Química Orgânica I - w3.ualg.ptw3.ualg.pt/~abrigas/QOI0809A6_7_react.pdf · 1 w3.ualg.pt\~abrigas...

62
1 w3.ualg.pt\~abrigas QOI 0809 A6 1 Química Orgânica I 2008/09 w3.ualg.pt\~abrigas QOI 0809 A6 2 Organic Reactions Addition – two molecules combine Elimination – one molecule splits Substitution – parts from two molecules exchange Rearrangement reactions – a molecule undergoes changes in the way its atoms are connected

Transcript of Química Orgânica I - w3.ualg.ptw3.ualg.pt/~abrigas/QOI0809A6_7_react.pdf · 1 w3.ualg.pt\~abrigas...

1

w3.ualg.pt\~abrigas QOI 0809 A6 1

Química Orgânica I

2008/09

w3.ualg.pt\~abrigas QOI 0809 A6 2

Organic Reactions

• Addition – two molecules combine

• Elimination – one molecule splits

• Substitution – parts from two molecules exchange

• Rearrangement reactions – a molecule undergoes changes in the way its atoms are connected

2

w3.ualg.pt\~abrigas QOI 0809 A6 3

An Addition Reaction

w3.ualg.pt\~abrigas QOI 0809 A6 4

An Elimination Reaction

3

w3.ualg.pt\~abrigas QOI 0809 A6 5

A Substitution Reaction

w3.ualg.pt\~abrigas QOI 0809 A6 6

A Rearrangement Reaction

4

w3.ualg.pt\~abrigas QOI 0809 A6 7

Reactions Mechanisms

• The mechanism

describes the steps

behind the changes that

we can observe

• Reactions occur in defined steps that lead from reactant to product

w3.ualg.pt\~abrigas QOI 0809 A6 8

5

w3.ualg.pt\~abrigas QOI 0809 A6 9

Steps in Mechanisms

• A step usually involves either the

formation or breaking of a covalent

bond

• Steps can occur individually or in

combination with other steps

• When several steps occur at the same

time they are said to be concerted

w3.ualg.pt\~abrigas QOI 0809 A6 10

Types of Steps in Reaction Mechanisms

• Formation of a covalent bond

– Homogenic or heterogenic

• Breaking of a covalent bond

– Homolytic or heterolytic

• Oxidation

• Reduction

6

w3.ualg.pt\~abrigas QOI 0809 A6 11

Homogenic Formation of a Bond

• One electron comes from each

fragment

• No electronic charges are involved

w3.ualg.pt\~abrigas QOI 0809 A6 12

Heterogenic Formation of a Bond

• One fragment supplies two electrons (Lewis Base)

• One fragment supplies no electrons (Lewis Acid)

• Combination can involve electronic charges

• Common in organic chemistry

7

w3.ualg.pt\~abrigas QOI 0809 A6 13

Indicating Steps in Mechanisms

• Curved arrows indicate breaking and forming of bonds

• Arrowheads with a “half” head (“fish-hook”) indicate homolyticand homogenic steps (called ‘radical processes’)—the motion of one electron

• Arrowheads with a complete head indicate heterolytic and heterogenic steps (called ‘polar processes’)—the motion of an electron pair

w3.ualg.pt\~abrigas QOI 0809 A6 14

Bond Making

8

w3.ualg.pt\~abrigas QOI 0809 A6 15

Homolytic Breaking of Covalent Bonds

• Each product gets one electron from the bond

w3.ualg.pt\~abrigas QOI 0809 A6 16

Heterolytic Breaking of Covalent Bonds

• Both electrons from the bond that is

broken become associated with one

resulting fragment

• A common pattern in reaction

mechanisms

9

w3.ualg.pt\~abrigas QOI 0809 A6 17

Bond Breaking

w3.ualg.pt\~abrigas QOI 0809 A6 18

Radicals

• A “free radical” is an “R” group on its

own:–

.CH3 is a “free radical” or simply “radical”

– Has a single unpaired electron, shown as: .CH3

.

