Quasibaryonic Matter in Cosmology

36
Quasibaryonic Matter in Cosmology Shibaji Banerjee Dept. of Physics, St. Xavier’s College (Autonomous), Kolkata March 10, 2011 ARIES Training School in Observational Astronomy-2011, March 07 - March 11, 2011 ARIES, Nainital.

description

Dark Universe: A strange solution

Transcript of Quasibaryonic Matter in Cosmology

Page 1: Quasibaryonic Matter in Cosmology

Quasibaryonic Matter inCosmology

Shibaji Banerjee

Dept. of Physics,St. Xavier’s College (Autonomous),

Kolkata

March 10, 2011

ARIES Training School in Observational Astronomy-2011,March 07 - March 11, 2011

ARIES, Nainital.

Page 2: Quasibaryonic Matter in Cosmology

The Ground state

Page 3: Quasibaryonic Matter in Cosmology

Baryonic MatterThe Status of Baryonic Matter

• Observation→ The Universe is flat on the large scale.• An inventory of all baryonic matter in stellar material and

dark gas is totally insufficient to ensure that the universe isflat on the large scale. It can amount to at most 10% of thenecessary matter density.

Page 4: Quasibaryonic Matter in Cosmology

Baryonic MatterThe Status of Baryonic Matter

• Observation→ The Universe is flat on the large scale.

• An inventory of all baryonic matter in stellar material anddark gas is totally insufficient to ensure that the universe isflat on the large scale. It can amount to at most 10% of thenecessary matter density.

Page 5: Quasibaryonic Matter in Cosmology

Baryonic MatterThe Status of Baryonic Matter

• Observation→ The Universe is flat on the large scale.• An inventory of all baryonic matter in stellar material and

dark gas is totally insufficient to ensure that the universe isflat on the large scale. It can amount to at most 10% of thenecessary matter density.

Page 6: Quasibaryonic Matter in Cosmology

Matter in the darkMatter, as we know it, is extremely rare in this Universe.

• Thus most of the matterin the universe belongsto an unknown variety,unavailable to directmethods of visualinspection.

• Halo dark matter, anunknown variety?

Page 7: Quasibaryonic Matter in Cosmology

Matter in the darkMatter, as we know it, is extremely rare in this Universe.

• Thus most of the matterin the universe belongsto an unknown variety,unavailable to directmethods of visualinspection.

• Halo dark matter, anunknown variety?

Page 8: Quasibaryonic Matter in Cosmology

Matter in the darkMatter, as we know it, is extremely rare in this Universe.

• Thus most of the matterin the universe belongsto an unknown variety,unavailable to directmethods of visualinspection.

• Halo dark matter, anunknown variety?

Page 9: Quasibaryonic Matter in Cosmology

Matter in the darkMatter, as we know it, is extremely rare in this Universe.

• Thus most of the matterin the universe belongsto an unknown variety,unavailable to directmethods of visualinspection.

• Halo dark matter, anunknown variety?

v2 ∝ GM(r)

r

Page 10: Quasibaryonic Matter in Cosmology

Matter in the darkMatter, as we know it, is extremely rare in this Universe.

• Thus most of the matterin the universe belongsto an unknown variety,unavailable to directmethods of visualinspection.

• Halo dark matter, anunknown variety?

Page 11: Quasibaryonic Matter in Cosmology

The nature of halo dark matter• Gravitational

Microlensingexperiments

• The MachoCollaboration, Alcockand Sutherland in1999-2000

• Ultra-compact Objects detected in the milky way halotowards the LMC

• 17 of them with mass ranging between 0.15 -0.95 M�

• Brown Dwarfs ?• What are these dark lenses made of ?

Page 12: Quasibaryonic Matter in Cosmology

The nature of halo dark matter• Gravitational

Microlensingexperiments

• The MachoCollaboration, Alcockand Sutherland in1999-2000

• Ultra-compact Objects detected in the milky way halotowards the LMC

• 17 of them with mass ranging between 0.15 -0.95 M�

• Brown Dwarfs ?• What are these dark lenses made of ?

