R ODM pV GASOLINE COMPONENTS 6 ] pQ WHFK Q ROy ...kkft.bme.hu/attachments/article/109/HP_6...

55
HYDROCARBON PROCESSING GASOLINE COMPONENTS English version based on the presentation of Prof. Dr. Jenő Hancsók, D.Sc. held on 15.10.2014 [email protected] Pannon University MOL Crude Oil and Coal Technology Department MOL Ásványolaj- és Széntechnológiai Intézeti Tanszék Vegyészmérnöki- és Folyamatmérnöki Intézet 8200 Veszprém, Egyetem u. 10. Pf. 158. Tel.: +36 88/624217 Fax.:+36 88/624520

Transcript of R ODM pV GASOLINE COMPONENTS 6 ] pQ WHFK Q ROy ...kkft.bme.hu/attachments/article/109/HP_6...

  • HYDROCARBON PROCESSING GASOLINE COMPONENTS

    English version based on the presentation of

    Prof. Dr. Jenő Hancsók, D.Sc.

    held on 15.10.2014

    [email protected]

    Pannon University MOL Crude Oil and Coal Technology Department

    MOL Ásványolaj- és

    Széntechnológiai Intézeti

    Tanszék

    Vegyészmérnöki- és

    Folyamatmérnöki Intézet

    8200 Veszprém, Egyetem u. 10. Pf. 158.

    Tel.: +36 88/624217 Fax.:+36 88/624520

  • Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright 2

    Motor gasolines

    blending components additives

  • 3 3

    Motor gasolines

    Blending components

    Motor gasolines

    Reformate

    Alkylate

    Isomerate

    Oligomer gasolines

    Straight rum gasoline

    FCC gasoline

    Hydrocrack gasoline

    Alternative components

    Gasolines

    formed as

    co-products

    Ad

    ditiv

    es

    Oxygenate

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 4 4

    Light naphtha isomerisation

  • 5 5

    Light naphtha isomerisation

    Light naphtha (~30-40/45-82°C) isomerisation products

    Light naphtha: C5-C6 hydrocarbons (C7

  • 6 6

    Goal of C5/C6 fraction isomerisation

    Production of high octane light gasoline fractions

    (ΔRON: 26-56 unit)

    Sometimes pure isopentane production as feed for isoprene-

    production

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • Kís

    érle

    ti o

    ktá

    nsz

    ám

    (K

    OS

    Z)

    Forráspont, °C

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    -20 0 20 40 60 80 100 120 140 160 180

    többszörös elágazású

    izoparaffinok

    n-paraffinok

    naftének

    olefinek

    aromások

    7 7

    Boiling point-RON correlation of different

    hydrocarbon types

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    aromatics

    olefins

    n-paraffins

    naphthenes

    multi-branched

    isoparaffins

    Boiling point, °C

    RO

    N

  • 8 8

    Thermodynamics of C5/C6 paraffin

    isomerisation

    Paraffin hydrocarbon Reaction heat (25°C), kJ/mol

    from n-pentane

    2,2-dimethyl-propane -19,93

    2-methyl-butane -8,04

    from n-hexane

    2,2-dimethyl-butane -18,39

    2,3-dimethyl-butane -10,59

    2-methyl-pentane -7,12

    3-methyl-pentane -4,44

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 9 9

    Equilibrium concentration of pentane and

    hexane isomers

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 10 10

    RON of C5 and/or C6 hydrocarbons equilibrium

    mixtures (open chained)

    60

    70

    80

    90

    100 150 200 250 300

    Hőmérséklet, °C

    Kís

    érle

    ti o

    ktá

    nszá

    m .

    C5-paraffinok

    C5/C6-paraffinok

    C6-paraffinok

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Temperature, °C

    RO

    N

    C5 paraffins

    C6 paraffins

    C5/C6 paraffins

  • 11 11

    Catalysts for C5/C6 paraffin isomerisation

    Hydroisomerisation catalysts

    Temperature of

    favourable activity:

    High

    ≥300°C

    Pt(0,5-0,6)/g-Al2O3/F

    F: 3-4%

    Medium

    200°C-300°C

    Pt(0,3-0,5)/H-Y zeolite

    Pt(0,3-0,5)/H-Mordenite

    Low

    ≤200°C

    Pt(0,3-0,4%)/Al2O3/chloride (7-10%)

