precision heat capacity measurements of the possibleorder-disorder transition near T = 1 K in the second layer 3He on graphite using a ZYX exfoliatedgraphite substrate which has much larger micro-crystalline size than the previous one. The purposeof this experiment is to confirm the existence of such a commensurate phase, the 4/7 phase, at theexpected density around which many interesting quantum phenomena are proposed to emerge atlow temperatures. Designing of a LEED (low energy electron diffraction) experiment below 0.5 K isalso undergoing in order to determine the structures of the commensurate phase unambiguously. Acryogen-free dilution refrigerator which will be used for these next generation experiments has beentested successfully with the lowest temperature of 12 mK and the cooling power of 200 μW at T = 100mK.

3. Kosterlitz-Thouless transition of the Sn island network on Graphene:

Since graphene is fabricated on top of a substrate, one can directly couple dopants with two di-mensional electron gas in graphene, whose carrier density and type can be tuned by an appliedgate voltage. Thus, graphene could provide an ideal substrate for study of proximity effect. Actually,graphene has been shown to effectively carry proximity-induced Josephson currents injected from con-tacting electrodes. On the other hand, it has also known that elemental superconductor Sn readilyform self-assembled islands when deposited on graphene at room temperature. Therefore, Sn islandson graphene is a good candidate to study the superconducting proximity effect and 2D Josephsonjunction network.

The graphene samples are prepared by exfoliating Kish graphite onto SiO2 substrate. Sn is depositedon graphene with photo-lithographed electrodes in high vacuum, and their transport properties aremeasured at temperatures down to 0.5 K and in magnetic fields up to 9 T. A sample with Sn ofnominally 30 nm thick actually shows islands with about 300 nm diameter and about 20 nm separationin scanning electron microscope image. The temperature dependence of the resistance shows twotypes of superconducting transitions. The resistance drops suddenly with decreasing temperatureat T ∼ 3.9 K reflecting the superconducting transition of Sn islands. At 2.0 K < T < 3.9 K,the resistance shows exp(−1/

√T ) dependence suggesting Kosterlitz-Thouless (KT) superconducting

transition in 2D. From this analysis, KT transition temperature TKT is estimated to be 2.06 K. Theresistance does not become zero and gradually decreases with decreasing temperature at T < 2.0K, that is presumably because of the finite size effect, since there estimated to be only 6 islands inbetween electrodes. In magnetic fields of B > Bc = 77 mT, the slope of the temperature dependencechanges its sign from metallic to insulating. In addition, the resistance shows thermally activated 1/Tdependence in B < Bc. These results suggest the field induced superconductor-insulator transitionin this superconducting Sn network on graphene.

4. Band gap tuning in functionalized Graphene:

Graphene has a gapless band structure, and it is importand for graphene electronics to engineer aband gap in this material. Since the gapless character in graphene is protected by the high symmetryof its lattice, in which two carbon sites in the unit cell are equivalent, the simplest way of gap-openingis to lift the symmetry. One of the approaches to modify the electronic properties is to functionalizethe graphene by atom deposition. It is expected that there would be a energy gap with enhanceddensity of states (DOS) when adatoms form ordered structure on graphene. To experimentaly confirm

239

Page 241: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

17. OKAMOTO GROUP

this property, we preliminary studied the DOS of Xe atom adsorbed on graphite with STS. We foundthat a energy gap with an order of ±1 V is created when the Xe form a

√3×√

3 adsorbed structure.

17 Okamoto Group

Research Subjects: Experimental Condensed Matter Physics,

Low temperature electronic properties of two-dimensional systems.

Member: Tohru Okamoto and Ryuichi Masutomi

We study low temperature electronic properties of semiconductor two-dimensional systems.

The current topics are following:

1. Two dimensional electrons at cleaved semiconductor surfaces:At the surfaces of InAs and InSb, conduction electrons can be induced by submonolayer depositionof other materials. Recently, we have performed in-plane magnetotransport measurements on in-situcleaved surfaces of p-type substrates and observed the quantum Hall effect which demonstrates theperfect two dimensionality of the inversion layers. Research on the hybrid system of 2D electronsand adsorbed atoms has great future potential because of the variety of the adsorbates as well as theapplication of scanning probe microscopy techniques.

In 2010, we have modified our experimental setup in order to mount a scanning tunneling microscope.

2. Superconductivity of ultrathin Bi films on cleaved GaAs surfaces:We have performed magnetotransport measurements on ultrathin Bi films on GaAs(110) surfaces.To reduce disorder arising from the substrate, we used cleaved surfaces of insulating GaAs. Thecritical film thickness for superconductivity was obtained to be 0.42 nm, which is thinner than theprevious data for different kinds of substrates. In the study of I − V characteristics, we observeddiscontinuous jump in the temperature dependence of the power α in V ∝ Iα, which is associatedwith “universal jump” of the Kosterlitz-Thouless transition. This indicates that the KT transitioncan occur in amorphous films as well as Josephson-coupled arrays.

3. Strongly correlated two dimensional systems:Cyclotron resonance of two-dimensional electrons is studied at low temperatures down to 0.4 Kfor a high-mobility Si/SiGe quantum well which exhibits a metallic temperature dependence of dcresistivity ρ. The relaxation time τCR shows a negative temperature dependence, which is similarto that of the transport scattering time τt obtained from ρ. The ratio τCR/τt at 0.4 K increases asthe electron density Ns decreases, and exceeds unity when Ns approaches the critical density for themetal-insulator transition. [R. Masutomi et al., Phys. Rev. Lett. (accepted for publication).]

18 Shimano Group

Research Subjects: Optical and Terahertz Spectroscopy of Condensed Matter

Member: Ryo Shimano and Shinichi Watanabe

We study light-matter interactions and many body quantum correlations in solids. In order to investigatethe role of electron and/or spin correlations in the excited states as well as the ground states, we focuson the low energy electromagnetic responses, in particular in the terahertz(THz) (1THz∼4meV) frequencyrange where quasi-particle excitations and various collective excitations exist. The research summary inthis year is as follows.

240

Page 242: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

19. THEORETICAL ASTROPHYSICS GROUP

1. High density electron-hole system: We investigated the thermodynamics of high density electronand hole(e-h) system in Si by optical pump and terahertz probe experiments. Through the observationof 1s-2p transition of excitons at 3 THz, we revealed the cooling dynamics of the e-h system and alsothe formation dynamics of excitons. Towards the realization of quantum degenerate phases such asexciton Bose Einstein condensation and e-h BCS phase, an essential difficulty exists in indirect gapsemiconductors, i.e., the spontaneous condensation of e-h system into e-h droplets(EHD). To overcomethis difficulty, we developed a pressure anvil cell that can apply uniaxial stress to the crystal so thatthe formation of EHD is suppressed. We also studied the fine structures of excitons in Si underthe magnetic field. Zeeman and diamagnetic shift of excitons are clearly observed through the1s-2pexciton transitions. By applying the magnetic field, accumulation of excitons into the spin- forbiddenlowest energy state is observed.

2. Optical Hall effect: We investigated the optical(terahertz frequency) Hall effect in: 1) 2-dimensionalelectron gas(2DEG) system of a GaAs/AlGaAs heterostructure in the integer quantum Hall regime,and 2) itinerant ferromagnet SrRuO3, by using highly sensitive THz polarization spectroscopy tech-nique. In the 2DEG system, the optical Hall conductivity σxy(ω) exhibits a plateau-like behavioraround the Landau-level filling ν = 2, indicating that the carrier localization effect, a crucial in-gredient in the integer QHE, affects the optical Hall conductivity even in the THz regime. In aSrRuO3 film, we studied the THz frequency anomalous Hall effect(AHE) and determined σxy(ω)from the Faraday rotation spectrum. A resonant structure was observed in σxy(ω) spectrum, whichis reasonably accounted for by the Berry phase theory of AHE.

3. Study of electromagnon in multiferroics: Electric active magnetic excitation, termed elec-tromagnon, has been proposed in multiferroic TbMnO3 as a collective excitation in a ferroelectricspin-spiral phase, but their origin had been controversial. We performed comprehensive study ofelectromagnon in rare earth manganite RMnO3(R=Dy, Tb, EuY) by THz time-domain spectroscopyand experimentally clarified two types of electromagnon, arising from 1) symmetric(si · sj) and 2)anti-symmetric(si × sj) exchange interaction between the neighboring Mn spins.