– Its valence shell is one electron short of being

complete

10

w3.ualg.pt\~abrigas QOI 0809 A6 19

Radical Reactions

• Radicals react to complete electron

octet of valence shell– A radical can break a bond in another molecule

and abstract a partner with an electron, giving

substitution in the original molecule

– A radical can add to an alkene to give a new

radical, causing an addition reaction

w3.ualg.pt\~abrigas QOI 0809 A6 20

Radical Substitution

11

w3.ualg.pt\~abrigas QOI 0809 A6 21

Radical Addition

w3.ualg.pt\~abrigas QOI 0809 A6 22

Chlorination of methane: a radical substitution reaction

12

w3.ualg.pt\~abrigas QOI 0809 A6 23

Steps in Radical SubstitutionIntitiation

w3.ualg.pt\~abrigas QOI 0809 A6 24

Steps in Radical SubstitutionPropagation

13

w3.ualg.pt\~abrigas QOI 0809 A6 25

Steps in Radical SubstitutionTermination

w3.ualg.pt\~abrigas QOI 0809 A6 26

Polar Reactions

14

w3.ualg.pt\~abrigas QOI 0809 A6 27

Polarity is affected by structure changes:

w3.ualg.pt\~abrigas QOI 0809 A6 28

Polarity

15

w3.ualg.pt\~abrigas QOI 0809 A6 29

Polarity

w3.ualg.pt\~abrigas QOI 0809 A6 30

Polarizability

• Polarization is a change in electron distribution as a response to change in electronic nature of the surroundings

• Polarizability is the tendency to undergo polarization

• Polar reactions occur between regions of high

electron density and regions of low electron density

16

w3.ualg.pt\~abrigas QOI 0809 A6 31

Generalized Polar Reactions

• an electrophile, an electron-poor species (Lewis acid)

combines with

• a nucleophile, an electron-rich species (Lewis base)

• The combination is indicated with a curved arrow from nucleophile to electrophile

w3.ualg.pt\~abrigas QOI 0809 A6 32

Polar Reactions:

17

w3.ualg.pt\~abrigas QOI 0809 A6 33

Electrophiles & Nuclephiles

w3.ualg.pt\~abrigas QOI 0809 A6 34

a Polar Reaction: Addition of HBr to Ethylene

18

w3.ualg.pt\~abrigas QOI 0809 A6 35

Addition of HBr to Ethylene

HBr

δ+

w3.ualg.pt\~abrigas QOI 0809 A6 36

Π-Bonds as Nucleophiles:

� Π-bonding electron pairs can function as Lewis bases:

19

w3.ualg.pt\~abrigas QOI 0809 A6 37

Mechanism of Addition of HBr to Ethylene

w3.ualg.pt\~abrigas QOI 0809 A6 38

Rules for Using Curved Arrows

• The arrow goes from the nucleophilic reaction site to the electrophilic reaction site

• The nucleophilic site can be neutral or negatively

charged

• The electrophilic site can be neutral or positively charged

20

w3.ualg.pt\~abrigas QOI 0809 A6 39

electrons move from Nu: to E

w3.ualg.pt\~abrigas QOI 0809 A6 40

Nu: can be negative or neutral

21

w3.ualg.pt\~abrigas QOI 0809 A6 41

E can be positive or neutral

w3.ualg.pt\~abrigas QOI 0809 A6 42

ELECTRONS AND CHARGES

22

w3.ualg.pt\~abrigas QOI 0809 A6 43

curved arrows?

w3.ualg.pt\~abrigas QOI 0809 A6 44

Solution:

23

w3.ualg.pt\~abrigas QOI 0809 A6 45

Describing a Reaction: Equilibria, Rates, and Energy Changes

aA + bB cC + dD

Keq = [Products]/[Reactants] = [C]c [D]d / [A]a[B]b

w3.ualg.pt\~abrigas QOI 0809 A6 46

Keq

24

w3.ualg.pt\~abrigas QOI 0809 A6 47

Numeric Relationship of Keq and Free

Energy Change

• The standard free energy change at 1 atm

pressure and 298 K is ∆Gº

• The relationship between free energy change and an equilibrium constant is:

� ∆∆∆∆Gº = - RT lnKeq where

– R = 1.987 cal/(K x mol) (gas constant)