Page 13: Quasibaryonic Matter in Cosmology

The nature of halo dark matter• Gravitational

Microlensingexperiments

• The MachoCollaboration, Alcockand Sutherland in1999-2000

• Ultra-compact Objects detected in the milky way halotowards the LMC

• 17 of them with mass ranging between 0.15 -0.95 M�

• Brown Dwarfs ?• What are these dark lenses made of ?

Page 14: Quasibaryonic Matter in Cosmology

The nature of halo dark matter• Gravitational

Microlensingexperiments

• The MachoCollaboration, Alcockand Sutherland in1999-2000

• Ultra-compact Objects detected in the milky way halotowards the LMC

• 17 of them with mass ranging between 0.15 -0.95 M�

• Brown Dwarfs ?• What are these dark lenses made of ?

Page 15: Quasibaryonic Matter in Cosmology

The nature of halo dark matter• Gravitational

Microlensingexperiments

• The MachoCollaboration, Alcockand Sutherland in1999-2000

• Ultra-compact Objects detected in the milky way halotowards the LMC

• 17 of them with mass ranging between 0.15 -0.95 M�

• Brown Dwarfs ?

• What are these dark lenses made of ?

Page 16: Quasibaryonic Matter in Cosmology

The nature of halo dark matter• Gravitational

Microlensingexperiments

• The MachoCollaboration, Alcockand Sutherland in1999-2000

• Ultra-compact Objects detected in the milky way halotowards the LMC

• 17 of them with mass ranging between 0.15 -0.95 M�

• Brown Dwarfs ?• What are these dark lenses made of ?

Page 17: Quasibaryonic Matter in Cosmology

An uncorrelated mystery?• Exotic cosmic ray

events.

• Unuzualz

Aratio

• Unusuallyhighpenetrability

• What are theorigin of thesecosmic rayevents?

Page 18: Quasibaryonic Matter in Cosmology

An uncorrelated mystery?• Exotic cosmic ray

events.• Unuzual

z

Aratio

• Unusuallyhighpenetrability

• What are theorigin of thesecosmic rayevents?

Page 19: Quasibaryonic Matter in Cosmology

An uncorrelated mystery?• Exotic cosmic ray

events.• Unuzual

z

Aratio

• Unusuallyhighpenetrability

• What are theorigin of thesecosmic rayevents?

Page 20: Quasibaryonic Matter in Cosmology

An uncorrelated mystery?• Exotic cosmic ray

events.• Unuzual

z

Aratio

• Unusuallyhighpenetrability

• What are theorigin of thesecosmic rayevents?

Page 21: Quasibaryonic Matter in Cosmology

The connectionStrange MatterHypothesisWitten’s conjecture(1984): The moststable form of mattermay not a be aparticular isotope likeFe-56, but 3N quarksconfined within largehadronic bags.

Page 22: Quasibaryonic Matter in Cosmology

The connectionStrange MatterHypothesis• The quarks roam

about freelywithin a bagwhich confinesthem as a whole.

• Quark matterblobs are knownas QNs (QuarkNuggets)

Page 23: Quasibaryonic Matter in Cosmology

The connectionStrange MatterHypothesis• Quark matter is

not stable inabsence of thestrange quark.

• The strangequark makes anextra Fermi wellavailable to thequarks and helpsto lower theenergy of theconfiguration.

Page 24: Quasibaryonic Matter in Cosmology

The ConnectionStrange MatterHypothesis• Strange Quark

matter (SQM) isstable comparedto normal nuclearmatter.

• SQM originate inthe cosmic QCDphase transitionin themicrosecond eraof the universe.

Page 25: Quasibaryonic Matter in Cosmology

SQNs after the phase transition• The trapped domains turned into SQNs of a specific size.

• The number of SQNs multiplied as the universe expandedand encroached more real estate within its territory.

• It was natural for them to collide and form more massiveand larger blobs, but . . .

Page 26: Quasibaryonic Matter in Cosmology

SQNs after the phase transition• The trapped domains turned into SQNs of a specific size.• The number of SQNs multiplied as the universe expanded

and encroached more real estate within its territory.

• It was natural for them to collide and form more massiveand larger blobs, but . . .