4. Development of intense THz light source: We developed an intense THz light source with thepeak electric-field amplitude as large as 0.9 MV/cm, by using optical rectification of femtosecond laserpulses in a LiNbO3 crystal. By using the developed intense THz pulses, we have demonstrated; 1)dynamical Stark effect of excitons in carbon nanotubes, 2) THz field-acceleration of carriers in carbonnanotubes that results in impact excitation of excitons, 3) THz pulse-induced melting of charge-orderin a quasi-2D organic conductor θ−(BEDT-TTF)2CsZn(SCN)4.

References

[1] T. Suzuki and R. Shimano,Phys. Rev. B 83, 085207 (2011).

[2] R. Shimano, T. Suzuki, Physica Status Solidi (c) 8, p. 1153-1156 (2011).

[3] S. Watanabe, N. Minami, and R. Shimano, Optics Express 19, 1528 (2011).

[4] J. Fujioka, Y. Ida, Y. Takahashi, N. Kida, R. Shimano, and Y. Tokura,Phys. Rev. B 82, 140409(R) (2010).

[5] S. Seki, N. Kida, S. Kumakura, R. Shimano, and Y. Tokura, Phys. Rev. Lett. 105, 097207 (2010).

[6] T. Ogawa, S. Watanabe, N. Minami, and R. Shimano,Appl. Phys. Lett. 97, 041111 (2010).

[7] Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano,Phys. Rev. Lett. 104, 256802(2010).

[8] S. Watanabe, R. Kondo, S. Kagoshima, and R. Shimano, Physica B 405, S360-S362 (2010).

19 Theoretical Astrophysics Group

Research Subjects: Oservational Cosmology, Extrasolar Planets,

Member: Yasushi Suto, & Atsushi Taruya

241

Page 243: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

19. THEORETICAL ASTROPHYSICS GROUP

The Theoretical Astrophysics Group carries out a wide range of research programmes. However, astro-physics is a very broad field of research, and it goes without saying that our group alone cannot coverall the various important astrophysical research topics on hand. Among others we place emphasis on the“Observational Cosmology”.

“Observational Cosmology” attempts to understand the evolution of the universe on the basis of theobservational data in various wavebands. The proper interpretation of the recent and future data providedby COBE, ASCA, the Hubble telescope, SUBARU, and large-scale galaxy survey projects is quite importantboth in improving our understanding of the present universe and in determining several basic parametersof the universe which are crucial in predicting the evolutionary behavior of the universe in the past andin the future. Our current interests include nonlinear gravitational evolution of cosmological fluctuations,formation and evolution of proto-galaxies and proto-clusters, X-ray luminosity and temperature functions ofclusters of galaxies, hydrodynamical simulations of galaxies and the origin of the Hubble sequence, thermalhistory of the universe and reionization, prediction of anisotropies in the cosmic microwave backgroundradiation, statistical description of the evolution of mass functions of gravitationally bound objects, andstatistics of gravitationally lensed quasars.

Let us summarize this report by presenting recent titles of the doctor and master theses in our group;

2010

• Precise measurement of number-count distribution function of SDSS galaxies

2009

• The Central Engine of Gamma-Ray Bursts and Core-Collapse Supernovae Probed with Neutrino andGravitational Wave Emissions

• Numerical Studies on Galaxy Clustering for Upcoming Wide and Deep Surveys: Baryon AcousticOscillations and Primordial Non-Gaussianity

• Toward a precise measurement of neutrino mass through nonlinear galaxy power spectrum based onperturbation theory

• Toward Remote Sensing of Extrasolar Earth-like Planets

• Improved Modeling of the Rossiter-McLaughlin Effect for Transiting Exoplanetary Systems

• Forecasting constraints on cosmological parameters with CMB-galaxy lensing cross-correlations

2008

• Holographic non-local operators

• Neutrino Probes of Core-collapse Supernova Interiors

• Inhomogeneity in Intracluster Medium and Its Cosmological Implications

• Nuclear “pasta” structure in supernovae

• Investigation of the Sources of Ultra-high-energy Cosmic Rays with Numerical Simulations

• Formation of Pulsar Planet Systems -Comparison with the Standard Scenario of Planetary Formation-

2007

• The Rossiter effect of extrasolar transiting planetrary systems ? perturbative approach and applica-tion to the detection of planetary rings

• Stability of flux compactifications and de Sitter thermodynamics

• Study of core-collapse supernovae in special relativistic magnetohydrodynamics

• Spectroscopic Studies of Transiting Planetary Systems

• The relation of the Galactic extinction map to the surface number density of galaxies

242

Page 244: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

19. THEORETICAL ASTROPHYSICS GROUP

• Brane Inflation in String Theory 2006

• Numerical studies on cosmological perturbations in braneworld

• Inflationary braneworld probed with primordial black holes

• Galaxy Biasing and Higher-Order Statistics

• Probing circular polarization of Gravitational Wave Background with Cosmic Microwave BackgroundAnisotropy

• Gravitational Collapse of Population III Stars

2005

• Brane gravity and dynamical stability in warped flux compactification

• Neutrino Probes of Galactic and Cosmological Supernovae

• Detectability of cosmic dark baryons through high-resolution spectroscopy in soft X-ray band

• Propagation of Ultra-High Energy Cosmic Rays in Cosmic Magnetic Fields

• The study of nuclear pasta investigated by Quantum Molecular Dynamics

2004

• Strong Gravitational Lenses in a Cold Dark Matter Universe

• Effect of Rotation and Magnetic Field on the Explosion Mechanism and Gravitational Wave in Core-Collapse Supernovae

• Bulk Fields in Braneworld

• Gravitational collapse and gravitational wave in the brane-world

• Magnetohydrodynamical Simulation of Core-Collapse Supernovae

• A Search for the Atmospheric Absorption in the Transiting Extrasolar Planet HD209458b with SubaruHDS

• Baryogenesis and Inhomogeneous Big Bang Nucleosynthesis

• The large-scale structure of SDSS quasars and its cosmological implication

2003

• Non-Gravitational Heating of Galaxy Clusters in a Hierarchical Universe

• Discoveries of Gravitationally Lensed Quasars from the Sloan Digital Sky Survey

• One, Two, Three ? measuring evolved large scale structure of the Universe

• Higher-order Statistics as a probe of Non-Gaussianity in Large Scale Structure

• Primordial black holes as an imprint of the brane Universe

• Probing the Extra Dimensions with Gravitational Wave Background of Cosmological Origin

243

Page 245: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

20. MURAO GROUP

20 Murao Group

Research Subjects: Quantum Information Theory

Member: Mio Murao, Peter Turner

Quantum information processing seeks to perform tasks which are impossible or not effective with theuse of conventional classical information, by using quantum information described by quantum mechanicalstates. Quantum computation, quantum cryptography, and quantum communication have been proposedand this new field of quantum information processing has developed rapidly especially over the last 15years. Entanglement is nonlocal correlation that appears in certain types of quantum states (non-separablestates) and has become considered as a fundamental resource for quantum information processing. In ourgroup, we investigate new properties of multipartite and multi-level entanglement and the use of theseproperties as resources for quantum information processing. Our current projects are the following:

• Distributed quantum information processing

– Quantifying “Globalness” of unitary operations on quantum information [1,2,3]

– Error models for distributed quantum information processing

– Distributed Quantum Computation over the Buttery Network [4]

– Controllization of a unitary operation

– Functionality-preserving randomization for unitary operations

• Entanglement theory

– Multipartite entanglement [5]

– Random states generation by Hamiltonian dynamics with multi-body interactions

– Entanglement property of states randomly distributed in a Hilbert space with symmetry

– Entanglement witness non-equilibrium steady state [6]

– Detecting entanglement production during a non-equilibrium process

– Structural characteriziation of graph states for quantum information processing [7]

• Quantum tomography

– Error probability analysis in quantum tomography [8]

– Quantum tomography under incomplete settings

– Adaptive quantum estimation

– Operational indistinguishability in quantum tomography [9]

– Continuous variable 2-designs

• Foundation of quantum mechanics

– Memory effect of the environment and thermalization of a quantum system

– Analysis of bipartite nonlocal correlation and non-locality distillation

Please refer our webpage: http://www.eve.phys.s.u-tokyo.ac.jp/indexe.htm

References

1. A. Soeda and M. Murao, Delocalization power of global unitary operations on quantum information ,New J. Phys. 12, 093013 (2010)

2. A. Soeda and M. Murao, Comparing globalness of bipartite unitary operations acting on quantuminformation: delocalization power, entanglement cost, and entangling power, arXiv:1010.4599 (2010)