– T = temperature in Kelvins

– ln = natural logarithm

w3.ualg.pt\~abrigas QOI 0809 A6 48

Changes in Energy at Equilibrium

• Free energy changes (∆Gº) can be divided into– a temperature-independent part called entropy

(∆Sº) that measures the change in the amount of disorder in the system

– a temperature-dependent part called enthalpy

(∆Hº) that is associated with heat given off (exothermic) or absorbed (endothermic)

∆∆∆∆Gº = ∆∆∆∆Hº - T∆∆∆∆Sº

25

w3.ualg.pt\~abrigas QOI 0809 A6 49

Ethylene + HBr

∆Gº = ∆Hº - T∆Sº

w3.ualg.pt\~abrigas QOI 0809 A6 50

Irene LeeCase Western Reserve University

Cleveland, OH

©2007, Prentice Hall

26

w3.ualg.pt\~abrigas QOI 0809 A6 51

The atom or group that is substituted or eliminated in these reactions is called a leaving group

substitution reaction

w3.ualg.pt\~abrigas QOI 0809 A6 52

Alkyl halides have relatively good leaving groups

How do alkyl halides react?

27

w3.ualg.pt\~abrigas QOI 0809 A6 53

Alternatively…

w3.ualg.pt\~abrigas QOI 0809 A6 54

The substitution is more precisely called a nucleophilicsubstitution because the atom or group replacing theleaving group is a nucleophile

The reaction mechanism which predominates depends on the following factors:

• the structure of the alkyl halide• the reactivity of the nucleophile• the concentration of the nucleophile

• the solvent of the reaction

28

w3.ualg.pt\~abrigas QOI 0809 A6 55

The Mechanism of an SN2 Reaction

Consider the kinetic of the reaction:

a second-order reaction

w3.ualg.pt\~abrigas QOI 0809 A6 56

Three Experimental Evidences Support an SN2 Reaction Mechanism

1. The rate of the reaction is dependent on the concentration of the alkyl halides and the nucleophile

2. The rate of the reaction with a given nucleophiledecreases with increasing size of the alkyl halides

3. The configuration of the substituted product is inverted compared to the configuration of the reacting chiral alkyl halide

29

w3.ualg.pt\~abrigas QOI 0809 A6 57

w3.ualg.pt\~abrigas QOI 0809 A6 58

As SN2 is a one-step reaction

A nucleophile attacks the back side of the carbon that isbonded to the leaving group

30

w3.ualg.pt\~abrigas QOI 0809 A6 59

A bulky substituent in the alkyl halide reduces thereactivity of the alkyl halide: steric hindrance

Tertiary alkyl halides cannot undergo SN2 reactions

w3.ualg.pt\~abrigas QOI 0809 A6 60

Reaction coordinate diagrams for (a) the SN2 reaction of methyl bromide and (b) an SN2 reaction of a stericallyhindered alkyl bromide

31

w3.ualg.pt\~abrigas QOI 0809 A6 61

Inversion of configuration (Walden inversion) in an SN2 reaction is due to back side attack

w3.ualg.pt\~abrigas QOI 0809 A6 62

Experimental Evidence for an SN1 Reaction

1. The rate of the reaction depends only on the concentration of the alkyl halide

2. The rate of the reaction is favored by the bulkiness ofthe alkyl substituent

3. In the substitution of a chiral alkyl halide, a mixture of stereoisomeric product is obtained

32

w3.ualg.pt\~abrigas QOI 0809 A6 63

w3.ualg.pt\~abrigas QOI 0809 A6 64

33

w3.ualg.pt\~abrigas QOI 0809 A6 65

An SN1 is a two-step reaction and the leaving groupdeparts before the nucleophile approaches

w3.ualg.pt\~abrigas QOI 0809 A6 66

Reaction Coordinate Diagram for an SN1 Reaction

34

w3.ualg.pt\~abrigas QOI 0809 A6 67

The carbocation reaction intermediate leads to the formation of two stereoisomeric products

w3.ualg.pt\~abrigas QOI 0809 A6 68

35

w3.ualg.pt\~abrigas QOI 0809 A6 69

The Effect of the Leaving Group on an SN1 Reaction

The nucleophile has no effect on the rate of an SN1 reaction

The rate of the reaction is affected by:

1) the ease with which the leaving group dissociatesfrom the carbon

2) the stability of the carbocation that is formed

w3.ualg.pt\~abrigas QOI 0809 A6 70

When a reaction forms a carbocation intermediate,always check for the possibility of a carbocationrearrangement

36

w3.ualg.pt\~abrigas QOI 0809 A6 71

The Stereochemistry of SN2 Reactions

w3.ualg.pt\~abrigas QOI 0809 A6 72

The Stereochemistry of SN1 Reactions

37

w3.ualg.pt\~abrigas QOI 0809 A6 73

Sometimes extra inverted product is formed in an SN1reaction because…

w3.ualg.pt\~abrigas QOI 0809 A6 74

Describing a Reaction: Bond Dissociation Energies

• Bond dissociation energy (D): Heat change that occurs when a bond is broken by homolysis

• The energy is mostly determined by the type of bond, independent of the molecule

– The C-H bond in methane requires a net heat

input of 105 kcal/mol to be broken at 25 ºC.

• Changes in bonds can be used to calculate net changes in heat

38

w3.ualg.pt\~abrigas QOI 0809 A6 75

Calculation of an Energy Change from Bond Dissociation Energies

w3.ualg.pt\~abrigas QOI 0809 A6 76

Describing a Reaction: Energy Diagrams and Transition States

39

w3.ualg.pt\~abrigas QOI 0809 A6 77

Describing a Reaction: Energy Diagrams and Transition States

• The highest energy

point in a reaction step is called the

transition state

• The energy needed

to go from reactant to transition state is the activation

energy (∆G‡)

w3.ualg.pt\~abrigas QOI 0809 A6 78

First Step in the Addition of HBr

40

w3.ualg.pt\~abrigas QOI 0809 A6 79

Formation of a CarbocationIntermediate

• HBr, a Lewis acid, adds to

the π bond

• This produces an intermediate with a positive charge on carbon - a carbocation

• This is ready to react with bromide

w3.ualg.pt\~abrigas QOI 0809 A6 80

Carbocation Intermediate Reactions with Anion

• Bromide ion adds an electron pair to the carbocation

• An alkyl halide produced

• The carbocation is a reactive intermediate

41

w3.ualg.pt\~abrigas QOI 0809 A6 81

w3.ualg.pt\~abrigas QOI 0809 A6 82

• Chlorination of Methane

42

w3.ualg.pt\~abrigas QOI 0809 A6 83

Chlorination of Methane

• Requires heat or light for initiation.

• The most effective wavelength is blue, which

is absorbed by chlorine gas.

• Many molecules of product are formed from absorption of only one photon of light (chain reaction).

=>

w3.ualg.pt\~abrigas QOI 0809 A6 84

Initiation Step

A chlorine molecule splits homolytically into

chlorine atoms (free radicals).

=>

43

w3.ualg.pt\~abrigas QOI 0809 A6 85

Propagation Step (1)

The chlorine atom collides with a methane

molecule and abstracts (removes) a H,

forming another free radical and one of the

products (HCl).

=>

w3.ualg.pt\~abrigas QOI 0809 A6 86

Propagation Step (2)

The methyl free radical collides with another

chlorine molecule, producing the other

product (methyl chloride) and regenerating

the chlorine radical.

=>

44

w3.ualg.pt\~abrigas QOI 0809 A6 87

Overall Reaction

=>

w3.ualg.pt\~abrigas QOI 0809 A6 88

Termination Steps

• Collision of any two free radicals.

• Combination of free radical with

contaminant or collision with wall.

Can you suggest others? =>

45

w3.ualg.pt\~abrigas QOI 0809 A6 89

Equilibrium Constant

• Keq = [products]

[reactants]

• For chlorination Keq = 1.1 x 1019

• Large value indicates reaction “goes to

completion.”

=>

w3.ualg.pt\~abrigas QOI 0809 A6 90

Free Energy Change

• ∆G = free energy of (products - reactants), amount of energy available to do work.

• Negative values indicate spontaneity.

• ∆Go = -RT(lnKeq)where R = 8.314 J/K-moland T = temperature in kelvins

• Since chlorination has a large Keq, the free energy change is large and negative.