Page 27: Quasibaryonic Matter in Cosmology

SQNs after the phase transition• The trapped domains turned into SQNs of a specific size.• The number of SQNs multiplied as the universe expanded

and encroached more real estate within its territory.• It was natural for them to collide and form more massive

and larger blobs, but . . .

Page 28: Quasibaryonic Matter in Cosmology

Coalescence of nuggets• The radiation pressure prevented them from coming too

close.• They had to wait till the universe grew cold enough with

time, and then, smashed all together to form a really

H-U-G-E blob(QBOs).

Page 29: Quasibaryonic Matter in Cosmology

What if they are the MACHOs ?• The number of coalesced SQN’s increased due to the

scale factor expansion of the universe.• At that stage, they were too far apart to collide.• With the passage of time they distributed themselves

uniformly in the Universe, and the galactic halo is a goodhiding place as well as any.

• We looked into their expected size and population densityand compared them to the existing data. Using a naiveinverse square spherical model comprising such objectsupto the LMC, we obtained an optical depth of 10−6 – 10−7

which compares reasonably well with the values obtainedby Sutherland and Alcock1.

1MNRAS 2003, 340, 284, Banerjee, Bhattacharya, Raha, Sinha, Toki

Page 30: Quasibaryonic Matter in Cosmology

What if the MACHOS or StrangeStars collided among themselves ?

• Maximum mass of Quark Stars2.

Rmax =3

16

1√πGB

• Strangelets:The splinters of the collision process ?• Small Lumps of SQM can be stable as well.

2JPhys, 200, G26 L1, Banerjee, Ghosh, Raha

Page 31: Quasibaryonic Matter in Cosmology

Strangelets in Terrestrial Atmosphere• If strangelets ever visit us, they

would grow in size as they comedown to find a resting place.

• Simulation of strangeletpropagation in the terrestrialatmosphere leads to neareyeball match to the exoticcosmic ray data.

γmsd~v

dt= −ms~g+q(~v× ~B)−γ~v

(dmsn

dt+dmsp

dt

)−ms~v

dt−f (v)√

3~v

where,dmsp

dt= fpn

dmsn

dtand where,

fpn =R2

s

(rn +Rs)2

(1− 1

E

Zse2

4πε0Rs

)

Page 32: Quasibaryonic Matter in Cosmology

Strangelets in the TerrestrialAtmosphere• If strangelets ever visit us, they

would grow in size as they comedown to find a resting place.

• Simulation of strangeletpropagation in the terrestrialatmosphere leads to neareyeball match to the exoticcosmic ray dataa

• Experiments to detectstrangelets are in progress.

aPRL,2000,85 1384, Banerjee, Ghosh,Raha, Syam

Page 33: Quasibaryonic Matter in Cosmology

Strangelets in the TerrestrialAtmosphere• If strangelets ever visit us, they

would grow in size as they comedown to find a resting place.

• Simulation of strangeletpropagation in the terrestrialatmosphere leads to neareyeball match to the exoticcosmic ray dataa

• Experiments to detectstrangelets are in progress.

aPRL,2000,85 1384, Banerjee, Ghosh,Raha, Syam

Page 34: Quasibaryonic Matter in Cosmology

Synopsis

• The existence of dark matter can be explained well withinthe encompass of standard physics without inviting anyexotic proposition.

Page 35: Quasibaryonic Matter in Cosmology

Conclusion• Observable evidence for strangelets would reinforce QCD

dictions• It is strange that the strange matter hypothesis can lead to

the most non-strange explanation for the existence andnature of dark matter.

• The Universe is strange, but (may be) simple !

Page 36: Quasibaryonic Matter in Cosmology

Acknowledgements• A. Bhattacharyya (Kolkata University)• S.K. Ghosh (Bose Institute, Kolkata)• S. Raha (Bose Institute, Kolkata)• E. Ilgenfritz (RCNP, Osaka)• B. Sinha (VECC, Kolkata)• D.Syam (Barasat Govt. College, Kolkate)• E. Takasugi (Osaka University, Osaka)• H. Toki (RCNP, Osaka)

• ARIES