244

Page 246: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

21. UEDA GROUP

3. A. Soeda, P. S. Turner and M. Murao, Entanglement cost of implementing controlled-unitary opera-tions, arXiv:1008.1129 (2010)

4. A. Soeda, Y. Kinjo, P.S. Turner and M. Murao, Quantum Computation over the Butterfly Network,arXiv:1010.4350 2010

5. M. Aulbach, D. Markham and M. Murao, The maximally entangled symmetric state in terms of thegeometric measure, New J. Phys. 12, 073025 (2010)

6. J. Hide, A steady state entanglement witness, arXiv:1102.0220 (2010)

7. M. Mhalla, M. Murao, S. Perdrix, M. Someya and P. S. Turner, Which graph states are useful forquantum information processing?, arXiv: 1006.2616 (2010)

8. T. Sugiyama, P. S. Turner, and M. Murao, Error probability analysis in quantum tomography: A toolfor evaluating experiments, Phys. Rev A 83, 012105 (2011)

9. P. S. Turner, T. Sugiyama, T. Rudolph, Testing for multiparticle indistinguishability, Proceedings ofthe 10th International Conference on Quantum Communication, Measurement & Computing, (2010)

21 Ueda Group

Research Subjects: Bose-Einstein condensation, Fermionic superfluidity, cold molecules,

mesurement theory, quantum information, quantum control

Member: Masahito Ueda and Yuki Kawaguchi

21.1 Quantum States of Ultracold Atoms

Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein con-

densates in the presence of the quadratic Zeeman effect

We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence ofa quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy,pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECsthat can be realized experimentally.We also examine the stability of each phase against quantum fluctuationsand the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetrygenerators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that inthe spin-2 nematic phase there are special Bogoliubov modes that have gapless linear dispersion relationsbut do not belong to the NG modes.

Quasi-Nambu-Goldstone Modes in Bose-Einstein Condensates

We show that quasi-Nambu-Goldstone (NG) modes, which play prominent roles in high energy physicsbut have been elusive experimentally, can be realized with atomic Bose-Einstein condensates. The quasi-NG modes emerge when the symmetry of a ground state is larger than that of the Hamiltonian. Whenthey appear, the conventional vacuum manifold should be enlarged. Consequently, topological defects thatare stable within the conventional vacuum manifold become unstable and decay by emitting the quasi-NGmodes. Contrary to conventional wisdom, however, we show that the topological defects are stabilized byquantum fluctuations that make the quasi-NG modes massive, thereby suppressing their emission.

245

Page 247: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

21. UEDA GROUP

Spontaneous magnetic ordering in a ferromagnetic spinor dipolar Bose-Einstein condensate

We study the spin dynamics of a spin-1 ferromagnetic Bose-Einstein condensate with magnetic dipole-dipole interaction (MDDI) based on the Gross-Pitaevskii and Bogoliubov theories. We find that variousmagnetic structures such as checkerboards and stripes emerge in the course of the dynamics due to thecombined effects of spin-exchange interaction, MDDI, quadratic Zeeman and finite-size effects, and nonsta-tionary initial conditions. However, the short-range magnetic order observed by the Berkeley group [Phys.Rev. Lett. 100, 170403 (2008)] is not fully reproduced in our calculations; the periodicity of the orderdiffers by a factor of 3 and the checkerboard pattern eventually dissolves in the course of time.

Hydrodynamic equation of a spinor dipolar Bose-Einstein condensate

We introduce equations of motion for spin dynamics in a ferromagnetic Bose-Einstein condensate withmagnetic dipole-dipole interaction, written using a vector expressing the superfluid velocity and a complexscalar describing the magnetization. This simple hydrodynamical description extracts the dynamics of spinwave and affords a straightforward approach by which to investigate the spin dynamics of the condensate. Todemonstrate the advantages of the description, we illustrate dynamical instability and magnetic fluctuationpreference, which are expressed in analytical forms.

Nonuniversal Efimov Atom-Dimer Resonances in a Three-Component Mixture of 6Li

The Efimov states are universal trimer states in a three-body system with resonant two-body interactions.We measured the magnetic-field dependence of the atom-dimer loss a three-component mixture of 6Li atoms,and observed two enhanced atom-dimer loss at 602 G and 685 G. These loss peaks correspond to thedegeneracy points of the energy levels of dimers and the Efimov stetaes, and the number of peaks indicatesthe existence of the ground and first excited Efimov trimers. We also found that the locations of thesepeaks disagree with universal theory predictions, in a way that cannot be explained by non-universal 2-body properties. We constructed theoretical models that characterize the non-universal three-body physicsof three-component 6Li atoms with a monotonic-energy-dependent three-body parameter. This result waspublished in Physical Review Letters in 2010.

21.2 Quantum Information, Quantum Measurement, and Information ther-

modynamics

Experimental realization of the Szilard engine [Nature Physics 6, 988-992 (2010)]

In 1929, Leo Szilard proposed a model of ”Maxwell’s demon,” which converts the obtained informationto the free energy (or the work) by feedback control. We have demonstrated the experimental realization ofthe Szilard engine for the first time. We performed a real-time feedback control on a single colloidal particleof the submicron scale at the room temperature. As a result, we succeeded to increase the particle freeenergy by the feedback control, and observed that the free-energy increase was larger than the input work.We have also experimentally verified the generalized Jarzynski equality, which was theoretically proposedby us. This work was the collaboration with the Muneyuki group (Chuo Univ.) and the Sano group (Univ.Tokyo), was published in Nature Physics, and was highlighted by News and Views.

Theoretical analysis of the quantum Szilard engine [Phys. Rev. Lett. 106, 070401 (2011)]

We theoretically studied the quantum version of the Szilard engine with multi particles. As a result, wederived the general formula that gives the work that can be extracted from the engine. In particular, wefound the quantum effect for the case of the single quantum particle, in which we need a positive amountof work to insert a barrier to the engine. We also found that the identical-particle effect is observed forthe multi particle case. For example, the amount of work that can be extracted from the Bosonic engineis larger than the work from the Fermionic engine. The quantum work was shown to converge to the

246

Page 248: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

22. MAKISHIMA GROUP & NAKAZAWA GROUP

classical work with distinguishable particles. This work was published in Physical Review Letters, selectedfor Editor’s suggestion, and featured by Physics Viewpoint.

22 Makishima Group & Nakazawa Group

Research Subjects: High Energy Astrophysics with Energetic Photons using Scientific

Satellites, Development of Cosmic X-Ray/γ-Ray Instruments

Member: Kazuo Makishima, Kazuhiro Nakazawa

Using space-borne instruments such as Suzaku and MAXI, we study cosmic high-energy phenomena inthe X-ray and γ-ray frequencies. We have been deeply involved in the development of the Hard X-rayDetector (HXD) onboard Suzaku, and are developing new instruments for future satellite missions.

Mass Accreting Black Holes: Mass accretion onto black holes provides a very efficient way of X-rayproduction. Confirmed black holes have masses in the range from several to several billion solar masses.Utilizing wide-band Suzaku spectra, we have shown that the matter accreting onto stellar-mass black holesand active galactic nuclei [3] both forms inhomogeneous hot “corona” that Comptonizes soft photons intohard X-rays. Evidence for rapid black-hole rotation, claimed by some foreign researchers, is consideredrather inconclusive or doubtful [5].

Neutron Stars with Various Magnetic Fields: Using Suzaku, we are studying neutron stars with avariety of magnetic field strengths, B. The least magnetized ones with B < 109 G, known as X-ray burstsources, behave rather similarly to stellar-mass black holes. Ordinary binary X-ray pulsars have B ∼ 1012

G, as estimated via the detection of electron cyclotron absorption lines. Some “fast transient” objects mayhave B ∼ 1013 G. Finally, we have revealed that about 10 “magnetars”, supposed to have B = 1014−15

G, emit unusual hard X-ray components, extending to ∼ 100 keV with very flat spectra [2]. We speculatethat the magnetism of neutron stars is a manifestation of ferromagnetism in nuclear matter.

Plasma Heating and Particle Acceleration: The universe is full of processes of plasma heating andparticle acceleration. In fact, the most dominant known component of cosmic baryons exists in the formof X-ray emitting hot (∼ 108 K) plasmas associated with clusters of galaxies. There, large-scale magneticstructures, and their interactions with moving galaxies, are considered to be of essential importance [4].