    Pt/sulphated metal-oxide

    Mixed metal-oxide

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 12 12

    General mechanism of n-C5/n-C6 paraffins

    isomerisation on bifunctional catalysts

    -H2 Diffúzió +H+

    n-P n-O n-O n-C+

    +H2 Diffúzió -H+

    i-P i-O i-O i-C+

    fémes

    hely

    savas

    hely

    krakk

    termékek

    -H2 Diffúzió +H+

    n-P n-O n-O n-C+

    +H2 Diffúzió -H+

    i-P i-O i-O i-C+

    fémes

    hely

    savas

    hely

    krakk

    termékek

    n-P: n-paraffin; n-O: n-olefin; n-C+:n-carbenium-ion;

    i-C+: iso-carbenium-ion; i-O: iso-olefin; i-P: iso-paraffin

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Diffusion

    Diffusion

    Metallic

    site Acidic

    site

    Cracked

    products

  • 13 13

    Classification of isomerisation processes

    According to operation temperature:

    Low (kb. ≤ 200°C)

    Medium (kb. 200-300°C)

    High (>300°C)

    After 1990, only these

    processes were implemented

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 14 14

    Adventages of low temperature isomerisation

    Feed and energy efficiency (CO2 ↓)

    Higher isoparaffin yield

    Higher RON (2-5 unit)

    Lower hydrogen consumption (CO2 ↓)

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 15 15

    Catalytic reforming

  • 16

    Catalytic reforming

    Goal: production of high octane blending components and/or

    production of hydrocarbon mixture suitable for individual aromatics

    recovery

    Feed: sulphur free( 1 mg S/kg) straight run and/or hydrocracking

    and/or other gasoline fractions

    16 Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 17

    Main reactions I.

    17

    Dehidrogénezés Hőszínezet

    cikloparaffin aromás H= +205 kJ/mol

    + 3 H2

    sűrűség, g/cm

    3 0,7694 0,8669

    KOSZ: 73,8 119,7

    paraffin olefin H= +90 kJ/mol + H2

    sűrűség, g/cm

    3 0,6838 0,7026

    KOSZ: 0 89,8

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Specific gravity, g/cm3

    RON:

    Specific gravity, g/cm3

    RON:

    Specific gravity, g/cm3

    RON:

    Dehydrogenation cycloparaffin aromatic

    Reaction heat

  • 18

    Main reactions II.

    18

    Dehidrociklizáció H= +238 kJ/mol

    + 4 H2

    sűrűség, g/cm

    3 0,6838 0,8669

    KOSZ: 0 119,7

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Specific gravity, g/cm3

    RON:

    Dehydrocyclisation

  • 19

    Main reactions III.

    19

    Izomerizáció H= -4,4 kJ/mol

    n-paraffin i-paraffin

    sűrűség, g/cm

    3 0,6838 0,6871

    KOSZ: 0 52,0

    C5-cikloparaffin C6-cikloparaffin

    sűrűség, g/cm

    3 0,7913 0,7694

    KOSZ: 100,4 73,8

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Specific gravity, g/cm3

    RON:

    Specific gravity, g/cm3

    RON:

    Isomerisation n-paraffin i-paraffin

    C5 cycloparaffin C6 cycloparaffin

  • 20

    Side reactions I.

    20

    Hidrokrakkolás

    + H2

    + H2

    C1+

    C2+

    C3+

    Hidrodezalkilezés

    + H2C1+

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Hydrocracking

    Hydrodealkylation

  • 21

    Side reactions II.

    21

    Alkilezés

    +

    Diszproporcionálódás

    2 +

    Kokszképződés

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Alkylation

    Disproportioning

    Coke formation

  • 22

    Volume-yield correlation during different feed

    (fixed bed process)

    22 Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 23

    Catalysts for reforming

    23

    Megnevezés Relatív aktivitás

    Króm-oxid 1

    Molibdén-oxid 10

    Pt/Al2O3/Cl (1953)

    (Cl: 0,8-1,3%)

    100

    Többfémes (1967)

    (Pt: 0,2-0,75%- és

    Re, Sn, Ir, Ge, Rh: 0,01-től 0,3-0,5%-ig)

    Stabilabb és

    szelektívebb

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Catalyst Relative activity

    Chromium-oxide

    Molibdenum-oxide

    Multi metallic (1967) More stable

    and

    more selective

  • 24

    Process parameters

    Temperature: 480 – 520 °C

    Pressure: 5 – 20 bar

    LHSV: 1,5 – 3,0 m3/m3h

    H2/hydrocarbon molar ratio: 5:1 – 12:1

    24 Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 25

    Industrial implementation of reforming

    Reactors

    number: 3-5

    Fixed bed

    (radial – lower pressure drop – or axial flow)