=>

46

w3.ualg.pt\~abrigas QOI 0809 A6 91

Problem

• Given that -X is -OH, the energy difference for the following reaction is -4.0 kJ/mol.

• What percentage of cyclohexanol molecules will be in the equatorial conformer at equilibrium at 25°C?

=>

w3.ualg.pt\~abrigas QOI 0809 A6 92

Kinetics

• Answers question, “How fast?”

• Rate is proportional to the concentration of

reactants raised to a power.

• Rate law is experimentally determined.

=>

47

w3.ualg.pt\~abrigas QOI 0809 A6 93

Reaction Order

• For A + B → C + D, rate = k[A]a[B]b

– a is the order with respect to A

– b is the order with respect to B

– a + b is the overall order

• Order is the number of molecules of that reactant which is present in the rate-determining step of the mechanism.

• The value of k depends on temperature as given by Arrhenius:

RTEaAek

/

r

−= =>

w3.ualg.pt\~abrigas QOI 0809 A6 94

Activation Energy

• Minimum energy required to reach

the transition state.

• At higher temperatures, more molecules have the

required energy.

C

H

H

H

H Cl

=>

48

w3.ualg.pt\~abrigas QOI 0809 A6 95

Energy Diagram

• Reactants → transition state → intermediate

• Intermediate → transition state → product

=>

w3.ualg.pt\~abrigas QOI 0809 A6 96

Rate, Ea, and Temperature

X + CH4 HX + CH3

X E a Rate @ 300K Rate @ 500K

F 5 kJ 140,000 300,000

Cl 17 kJ 1300 18,000

Br 75 kJ 9 x 10-8

0.015

I 140 kJ 2 x 10-19

2 x 10-9

=>

49

w3.ualg.pt\~abrigas QOI 0809 A6 97

Conclusions

• With increasing Ea, rate decreases.

• With increasing temperature, rate

increases.

• Fluorine reacts explosively.

• Chlorine reacts at a moderate rate.

• Bromine must be heated to react.

• Iodine does not react (detectably).

=>

w3.ualg.pt\~abrigas QOI 0809 A6 98

Chlorination of Propane

• six 1° H’s; two 2° H’s.

• We expect 3:1 product mix,– 75% 1-chloropropane

– 25% 2-chloropropane.

• Typical product mix: – 40% 1-chloropropane

– 60% 2-chloropropane.

• Therefore, not all H’s are equally reactive.

=>

1°°°° C

2°°°° CCH3 CH2 CH3 + Cl2

hννννCH2

Cl

CH2 CH3 + CH3 CH

Cl

CH3

50

w3.ualg.pt\~abrigas QOI 0809 A6 99

compare hydrogen reactivity

• find amount of product formed per hydrogen: – 40% 1-chloropropane from 6 hydrogens

– 60% 2-chloropropane from 2 hydrogens.

• 40% ÷÷÷÷ 6 = 6.67% per primary H• 60% ÷÷÷÷ 2 = 30% per secondary H

• Secondary H’s are 30% ÷÷÷÷ 6.67% = 4.5 times more reactive toward chlorination than primary H’s. =>

w3.ualg.pt\~abrigas QOI 0809 A6 100

Free Radical Stabilities• Energy required to break a C-H bond

decreases as substitution on the carbon

increases.

• Stability: 3° > 2° > 1° > methyl

∆H(kJ) 381, 397, 410, 435

=>

51

w3.ualg.pt\~abrigas QOI 0809 A6 101

Chlorination Energy Diagram

Lower Ea, faster rate, so more stable

intermediate is formed faster.

=>

w3.ualg.pt\~abrigas QOI 0809 A6 102

• six 1° H’s and two 2° Η’s.

– We expect 3:1 product mix, or

– 75% 1-bromopropane

– 25% 2-bromopropane.

• Typical product mix:

– 3% 1-bromopropane

– 97% 2-bromopropane

• Bromination is more selective than chlorination. =>

1°°°° C

2°°°° C

CH3 CH2 CH3 + CH2

Br

CH2 CH3 +Br2

heatCH3 CH

Br

CH3

Bromination of Propane

52

w3.ualg.pt\~abrigas QOI 0809 A6 103

• find amount of product formed per H:

– 3% 1-bromopropane from 6 hydrogens

– 97% 2-bromopropane from 2 hydrogens.