White Dwarfs and the Galactic Ridge Emission: From the 1980’, an apparently extended X-rayemission, called Galactic Ridge X-ray Emission, was known to distribute along our Galactic plane. UsingSuzaku, we have shown that this phenomenon can be considered, at least in energies above ∼ 10 keV, asan assembly of X-ray emission from numerous mass-accreting magnetic white dwarfs. This is supportedby a close resemblance between the Galactic Ridge X-ray Emission spectra and those of nearby individualwhite dwarf binaries [1].

Future Instrumentation: In collaboration with many domestic and foreign groups, we are develop-ing a successor to Suzaku, ASTRO-H. Scheduled for launch in 2014, it will conduct hard X-ray imagingobservations, high-resolution X-ray spectroscopy, and low-energy gamma-ray observations. We contributeto the development of two onboard instruments, the Hard X-ray Imager and the Soft Gamma-ray De-tectors. Our effort includes the development of “SpaceWire” technology, large BGO scintillators, andmechanical/thermal designs of the instruments.

1. Yuasa, T., Nakazawa, K., Makishima, K., Saitou, K., Ishida, M., Ebisawa, K., Mori, H. & Yamada, S.:“White Dwarf Masses in Intermediate Polars Observed with the Suzaku Satellite”, Astron. Astrophys.520, A25 (2010)

2. Enoto, T., Nakazawa, K., Makishima, K., Rea, N., Hurley, K. & Shibata, S.: “Broadband Study withSuzaku of the Magnetar Class”, The Astrophysical Journal Letters, 722, Issue 2, L162–167 (2010)

3. Noda, H., Makishima, K., Uehara, Y., Yamada, S., Nakazawa, K.: “Suzaku Discovery of a HardComponent Varying Independently of the Power-Law Emission in MCG6-30-15 Publ. Astr. Soc.Japan 63, in press (2011)

4. Takahashi, I., Kawaharada, M., Makishima, K., Matsushita, K., Fukazawa, Y., Ikebe, Y., Kitaguchi,T., Kokubun, M., Nakazawa, K., Okuyama, S., Ota, N. & Tamura, T. “X-ray Diagnostics of ThermalConditions of the Hot Plasmas in the Centaurus Cluster”, Astrophys. J. 701, 377–395 (2009)

247

Page 249: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

23. TAKASE GROUP

5. Yamada, S., Makishima, K., Uehara, Y., Nakazawa, K., Takahashi, H., Dotani, T., Ueda, Y., Ebisawa,K., Kubota, A. & Gandhi, P.: “Is the Black Hole in GX 339-4 Really Spinning Rapidly?”, Astrophys.J. Let. 707, L109–L103 (2009)

23 Takase Group

Research Subjects: High Temperature Plasma Physics Experiments, Spherical Tokamak,

Wave Heating and Current Drive, Nonlinear Physics, Collective Phenomena,

Fluctuations and Transport, Advanced Plasma Diagnostics Development

Member: Yuichi Takase, Akira Ejiri, Yoshihiko Nagashima

Thermonuclear fusion, the process that powers the sun and stars, is a promising candidate for generatingabundant, safe, and clean power. In order to produce sufficient fusion reactions, isotopes of hydrogen, inthe form of hot and dense plasma, must be confined for a long enough time. A magnetic configurationcalled the tokamak has reached the level where the International Thermonuclear Experimental Reactor(ITER) is being constructed to study the behavior of burning plasmas. However, improvement of thecost-effectiveness of the fusion reactor is still necessary. The spherical tokamak (ST) offers a promisingapproach to increasing the efficiency by raising the plasma beta (the ratio of plasma pressure to magneticpressure). High beta plasma research using ST is a rapidly developing field worldwide, and is being carriedout in our group using the TST-2 spherical tokamak. TST-2 is now located in a new experimental buildingin Kashiwa Campus. Our group is tackling the problem of creating and sustaining ST plasmas using radiofrequency (RF) waves.

In TST-2 RF power is used to form the initial ST plasma and to ramp up the plasma current Ip. Previousexperiments have demonstrated plasma start-up using RF powers at 2.45GHz (ECH) and/or 21MHz. RFwaves at 200MHz were excited with either symmetric or asymmetric wavenumber spectrum (standing waveor travelling wave). With 200MHz RF power, the lower limit of magnetic field strength for plasma start-upcould be extended downward by roughly a factor of three compared to ECH. Ip ramp-up to 12 kA wasachieved with the travelling wavenumber spectrum in combination with a slowly increasing vertical field,compared to typical levels of 1–2 kA achievable with the symmetric spectrum. When the wave-driven currentis in the same direction as Ip, a stable ST configuration is obtained, but when the wave-driven current is inthe opposite direction a large Ip modulation (transition between two states) was observed. The asymmetricbehavior observed with travelling waves launched in opposite directions indicates that the contribution ofwave-driven current is significant. A build-up of energetic electrons as Ip is ramped up, observed by hardX-ray spectroscopy, also indicates the importance of the wave-driven current. The plasma configurationwas reconstructed based on magnetic measurements. Two representative equilibria were obtained, onewith centrally peaked current density profile, and the other with a peak near the outboard boundary. WithECH, both types are observed depending on the gas pressure. Only the outboard peaked current densityprofile was obtained by RF with symmetric spectrum, whereas centrally peaked current density profile wasalso obtained by RF with travelling spectrum. These profiles are probably manifestations of the differentRF power deposition profiles. RF power (200MHz) was also excited in inductively formed plasmas withIp � 100 kA. No conclusive evidence of current drive or heating has been observed with up to 130 kW of RFpower. This is most likely due to the low magnetic field (0.1T) used in this experiment. For the toroidalmode number (18) of the excited wave and the plasma density (1018 m−3) measured near the antenna,higher magnetic fields (0.3T) are needed for the excited wave to reach the plasma core, based on numericalmodelling of RF waves. Experiments at higher magnetic fields with improved antennas which can excite amore desirable wave polarization are planned in 2011.

Plasma transport is governed by microscopic turbulence. In order to measure the electron temperaturefluctuation using electrostatic probes, the fast voltage sweeping technique was developed. The validity ofthe current-voltage characteristic curve was confirmed. The fitting errors in the evaluation of the electrontemperature itself are less than 10% of fluctuation levels in the electron temperature. In order to improvethe signal-to-noise ratio in low density plasmas, and to measure the electron pressure anisotropy andthe electron current density, a multi-pass Thomson scattering system is being developed. As a proof-of-principle, a double-pass Thomson scattering system is being tested. The electron pressure parallel to themagnetic field (pe‖), electron pressure perpendicular to the magnetic field (pe⊥), and electron current density

248

Page 250: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

24. TSUBONO GROUP

(je) at magnetic axis can be measured. This system should be able to measure temperature anisotropies ofover 15% (Te‖/Te⊥ > 15%) in high density (ne > 3× 1018 m−3) plasmas. A high time resolution electrontemperature and density measurement using helium line intensity ratios based on the collisional-radiativemodel is being developted. The intensity ratio can be calculated using Collisional-Radiative model. A24-channel system (8 spatial channels at three wavelengths) is in use. Initial results indicate that bothelectron temperature and density have profiles peaked on the outboard side.

24 Tsubono Group

Research Subjects: Experimental Relativity, Gravitational Wave, Laser Interferometer

Member: Kimio TSUBONO and Yoich ASO

The detection of gravitational waves is expected to open a new window into the universe and brings us anew type of information about catastrophic events such as supernovae or coalescing binary neutron stars;these information can not be obtained by other means such as optics, radio-waves or X-ray. Worldwideefforts are being continued in order to construct detectors with sufficient sensitivity to catch possiblegravitational waves.

In 2010, a new science project, LCGT (Large-scale Cryogenic Gravitational wave Telescope)was approvedand funded by the Leading-edge Research Infrastructure Program of the Japanese government. This un-derground telescope is expected to catch gravitational waves from the coalescence of neutron-star binariesat the distance of 200Mpc.

A space laser interferometer, DECIGO, was proposed through the study of the gravitational wave sourceswith cosmological origin. DECIGO could detect primordial gravitational waves from the early Universe atthe inflation era.

We summarize the subjects being studied in our group.

• Ground based laser interferometric gravitational wave detectors

– LCGT has started !