    Moving bed (CCR – continuous catalyst

    regeneration)

    Construction material:

    Resistant to reducing and oxidizing atmosphere

    temperature: 550°C - ig

    pressure: 5-25(35) bar

    25 Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 26

    Conventional (fixed bed) reformer process

    26 Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 27

    Continuous catalyst regeneration process

    27 Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 28

    Product yield structure and characteristics

    28 Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Products Yield, % Characteristics

    Hydrogen rich gas 7-10 Hydrogen concentration 60-80 vol%

    fuel gas (C1-C2) 1-3

    propane 3-5

    butene 5-8 ~50% i-butane

    reformate 74-84

    RON: 97-101

    MON: 86-88

    FBP: 20-40°C higher than the feed

    aromatic content: >60%

    specific gravity: 0,76-0,79 g/cm3

  • 29 29

    Alkylation

  • 30 30

    Chemistry of alkylation

    Közvetlen eljárások

    C3=

    iC4 + C4=

    C5=

    Közvetett

    C3=

    iC4= + C4= + H2

    C5=

    *katalizátor: foszforsav szilárd hordozón, savas ioncserélő gyanták

    **katalizátor: olefin hidrogénező (pl. Pd/Al2O3, NiMo/Al2O3)

    Alkilátum

    HF vagy H2SO4

    Szupersavak szilárd hordozókon

    katalizátor* katalizátor**

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Direct processes

    Indirect processes Alkylate

    HF or H2SO4

    Catalyst* Catalyst**

    Catalyst*: phosphorous acid on solid support (acidic ion exchange resins

    Catalyst**: olefin hydrogenation (e.g. Pd/Al2O3, NiMo/Al2O3

  • 31 31

    Chemistry of alkylation

    Reactions:

    Via tertiary carbenium ion, chain mechanism

    Initiating step

    e.g. proton addition onto isobutene in the presence of strong acid

    Addition step

    Chain producing reaction

    Chain closing reaction C C CC

    C C C

    C

    +

    H++

    C C C

    C

    C

    C

    C

    C C C C

    C

    C C C

    C

    C

    C

    C

    C C C C

    C+

    ++

    +

    2,2,4-TMP

    C C C

    C

    C C C

    C

    C C C

    C

    C

    C

    C

    C++

    +

    C C C

    C

    C C C

    C

    + H++

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 32 32

    Thermodynamics of alkylation

    Exothermic reactions

    (-630)-(-480) kJ/kg alkylate (depending on the olefin)

    Temperature favouring production of higher octane C7-C8 isoparaffins:

    ~ 10°C (H2SO4)

    ~ 35°C (HF)

    Higher temperature polymerisation reaction

    boiling range increases RON decreases

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 33 33

    Process parameters of alkylation

    Main goal: suppress the reaction of olefins with each other

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Parameter HF H2SO4 Solid acid

    Reactor temperature, °C 25-45 6-10 100-250

    Pressure, bar 20 15 20-50

    Isobutane: olefin ratio, vol%/vol% 15-20 10-15 5-8

    Acid concentration, % 58-90 98-99 -

    Acid in the mixture, % 50-70 50-75 -

    Acid consumption, kg/t alkylate 0,4-0,7 35-150 -

  • 34 34

    Products of alkylation

    Products

    Isoparaffins with carbon number of the sum of the starting isoparaffin and olefin

    Premium blending components

    Aromatic content 0

    Olefin < 0,1%

    Good vapour pressure

    High RON ( ≥ 93)

    Low sensitivity [ +1 (-) +4 ]

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 35 35

    Product composition and RON/MON of

    different alkylation process products

    0%

    20%

    40%

    60%

    80%

    100%

    HF H2SO4 Szilárd sav

    C9+

    C8

    C6-C7

    C5

    95,7

    94,2 95,6

    93,6

    97,0

    93,2

    KOSZ:

    MOSZ:

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Solid acid

    RON:

    MON:

  • 36 36

    Indirect alkylation

  • 37 37

    Alkylation and hydrogenation of isobutylene

    and different butenes: octane number

    comparison

    Isobutylene reaction with …

    Isooctane isomer RON MON

    1-butene 2,2-dimethyl-hexane 72,0 77,5

    1-butene 2,3-dimethyl-hexane 71,3 78,9

    2-buttene 2,3,4-trimethyl-pentane 102,5 95,9

    2-butene 2,3,3-trimethyl-pentane 106,0 99,4

    2-butene 2,2,3-trimethyl-pentane 109,6 99,9

    isobutene 2,2,4-trimethy-pentane 100,0 100,0

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 38 38

    Theoretical scheme of process, using acidic

    ion exchange resin catalyst

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 39 39

    Oligomerisation

  • 40 40

    Oligomerisation

    Gasoline blending components

    - dimerisation of propene and/or butenes

    Jet and diesel blending components

    - oligomerisation of propene/butene/pentene

    Petrochemical feedstock

    - C7-C9 straight chain olefins (alcohol production)