• 3% ÷÷÷÷ 6 = 0.5% per primary H97% ÷÷÷÷ 2 = 48.5% per secondary H

• Secondary H’s are 48.5% ÷÷÷÷ 0.5% = 97 times more reactive toward bromination than primary H’s.

compare hydrogen reactivity

w3.ualg.pt\~abrigas QOI 0809 A6 104

Bromination Energy Diagram

• BDE for HBr is 368 kJ, but 431 kJ for HCl

=>

53

w3.ualg.pt\~abrigas QOI 0809 A6 105

Bromination vs. Chlorination

=>

w3.ualg.pt\~abrigas QOI 0809 A6 106

Endothermic and

Exothermic Diagrams

=>

54

w3.ualg.pt\~abrigas QOI 0809 A6 107

Hammond Postulate

• Related species that are similar in energy are also similar in structure. The structure of a transition state resembles the structure of the closest stable species.

• Endothermic reaction: transition state is product-like.

• Exothermic reaction: transition state is reactant-like.

=>

w3.ualg.pt\~abrigas QOI 0809 A6 108

Radical Inhibitors

• Often added to food to retard spoilage.

• Without an inhibitor, each initiation step will cause a chain reaction so that many molecules will react.

• An inhibitor combines with the free radical to form a stable molecule.

• Vitamin E and vitamin C are thought to protect living cells from free radicals.

=>

55

w3.ualg.pt\~abrigas QOI 0809 A6 109

Reactive Intermediates• Carbocations

• Free radicals

• Carbanions

• Carbene

=>

w3.ualg.pt\~abrigas QOI 0809 A6 110

Carbocation Structure

• Carbon has 6 electrons, positive charge.

• Carbon is sp2 hybridized with vacant p orbital.

=>

56

w3.ualg.pt\~abrigas QOI 0809 A6 111

Carbocation Stability

• Stabilized by alkyl substituents 2 ways:

• (1) Inductive effect:

donation of electron density

along the sigma bonds.

• (2) Hyperconjugation: overlap of sigma bonding orbitals with empty p orbital.

=>

w3.ualg.pt\~abrigas QOI 0809 A6 112

Free Radicals

• Also electron-deficient

• Stabilized by alkyl substituents

• Order of stability:3° > 2° > 1° > methyl =>

57

w3.ualg.pt\~abrigas QOI 0809 A6 113

w3.ualg.pt\~abrigas QOI 0809 A6 114

58

w3.ualg.pt\~abrigas QOI 0809 A6 115

1. New derivatives or alcohols

w3.ualg.pt\~abrigas QOI 0809 A6 116

59

w3.ualg.pt\~abrigas QOI 0809 A6 117

w3.ualg.pt\~abrigas QOI 0809 A6 118

60

w3.ualg.pt\~abrigas QOI 0809 A6 119

w3.ualg.pt\~abrigas QOI 0809 A6 120

Free Radicals and Human Disease(Peter H. Proctor, PhD, MD)

http://www.general.info/crcpap2.htm

61

w3.ualg.pt\~abrigas QOI 0809 A6 121

Carbenes• Carbon is neutral.

• Vacant p orbital, so can be electrophilic.

• Lone pair of electrons, so can be

nucleophilic. =>

w3.ualg.pt\~abrigas QOI 0809 A6 122

Carbanions

• Eight electrons on C:6 bonding + lone pair

• Carbon has a negative charge

• Destabilized by alkyl substituents

• Methyl >1° > 2 ° > 3 °

=>

62

w3.ualg.pt\~abrigas QOI 0809 A6 123

Carbenes

• Carbon is neutral.

• Vacant p orbital, so can be electrophilic.

• Lone pair of electrons, so can be nucleophilic. =>

w3.ualg.pt\~abrigas QOI 0809 A6 124

Adaptado de:

• Organic Chemistry, 6th Edition; L. G.

Wade, Jr.

• Organic Chemistry, 6th edition; McMurry’s

• Organic Chemistry, 5th Edition; Paula

Yurkanis Bruice