– Design of LCGT interferometer

• Space laser interferometer

– Space laser interferometer, DECIGO, DECIGO pathfinder, DPF

– FP cavity for DPF

– DPF gradiometer in space

– Study of the effect of the residual gas

– SWIMμν

• Development of a gravitational wave detector using magnetic levitation

– Data analysis for the background gravitational waves

– Generation of the mimic data for gravitational wave analysis

• High sensitive laser interferometer using non-classical light

– Generation of the squeezed light

• Development of the ultra stable laser source

– Laser stabilization using a cryogenic cavity

– Study of the cavity support

– Study of the cryostat design

• Gravitational force at small distances

249

Page 251: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

25. SANO HARADA GROUP

– Measurement using torsion-type resonant antenna

– Measurement by the spectroscopy of the molecule

references

[1] Masaki Ando, Koji Ishidoshiro, Kazuhiro Yamamoto, Kent Yagi, Wataru Kokuyama, Kimio Tsubono, andAkiteru Takamori: Torsion-Bar Antenna for Low-Frequency Gravitational-Wave Observations, Phys. Rev.Lett. 105 (2010) 161101.

[2] Seiji Kawamura, Masaki Ando, Naoki Seto, Shuichi Sato, Takashi Nakamura, Kimio Tsubono et al., and theDECIGO working group: The Japanese space gravitational wave antenna: DECIGO, Class. Quantum Grav.28 (2011) 094011.

25 Sano Harada Group

Research Subjects: Physics of out-of-equilibrium systems and living matter

Members: Masaki Sano and Takahiro Harada

Main research topics of our group are nonlinear dynamics, pattern formation in dissipative systems,nonequilibrium statistical mechanics, and biophysics. By closely studying oscillations, chaos, and turbu-lent behavior and fluctuations in fluidic, solidic, and granular materials as well as chemical reactions andbiological systems, we wish to discover a diverse of novel phenomena and distils simple and universal lawsunderlying such phenomena. Our research are grounded on dynamical systems theory, statistical mechan-ics, soft matter physics, and laboratory experiments. The following are the representative research subjectsin our laboratory.

1. Study of turbulence

(1) Search for the ultimate scaling regime in developed thermal turbulence

(2) Study of statistical properties and coherent structures in turbulence

(3) Turbulence - turbulence transition in electro hydrodynamic convection of liquid crystals

2. Nonlinear Dynamics and Chaos

(1) Pattern forming phenomena and their universalities in dissipative systems including granular materials

(2) Spatio-temporal dynamics in spatially extended dissipative systems

3. Nonequilibrium statistical mechanics and softmatter physics

(1) Fundamental studies on the nature of fluctuations and responses of system far from equilibrium

(2) Developing a general theory of measurements on small complex systems

(3) Manipulation of soft materials via novel optical trap techniques

(4) Softmatter physics on polymers, thermophoretic flows and other related topics

3. Dynamical aspects of biological systems

(1) Single molecule level measurement of DNA collapsing, DNA-protein interaction, and gene expression

(2) Study of slow dynamics in cellular functions

(3) Mechanical aspects of cell migration

(4) Pattern formation of bacteria

250

Page 252: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

26. YAMAMOTO GROUP

References

1. Kazumasa A. Takeuchi and Masaki Sano: Universal Fluctuations of Growing Interfaces: Evidence in TurbulentLiquid Crystals, Physical Review Letters, 104, 230601 (2010).

2. Toru Hiraiwa, Miki Y. Matsuo, Takahiro Ohkuma, Takao Ohta, and Masaki Sano: Dynamics of a deformableself-propelled domain, Europhys. Lett. 91, 20001 (2010).

3. Shoichi Toyabe, Takahiro Sagawa, Masahito Ueda, Eiro Muneyuki, and Masaki Sano: Experimental demon-stration of information-to-energy conversion and validation of the generalized Jarzynski equality, NaturePhysics, 6, 988 (2010).

4. Hong-Ren Jiang, Natsuhiko Yoshinaga, Masaki Sano: Active Motion of Janus Particle by Self-thermophoresisin Defocused Laser Beam, Phys. Rev. Lett. 105, 268302 (2010). (selected for an Editor’s Suggestion andhighlighted with a Viewpoint in Physics of APS.)

5. Helene Delanoe-Ayari, Jean-Paul Rieu, and Masaki Sano: 4D Traction Force Microscopy Reveals AsymmetricCortical Forces in Migrating Dictyostelium Cells, Phys. Rev. Lett., 105, 248103 (2010).

6. Takahiro Harada, Hisa-Aki Tanaka, Michael J. Hankins, and Istvan Z. Kiss: Optimal Waveform for theEntrainment of a Weakly Forced Oscillator, Phys. Rev. Lett. 105, 088301 (2010).

7. Makito Miyazaki and Takahiro Harada: Bayesian estimation of the internal structure of proteins from single-molecule measurements, J. Chem. Phys., 134, 085108 (2011).

8. Makito Miyazaki and Takahiro Harada: Go-and-Back method: Effective estimation of the hidden motion ofproteins from single-molecule time series, J. Chem. Phys., 134, 135104 (2011).

9. Kyogo Kawaguchi and Masaki Sano: Efficiency of Free Energy Transduction in Autonomous Systems, arXiv:1103.1961.

10. Marguerite Bienia and Masaki Sano: Non-destructive ultrasonic velocimetry for central region velocityfields in turbulent Rayleigh-Benard convection of mercury, Flow Measurement and Instrumentation, DOI10.1016/j.flowmeasinst.2011.03.009, online publication, Mar-24 (2011).

26 Yamamoto Group

Research Subjects: Submillimeter-wave and Terahertz Astronomy, Star and Planet For-

mation, Chemical Evolution of Interstellar Molecular Clouds, Development of

Terahertz Detectors

Member: Satoshi Yamamoto and Nami Sakai

Molecular clouds are birthplaces of new stars and planetary systems, which are being studied extensively

as an important target of astronomy and astrophysics. Although the main constituent of molecular clouds

is a hydrogen molecule, various atoms and molecules also exist as minor components. The chemical compo-

sition of these minor species reflects formation and evolution of molecular clouds as well as star formation

processes. It therefore tells us how each star has been formed. We are studying star formation processes

from such a astrochemical viewpoint.

Since the temperature of a molecular cloud is as low as 10 K, an only way to explore its physical structure

and chemical composition is to observe the radio wave emitted from atoms, molecules, and dust particles.

In particular, there exist a number of atomic and molecular lines in the millimeter to terahertz region, and

we are observing them with various large radio telescopes in the world.

We are conducting a line survey of low-mass star forming regions with Nobeyama 45 m telescope and

ASTE 10 m telescope, aiming at detailed understanding of chemical evolution from protostellar disks to

protoplanetary disks. In the course of this effort, we have recently established a new chemistry occurring

in the vicinity of a newly born star, which is called Warm Carbon Chain Chemistry (WCCC). In WCCC,

251

Page 253: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

27. SAKAI (HIROFUMI) GROUP

carbon-chain molecules are produced by gas phase reactions of CH4 which is evaporated from ice mantles.

This has recently been confirmed by our detection of CH3D in one of the WCCC sources, L1527. Existence

of WCCC clearly indicates a chemical diversity of low-mass star forming regions, which would probably

reflect a variety of star formation. We are now studying how such chemical diversity is brought into the

protoplanetary disks.

In parallel to such observational studies, we are developing a hot electron bolometer mixer (HEB mixer)

for the future terahertz astronomy. We are fabricating the phonon cooled HEB mixer using NbTiN and NbN

in our laboratory. Our NbTiN mixer shows the noise temperature of 570 K at 1.5 THz, which is the best

performance at this frequency in spite of the use of the wave-guide mount. Furthermore, we successfully

realized the waveguide-type NbN HEB mixer by using the NbN/AlN film deposited on the quartz wafer.

The 0.8/1.5 THz dual-band HEB mixer receiver is now being assembled, which will be installed on the

ASTE 10 m telescope for astronomical observations in 2011.

[1] Sakai, N., Sakai, T., Hirota, T., and Yamamoto, S., Abundant Carbon-Chain Molecules toward the

Low-Mass Protostar IRAS04368+2557 in L1527?h, ApJ, 672, 371 (2008).

[2] Sakai, N., Sakai, T., Hirota, T., and Yamamoto, S., Deuterated Molecules in Warm Carbon Chain

Chemistry: The L1527 Case?h, ApJ, 702, 1025 (2009).

[3] Shiino, T., Shiba, S., Sakai, N., Yamakura, T., Jiang, L., Uzawa, Y., Maezawa, H., and Yamamoto, S.,

Improvement of the Critical Temperature of Superconducting NbTiN and NbN Thin Films Using the AlN

Buffer Layer?h, Supercond. Sci. Technol. 23, 045004 (2010).