    - high purity light olefins (e.g. ethylene → 1-butene → 1-octene)

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 41 41

    Feedstocks and preconditioning

    Feedstocks

    FCC C3-C4-C5 olefins

    thermal cracking (viscosity breaking, delayed coking) light olefins

    Steam reformer C3-C4-C5 olefins

    Preconditioning

    Hydrogen-sulphide removal: with amine scrubbing

    Mercaptans removal: caustic washing

    Basic materials removal (e.g. ammonia): water washing

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 42 42

    Mechanism of olefin oligomerisation

    Via carbenium ion intermedier, which is formed during the reaction of the olefin and strong acid.

    Proposed dimerisation scheme of propene:

    This intermedier is highly reactive, so it will rapidly react with an other propene molecule, forming a new carbenium ion

    Proton transmission (to an other propene)

    Similarly, from butene and propene-butene mixtures first C7 and C8 olefins will be formed, later C9, C12, C16 olefins.

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Strong acid

  • 43 43

    Thermodynamics of catalytic oligomerisation

    Exothermic reaction (-920, -1450 kJ/kg, butene, propene

    respectively)

    Necessary to cool the reaction mixture

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 44 44

    Catalysts for oligomerisation

    Heterogeneous catalytic processes

    Phosphorous acid on inert support (e.g. SiO2)

    zeolite

    Ion exchange resins

    Homogeneous catalytic processes

    Nickel and titan-coordination complex + aluminium-alkyl

    Ion liquids

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 45 45

    Heterogeneous catalytic processes

    Temperature 150-200°C

    Pressure 10-70 bar

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 46 46

    Scheme of polymerisation gasoline production

    (on solid catalyst)

    Hűtővíz Hűtővíz

    Kisnyomású

    vízgőz

    C3=-C4

    =

    alapanyag

    C3=

    visszavezetés

    C3=

    Propánmentesítő Butánmentesítő

    C4=

    Polimerbenzin

    Kvencs

    Kisnyomású

    vízgőz fejlesztés

    Nagynyomású

    vízgőz Reaktor

    Kisnyomású

    vízgőz

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

    Reactor

    Quench

    Depropanizer

    Propene

    recirculation

    Debutanizer

    C3-4 olefin

    feed

    Polimerysation gasoline

  • 47 47

    Catalytic polimerisation: yield and quality

    Feed Value

    Propene, % 21,4

    Butene, % 36,3

    Polymerisation gasoline

    Yield, % 52,9

    Specific gravity, g/cm3 0,735

    RON 95,5

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 48 48

    Oxygenates

  • 49 49

    Oxygenates

    Alcohols

    Ethers

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 50 50

    Ether type gasoline blending components

    MTBE ETBE TAME

    Boiling point, °C 55,2 71,7 86,1

    Ignition point, °C -28 -19 -11

    Oxygen content, % 18,2 15,7 15,7

    RON 118 118 110

    MON 100 102 97

    Solubility in water

    comp. in water, v/v %

    water in comp., v/v %

    4,3

    1,4

    2,0

    0,6

    0,6

    0,6

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 51 51

    Isobutene containing hydrocarbon streams

    Catalytic cracking (15%)

    Steam cracking (45%)

    Isobutane dehydrogenation (48%)

    n-butene isomerisation (17%)

    Fischer-Tropsch synthesis C4 fraction (12 – 20%)

    ( ) – izobutene content

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 52 52

    MTBE synthesis

    Catalyst: acidic ion exchange resin

    Exothermic, reversible reaction (-37 kJ/mol)

    Process parameters

    methanol/isobutene mol ratio: 1,1-1,2:1

    temperature: 50-90°C in main reaction area, 40-60°C in the finishing reaction area

    pressure: 7-20 bar

    LHSV: 4-6 h-1

    CH3

    C CH2

    CH3

    CH3

    OH

    CH3

    C

    CH3

    CH3

    O CH3+

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 53 53

    Scheme of the conventional MTBE synthesis

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 54 54

    Ether production

    Jenő Hancsók: Hydrocarbon processing, BME, 15.10.2014., Copyright

  • 55

    Thank you for your attention!