27 Sakai (Hirofumi) Group

Research Subjects: Experimental studies of atomic, molecular, and optical physics

Member: Hirofumi Sakai and Shinichirou Minemoto

Our research interests are as follows: (1) Manipulation of neutral molecules based on the interaction

between a strong nonresonant laser field and induced dipole moments of the molecules. (2) High-intensity

laser physics typified by high-order nonlinear processes (ex. multiphoton ionization and high-order harmonic

generation). (3) Ultrafast phenomena in atoms and molecules in the attosecond time scale. (4) Controlling

quantum processes in atoms and molecules using shaped ultrafast laser fields. A part of our recent research

activities is as follows:

(1) All-optical molecular orientation [1]

We report clear evidence of all-optical orientation of carbonyl sulfide molecules with an intense nonreso-

nant two-color laser field in the adiabatic regime. The technique relies on the combined effects of anisotropic

hyperpolarizability interaction and anisotropic polarizability interaction and does not rely on the perma-

nent dipole interaction with an electrostatic field. It is demonstrated that the molecular orientation can be

controlled simply by changing the relative phase between the two wavelength fields. The present technique

brings researchers a new steering tool of gaseous molecules and will be quite useful in various fields such

as electronic stereodynamics in molecules and ultrafast molecular imaging.

(2) Dependence of the generation efficiency of high-order sum and difference frequencies in

the extreme ultraviolet region on the wavelength of an added tunable laser field [2]

252

Page 254: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

28. GONOKAMI GROUP

We investigate the dependence of the generation efficiency of sum and difference frequencies in the

extreme ultraviolet (xuv) region on the wavelength of an added tunable laser field. The wavelength of the

added field ranges from 600 nm to 1500 nm. The generation efficiency of sum and difference frequencies is

dramatically enhanced when the wavelength of the added field is longer than that of the fundamental field

for pure harmonics. The discussions are held to the added field with perturbative intensity first, and they

are further extended to that with nonpertubative intensity.

(3) Effect of nuclear motion observed in high-order harmonic generation from D2/H2 molecules

with intense multi-cycle 1300 nm and 800 nm pulses [3]

We investigate high-order harmonic generation from D2/H2 molecules with intense multi-cycle pulses

centred both at 1300 nm (60 fs) and at 800 nm (50 fs) together with that from N2/Ar as a reference. The

experimental observations with 1300 nm pulses are different from those with 800 nm pulses both in spectral

shapes and in intensity ratios ID2/IH2 . The effect of nuclear motion in D2 and H2 is more distinctive for

1300 nm pulses than for 800 nm pulses. With multi-cycle pulses of 50–60 fs, the intensity ratios ID2/IH2

are found to be higher for both 800 nm and 1300 nm pulses than those with few-cycle pulses of 8 fs, which

is attributed partly to the contribution of the coupling between the 1sσg and 2pσu states in D+2 and H+

2

molecular ions during the higher order returns of the electron wave packets.

[1] Keita Oda, Masafumi Hita, Shinichirou Minemoto, and Hirofumi Sakai, Phys. Rev. Lett. 104,

213901 (2010).

[2] Yuichiro Oguchi, Shinichirou Minemoto, and Hirofumi Sakai, J. Phys. Soc. Jpn. 80, 014301 (2011).

[3] Hiroki Mizutani, Shinichirou Minemoto, Yuichiro Oguchi, and Hirofumi Sakai, J. Phys. B: At. Mol.

Opt. Phys. 44, 081002 (2011).

28 Gonokami Group

Research Subjects: Experimental studies on many-body quantum physics by light-matter

interaction, Optical phenomena in artificial nanostructures, Development of

laser based coherent light source

Member:Makoto Gonokami, Kosuke Yoshioka

Our new research activities have started within the Department of Physics. We are trying to explore

new aspects of many-body quantum systems and their exotic quantum optical effects through designed

light-matter interactions. Our current target consists of a wide variety of matter, including excitons and

electron-hole ensemble in semiconductors, antiferromagnetic magnons and ultracold atomic gases. In par-

ticular, we have been investigating the Bose-Einstein condensation phase of excitons, which is considered

the ground state of electron-hole ensemble but as yet not proven experimentally. Based on quantitative

spectroscopic measurements, the temperature and density are determined for an exciton gas in a quasi-

equilibrium condition trapped inside a high purity crystal kept below 1 K.We also investigate novel optical

and terahertz-wave responses for some artificial nanostructures obtained by advanced micro-fabrication

technologies. As the Director of the Photon Science Center, within the Graduate School of Engineering, a

project was started to develop new coherent light sources; covering a broad frequency range from terahertz

253

Page 255: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

29. NOSE GROUP

to soft X-rays. This year, in collaboration with RIKEN, the Foundation for Coherent Photon Science

Research was established. This is one of the Advanced Research Foundation initiatives from the Ministry

of Education, Culture, Sports, Science and Technology. Within this initiative, we are developing intense

and stable coherent light sources at a high repetition rate (That facility is named ”Photon Ring”).

This year the following activities included:

1. The quest for macroscopic quantum phenomena in photo-excited systems:

(a) Achievement of Bose-Einstein condensation phase of excitons in semiconductors[1][5]

(b) Low-temperature, many-body phenomena in electron-hole systems in diamond

(c) Study strongly-correlated many-body systems using ultra-cold atomic gases

2. The quest for non-trivial optical responses and development of applications:

(a) Control of circularly polarized spontaneous emission with artificial chiral periodic nanostructures

[4]

(b) Magnetic THz radiation from NiO anitiferromagnetic resonance [3]

(c) THz radiation from graphite thin films [2]

3. Development of novel coherent light sources and spectroscopic methods

(a) Mode-locked fiber lasers

(b) Accumulation of femtosecond laser pulses in passive cavities

(c) Higher-order photon correlation measurements using a photon-counting streak camera

(d) Established the Foundation for Coherent Photon Science Research

References

[1] K. Yoshioka, T. Ideguchi, Andre Mysyrowicz, and M. Kuwata-Gonokami: Quantum inelastic collisions betweenparaexcitons in Cu2O, Phys. Rev. B 82, 041201 (2010).

[2] Reported in Nature Photonics 4, 673 (2010).

[3] T. Higuchi, N. Kanda, H. Tamaru, M. Kuwata-Gonokami: Selection rules for light-induced magnetization of acrystal with threefold symmetry: The case of antiferromagnetic NiO, Phys. Rev. Lett. 106, 047401 (2011).

[4] K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami: Circularly PolarizedLight Emission from Semiconductor Planar Chiral Nanostructures, Phys. Rev. Lett. 106, 057402 (2011).

[5] K. Yoshioka, E. Chae, and M. Kuwata-Gonokami: Transition to a Bose-Einstein condensate and relaxationexplosion of excitons at sub-Kelvin temperatures, Nature Communications to be published.

29 Nose Group

Research Subjects:Molecular Mechanism of Neural Network Formation

Member:Akinao Nose, Hiroshi Kohsaka and Etsuko Takasu

254

Page 256: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

29. NOSE GROUP

What is the physical basis of formation of the brain? The aim of our laboratory is to elucidate the

molecular mechanism of neural development and function by using, as a model, the simple nervous system

of the fruitfly, Drosophila. We focus on the synapses between motor neurons and their target muscles, and

study the molecular mechanisms of how specific synaptic partners recognize each other and form synaptic

connections. The following research plans are in progress.

1. Molecular mechanism of the neuromuscular target recognition

The proper functioning of the nervous system depends on precise interconnections of distinct types of

neurons. Therefore, understanding how neurons specifically find and recognize their target cells is a central

question in neuroscience. We have identified specific recognition molecules that are expressed in specific

target cells and determine synaptic specificity.

1.1. Neural wiring by a negative signal: identification of a repulsive target cue that determines

synaptic specificity.

The final matching of pre- and postsynaptic cells is thought to be mediated by specific molecular cues

expressed on the target cells. While previous studies demonstrated essential roles of several target-derived

attractive cues, less is known about the role of repulsion by non-target cells. In collaboration with Prof.

Hiroyuki Aburatani (Research Center of Advanced Science and Technology, University of Tokyo), we con-

ducted single-cell microarray analysis of two neighboring muscles (called M12 and M13) in Drosophila,

which are innervated by distinct motor neurons, by directly isolating them from dissected embryos. We

identified a number of potential target cues that are differentially expressed between the two muscles,

including M13-enriched Wnt4, a secreted protein of the Wnt family. When the function of Wnt4 was

inhibited, motor neurons that normally connect with M12 formed smaller synapses on M12 but instead,

inappropriately connected with M13. Conversely, forced expression of Wnt4 in M12 inhibited synapse for-

mation by these motor neurons. These results suggest that Wnt4 generates target specificity by preventing

synapse formation on a non-target muscle.

2. Live-imaging of synapse formation in vivo

Synapses are specialized junctions through which neurons signal to each other and to other target cells

such as muscles and are crucial to the functioning of the nervous system. However, the mechanism of how

the synapses form during development remains poorly understood. We applied live imaging of fluorescent

fusion proteins expressed in the target cells to visualize the process of synapse formation in developing

embryos.

2.1 Bidirectional recognition for neuronal matchmaking

The mechanism of how specific neural connections are formed in living animals is one of the significant

topics in neuroscience. A traditional view is one-sided: motile growth cones of the presynaptic neurons

actively search for the target cell, whereas the target cells wait still to be selected by adequate partner

255

Page 257: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

30. HIGUCHI GROUP

neurons. We found that not only presynaptic neurons but also postsynaptic target cells actively search for

their partners during the formation of neural network. Such bidirectional recognition might be critical for

the development of precise neural connections not only in Drosophila but also in other animals including

humans.

30 Higuchi Group

Research Subjects: Motor proteins in in vitro, cells and mice

Member: Hideo Higuchi and Motoshi Kaya

We succeeded in measuring stiffness and step size of single-few myosin molecules at in vitro system and

imaging the dynamics of GFP-EB1 molecules in mice, that is, in vivo. The detail are as following. Skeletal

muscles are necessary not only for body segment movements, but also for our daily communications, such as

speaking, writing and facial expressions. Skeletal myosins are an essential protein that interacts with actin

filaments and generates forces by stretching the elastic portion of myosin heads during muscle contractions.

It has been well known that the mechanical efficiency of muscle contraction can be up to 50 %, which is

much higher than that of 15 % in automobile or of 1 % in micro-machines. Theoretically, the contribution

of friction to the energy loss is more pronounced as the body size decreases. Thus, our question is why

a nano-scale protein, skeletal myosin, can achieve such a high mechanical efficiency? In order to address

this question, we measured the elasticity of single myosin molecules and the displacements generated by

myosins by the combination of optical trapping and fluorescence imaging techniques with a few nanometer

and pico-newton accuracy. We found that myosins become extremely stiff when they are stretched during

the force generation period, while they becomes much more complaint when they are compressed after the

force generation. In the presence of ATP, myosins generate the sliding movement of actin filament by 8

nm. The biphasic elastic response implies that single skeletal myosins are optimally designed to generate

the contractile force efficiently by enhancing the ability of the force generation before the force generation

while minimizing the resistance force after the force generation. Microtubles (MTs) are highly dynamic

and polar structures that are involved in many important cellular processes including mitosis, migration,

adhesion, cargo trafficking, in addition to tumor metastasis. Endbinding protein 1 (EB1) is a MT plus-

end binding proteins that are specifically accumulated at the polymerizing end of MTs. In this study, we

imaged GFP-EB1 to observed the real-time MT dynamics in living cells and mice. Using a spinning disc

confocal microscopy the comet-like localizations of GFP-EB1 were observed in human breast cancer cell

line. We analyzed the velocity of GFP-EB1 comets, indicating MT growing speed with the nanometer scale,

by tracking the comet centers using an automated computer program. It was faster around centrosome

in the central region of the cell than submembrane region. We also imaged successfully GFP-EB1 in

three-dimensionally cultured cells in the extracellular matrix that mimics the three-dimensional structure

of living tissue. To determine MT dynamics in living mice, breast cancer cells expressed GFP-EB1 were

xenografted in nude mice. GFP-EB1 comets were observed under the confocal microscopy in vivo. These

techniques have potential to enable quantitative analysis of MT dynamics in living mice, for example, under

the presence of anticancer reagents.

[1] Hirota Y., A. Meunier, S.Huang, T. Shimozawa, O.Yamada, Y.S Kida, M. Inoue, T. Ito, H. Kato, M. Sakaguchi,T. Sunabori, M. Nakaya, S. Nonaka, T. Ogura, H. Higuchi, H. Okano, N.Spassky, and *K. Sawamoto. Planarpolarity of multiciliated ependymal cells involves the anterior mi-gration of basal bodies regulated by non-muscle myosin II. Development 137, 3037-3046 (2010)

256

Page 258: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

30. HIGUCHI GROUP

[2] Kaya M. and *H. Higuchi. Non-linear elasticity and an 8 nm working stroke of single myosin molecules inmyofilaments. Science 329, 686-689 (2010)

[3] Fujita H, H. Hatakeyama, TM. Watanabe, M. Sato, H. Higuchi and * M. Kanzaki. Identifica-tion of ThreeDistinct Functional Sites of Insulin-mediated GLUT4 Trafficking in Adipocytes Using Quantitative SingleMolecule Imaging. Mol. Biol. Cell 21, 2721-2731 (2010)

[4] Watanabe TM, H. Tokuo, K. Gonda, H. Higuchi and * M. Ikebe. Myosin-X induces filopodia by multipleelongation mechanism. J. Biol. Chem. 285, 19605-14 (2010)

257

Page 259: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å
Page 260: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

III

2010

Page 261: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å
Page 262: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1

1 2

1.1 I :

1.

1.1

1.2

1.3

1.4

1.5

2.

2.1

2.2

2.3

2.4

2.5

3.

3.1

3.2

3.3

3.4

4.

4.1

4.2

4.3 4

4.4

4.5

4.6

4.7

4.8

4.9

5.

5.1

5.2

5.3

5.4

5.5 Maxwell eq.

5.6

5.7 Maxwell

eq.

5.8 4

5.9 Maxwell eq.

5.10

1.2 I

1.

1.1

1.2

1.3 -

1.4

1.5

261

Page 263: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 2 1.

2.

2.1

2.2 -

2.3

2.4

3.

3.1

3.2

3.3

3.4

3.5

4.

4.1

4.2

4.3

5.

5.1

5.2

5.3

5.4

5.5

5.6

5.7 -

5.8

6.

6.1

6.2

6.3

6.4

6.5

6.6

7.

7.1

7.2

7.3

8.

8.1

8.2

8.3

9.

9.1

9.2

9.3

9.4

10.

10.1

11.2

1.3 :

1.

1.1 X

1.2 Moseley

1.3 Thomson Compton

1.4

1.5

2.

2.1

2.2

2.3 Aharonov-Bohm

2.4 STM

3.

3.1

3.2

3.3

4.

262

Page 264: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 2. 3

4.1

4.2

5.

5.1

5.2

5.3

5.4

5.5

6.

6.1

6.2

6.3

1.4 I

1.

1.1

1.2 Riemann

1.3

2.

2.1

2.2 Cauchy-Riemann

2.3

3. Cauchy

3.1 Cauchy

3.2

3.3 Cauchy Taylor

3.4 Laurent

3.5

4.

4.1 ( )

4.2

5.

5.1

5.2

5.3 Hankel

5.4 Stirling

5.5

6. Fourier Sturm-Liouville

6.1 Fourier Fourier

6.2

6.3 Fourier

6.4 Fourier

1.5 II

1. Fourier

2. 3.

2 3

2.1 II

1. Maxwell 1.1

263

Page 265: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2. 3 1.

1.2

2.

2.1

2.2

2.3 Laplace

2.4 Green

3.

3.1

3.2

3.3

4.

4.1

4.2

4.3

4.4

5.

5.1 Poynting

5.2

6.

6.1

6.2

6.3

6.4

6.5

6.6

2.2 II :

1.

1.1 3 ,

1.2

1.3

1.4

1.5 ,

1.6 , Rydberg

1.7

1.8

1.9

2.

2.1

2.2

2.3

2.4

3.

3.1 Clebsch-Gordan

3.2

3.3

3.4

3.5 , Wigner

4.

4.1 Rayleigh-Ritz

4.2 Rayleigh-Schroedinger

4.3 Brillouin-Wigner BS

4.4

4.5 Stark )

4.6 Stark 2s,2p )

4.7

4.8 WKB

4.9

2.3 I :

1.264

Page 266: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 3. 3

2.

3.

4.

5.

6.

7.

8.

9.

2.4 I :

1.

1.1

1.2

1.3

1.4

1.5

2.

2.1

2.2

2.2

3.

3.1

3.2

3.3

3.4

3.5

2.5 I

1.

1.1

1.2

2.

2.1

2.2

2.3

2.

3.1

3.2

3.3

3.4 PMT Photo Diode

4.

4.1

5.

5.2

3 3

3.1 III

1. 1.1

265

Page 267: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3. 3 1.

1.2

1.3

1.4

1.5

1.6

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

3.4

3.5

4.

4.1

4.2

4.3

4.4

4.5 O(3), SU(2), SO(3)

4.6 (SO(3)

5. :

5.1

5.2

6.

6.1

6.2

6.3

6.4 Maxwell

3.2 III :

1.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.

2.1

2.2

2.3

2.4

2.5

3.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.

4.1

4.2

3.3 III

1. 1.1

266

Page 268: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 3. 3

2.

2.1

2.2 Brewster

2.3 Evanescent

2.4

2.5

2.6

2.7

3.

3.1

3.2

3.3

4.

4.1 Lienard-Wiechert

4.2

4.3

4.

3.4

1.

2.

3.

4.

5.

6.

7.

8.

3.5 II :

1.

1.0

1.1 -

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.6 II :

1.

2.

3.

4.

5.

6.

267

Page 269: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4. 4 1.

3.7 I :

1.

2.

3.

4.

5.

6.

7.

8.

9.

4 4

4.1 I :

1. Relativistic Quantum Mechanics

1.1 Relativistic Quantum Theory

1.2 Dirac Equation

1.3 Lorentz Covariance

1.4 Solutions to the Dirac Equation

1.5 Hole Theory

2. Quantum Field Theory

2.1 Canonical Quantization of Fields

2.2 Real Spinless Fields

2.3 Meaning of Field Quantization

2.4 Dirac Fields

2.5 Electromagnetic Fields

4.2 I

1.

2. DIrac

3. DIrac

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

4.3

1. 4

1.1

1.2

1.3 GPS

2.

2.1 :

2.2 :

2.3 :

268

Page 270: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 4. 4

2.4

2.5

2.6 : Γμαβ Aμ

3.

3.1

3.2

3.3

3.4

3.5

3.6

4.

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.

5.1

5.2 -

5.3

5.4

5.5 -

5.6

6.

6.1

6.2

6.3

6.3

6.4

6.5

6.5

4.4 :

1.

2.

3.

4.

5.

6.

7.

8.

4.5 I :

1.

1.1

1.2

1.3

1.4

2.

2.1

2.2

3.

3.1

3.2

269

Page 271: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 4 1.

4.6 :

1.

1.1 Schrodinger

1.2

1.3

1.4 B

1.5 Bloch

1.6 Rabi

1.7

1.8

1.9 Rabi

1.10

1.11 Doppler

1.12

2.

2.1

2.2 Coulomb

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

3.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.

4.1

4.2

4.3

4.4

4.5

4.6

4.6.1 3 4

4.6.2

4.6.3

4.6.4

4.6.5

5 4

5.1 :

1. (

1.1

1.2

1.3

270

Page 272: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

1. 5. 4

1.4

1.5

2.

2.1

2.2

2.3

2.4

5.2 II :

1. QCD

2.

3.

4.

5.

6.

7. II

8. I

9. II

10. I

11. II

12.

5.3 :

1.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

5.4 II :

1.

1.1

1.2

1.3 Virasoro constraint

1.4

2.

2.1 Lightcone coordinate

2.2 Lightcone

2.3

2.4 gauge theory in light cone gauge

2.5 Virasoro algebra

2.6 Superstring

5.5

1. 2.

271

Page 273: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5. 4 1.

3.

4.

5.

5.6 II :

1.

1.1

1.2

1.3

2.

2.1

2.2

2.3

2.4

3.

3.1

3.2

4.

4.1

4.2

4.3

4.4

5.

5.1

5.2

5.3

5.4

5.7

1.

1.1

1.2

1.3

2.

2.1

2.2

2.3

272

Page 274: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2

1

1953 1958

1975

1989 1993

Maria Goeppert-

Mayer J. Hans D. Jensen

Francesco Iachello

2

2010 11 5

1957

1986

2009

3

100 22

273

Page 275: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.

1980

?

?

?

4 ( )

(i) (

)

(ii)

(iii)

1/100

5 14

14

1

274

Page 276: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.

6 15

( ) 15 22

7

30 , pp. 374-379 (2009 7 ). ( ) 20 22

8 5

La

9 5

QCD

1S0 BCS 70

10 1 1

1

10 Dr. Simone De Liberato (Ueda group): Prix Jeune Chercheur

Daniel Guinier

Simone De Liberato

Dr. Simone De Liberato theoretically studied the physics of intersubband transitions in two dimensional

electron gases in presence of an electromagnetic field resonant with the transition. The system is thus in the

so-called ultrastrong coupling regime and the intersubband polaritons are observable. Simone De Liberato

also studied the dynamical Casimir effect and he modeled quantum transport and electroluminescence in

such semiconductor structures. His work has both a fundamental and an applied aspect, in fact his results

can be applied in the field of quantum cascade lasers in the THz range.

275

Page 277: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.

11 ( ): ( )

2-color QCD

2-color QCD

QCD

12 ( ): 5 (2011 ) (

11) 22 ( )

(1)Maxwell

(2)

(3)

Jarzynski

Maxwell

(3) Jarzynski

13 22 ( )

“Suzaku Studies of White Dwarf Stars and the Galactic X-ray

Background Emission ( )”

2010 ( )

30

108−9 K

( )

14 ( ) Best Student Poster Award

University of Wisconsin-Milwaukee Gravitational-wave

Physics and Astronomy Workshop Best Student Poster Award

276

Page 278: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

2.

“ Search for a Stochastic Gravitational Wave Background with Torsion-bar Antennas”

15 ( ) 22 ( )

“High-order harmonic generation from aligned molecules with 800-nm and 1300-

nm femtosecond pulses ( 800 nm 1300 nm

)” 22 ( )

3

2

2

16 ( ) 22 ( )

BEC–BCS

2

3 4 3 4 T

BEC–BCS

17 ( ) 22 ( )

1111

-

277

Page 279: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

3

[ ]

2010 4 1

2010 4 1

2010 4 1

2010 6 1

2010 7 1

2010 7 1

2010 7 1

2010 7 16

2010 10 1

2010 10 1

2010 11 1

2011 2 1

2011 3 1

2011 3 2

[ ]

2010 4 30

2010 5 31

2010 6 30

2010 6 30

2010 7 1

2010 9 30

2010 10 31

2011 2 21

2011 3 16

2011 3 31

2011 3 31

2011 3 31

2011 3 31

2011 3 31

2011 4 1

2011 4 1

278

Page 280: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4

G-COE

( )

( )

279

Page 281: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

4.

280

Page 282: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

5

• 2010 7 16 15:00-16:30

• 2010 12 6 16:00-17:30

120 -

• 2011 3 11 ( ) 16:00 17:30

)

281

Page 283: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

6

• 2010 4 16 16:30-18:00

• 2010 5 21 16:30-18:00

• 2010 6 25 16:30-18:00

• 2010 7 2 16:30-18:00

• 2010 10 1 16:30-18:00

P. Sikivie

The Dark Matter Puzzle

• 2010 11 26 16:30-18:00

• 2010 12 3 16:00-17:30

282

Page 284: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

7

• 2010 4 23 12:15-12:30

LHC

• 2010 5 14 12:15-12:30

• 2010 5 14 12:15-12:30

4

• 2010 5 28 12:15-12:30

• 2010 6 11 12:15-12:30

• 2010 7 2 12:15-12:30

• 2010 7 16 12:15-12:30

• 2010 9 10 12:15-12:30

• 2010 10 1 12:15-12:30

• 2010 10 15 12:15-12:30

• 2010 10 29 12:15-12:30

• 2010 11 5 12:15-12:30

• 2010 11 19 12:15-12:30

ALMA - -

283

Page 285: R - phys.s.u-tokyo.ac.jp · Y > e @ ó ¯( ö ú Z) U O þ t b ú g 1 M q ^ wBestStudentPosterAward z C { Á ^ ( ª ¿ Z) z { þ ¢ Í > Z £ z b ° à ¢ { ÿ Z £ w3 Ê U R22 å

7.

• 2010 12 3 12:15-12:30

• 2010 12 10 12:15-12:30

• 2011 1 7 12:15-12:30

Antihydrogen

• 2011 1 28 12:15-12:30

Shooting neutrinos across Japan

• 2011 2 4 12:15-12:30

• 2011 2 25 12:15-12:30

• 2011 3 11 12:15-12:30

• 2011 3 18 12:15-12:30

284