Quantum Simulations with Yb + crystal ~5 m Trapped Atomic Ions.

55
uantum Simulations with Yb + crystal ~5 mm Trapped Atomic Ions

Transcript of Quantum Simulations with Yb + crystal ~5 m Trapped Atomic Ions.

Page 1: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Quantum Simulations with

Yb+ crystal

~5 mm

Trapped Atomic Ions

Page 2: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Ramanbeatnotes:

wHF ± m

ki

tik

tik

ki

kixi

kk eaeabxkH,

)()(0

)( ][ˆ †

uppersidebands

frequencywHF+m

carrierlower

sidebands

wHF -m

global spin-dependent oscillating force

Page 3: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

ki

tik

tik

ki

kixi

kk eaeabxkH,

)()(0

)( ][ˆ †

k

kkik

kii aa ])()([)(ˆ *

)sincos()(22

,

ki

k

ikiki ie

ik

phonons

k kk

k

kk

k

k

kjkijiji

bb

m

k

2

2sin

)(

)sin(

)(

)sin(

2

)()(

22

,,2

,

interaction between qubits (entangling gates etc..)

ji

jx

ixji

i

ixi iU

,

)()(,

)( )()(ˆexp)(

evolution operator

...)]](),([),([

6)](),([

2

1)(exp)(

232

0

1231

0

2

0

3

0

121

0

2

0

ttt

tHtHtHdtdtdti

tHtHdtdttdtHiU

Page 4: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

“Adiabatically eliminate” phonons: | - m wk| >> hW0 “SLOW MOLMER”

1)sincos()( ,22

,

k

ikik

i

k

ikiki

iie

ik

)()(, ˆˆ j

xi

xji

jieff JH

k k

kj

kiji

ji

bb

m

kJ

22

2

, 2

)(

General effective Hamiltonian theory:D. F. James, Canadian J. Phys. 85, 625 (2007)

uppersidebands

frequency

carrierlower

sidebands

m

wk

sidebandlinewidth= iki ,

Page 5: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Ramanbeatnote:

mwHF ± m

uppersidebands

frequencywHF+m

carrierlower

sidebands

wHF -m

)()(, ˆˆ j

xi

xji

jieff JH

m m

mj

mi

jiji

bb

m

kJ

22

2

, 2

i

iyB )(̂

wHF ( = /2Df p ) wHF

control

normal modeeigenvectors(ion i mode m)

IsingModel

global spin-dependent oscillating force

Page 6: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Quantum Simulation: What is it?

Hdt

di

Y Describes N interacting systems, each system having D degrees of freedom

DN coupled differential equations

Page 7: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Hdt

di

PhysicalSystem

Y

TrialH

Hdt

di

PhysicalSystem

Y

ChooseH

Two approaches

(1)

(2)

Page 8: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

i

iy

jx

ix

jijieff BJH )()()(

, ˆˆˆ

Quantum simulations with trapped ions

Porras and Cirac, PRL 92, 207901 (2004)Deng, Porras, Cirac, PRA 72, 063407 (2005)Taylor and Calarco, PRA 78, 062331 (2008)

A. Friedenauer, et al., Nature Phys. 4, 757 (2008)K. Kim et al., Phys. Rev. Lett. 102, 250502 (2009)K. Kim et al., Nature 465, 590 (2010)E. Edwards et al., Phys. Rev. B 82, 060412 (2010)J. Barreiro et al., Nature 470 , 486-491 (2011)R. Islam, et al., Nature Comm. 2, 377 (2011)B. Lanyon et al., Science 334, 57 (2011)J. Britton et al., Nature 484, 489 (2012)A. Khromova et al., PRL 108, 220502 (2012) R. Islam, et al., Science 340, 583 (2013)P. Richerme, et al., ArXiv 1303.6983 (2013) P. Richerme, et al., ArXiv 1305.2253 (2013)

Page 9: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Frustration and Entanglement ?AFM

AFM

AFM

Spin Liquids

Page 10: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

1936: Giauque and Stout, “The Entropy of Water and the Third Law of Thermodynamics. Heat Capacity of Ice from 15 to 273°K”

Zero-point entropy in 'spin ice’, A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan and B. S. Shastry, Nature 399, 333 (1999)(pyrochloric “spin ice” Dy2Ti2O7)

1945: L. Pauling The Nature of the Chemical Bond (Cornell Univ. Press), pp. 301-4

Ice

Page 11: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Control Range of Interaction!

Theory

ji

1

~

Pow

er L

aw E

xpon

ent a

COM

uppersidebands

frequencywHF

carrierlower

sidebands

Dw

-m wCOM

tunelaserhere

tunelaserhere

k k

kj

ki

ji

bb

m

kJ

22

22

, 2

)(

Page 12: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Initialization

CoolingOptical PumpingSpins along y(or against y)

DetectionMeasure each spin along x)()(

, ˆˆ jx

ix

jijiJ

i

iyB )(̂

time

Adiabatic Quantum Simulation

i

iy

jx

ix

jijieff tBJH )()()(

, ˆ)(ˆˆ

Page 13: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

A. Friedenauer, et al., Nature Phys. 4, 757 (2008)

N=2

Page 14: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

B/Jrms 0.210

0.50

0.25

0.000 100 200 300

0.50

0.25

0.000 100 200 300

t (ms)

B/Jrms 0.210

t (ms)

Exact Ground StateMeasured Populations

J12=J13=J23 < 0

Initialization

CoolingOptical PumpingSpins along y

DetectionMeasure each spin along x)()(

, ˆˆ jx

ix

jijiJ

i

iyB )(̂

time

P↓↓↓

P↓↓↑

P↓↑↓

P↓↑↑

P↑↓↓

P↑↓↑

P↑↑↓

P↑↑↑

P↓↓↓, P↑↑↑

E. Edwards, et al., Phys. Rev. B 82, 060412 (2010)

N=3

Page 15: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

B/Jrms

0.50

0.25

0.000 100 200 300

0.50

0.25

0.000 100 200 300

t (ms)

B/Jrms

t (ms)

J12=J13=J23 > 0

0.21010

P↓↓↓

P↓↓↑

P↓↑↓

P↓↑↑

P↑↓↓

P↑↓↑

P↑↑↓

P↑↑↑ P↓↓↓, P↑↑↑

Initialization

CoolingOptical PumpingSpins along y

DetectionMeasure each spin along x)()(

, ˆˆ jx

ix

jijiJ

i

iyB )(̂

time

0.2

E. Edwards, et al., Phys. Rev. B 82, 060412 (2010)

Exact Ground StateMeasured Populations

N=3

Page 16: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

FM

Ferromagnetic couplingsFM FM

J12=J13=J23 < 0

K. Kim, et al., Nature 465, 590 (2010)

|Y = |+|

ground state is entangled

P0 P1 P2 P3

Bx=0

|Y2 = |

no entanglement

|Y1 = |

no entanglement

Bx0

P0 P1 P2 P3

symmetrybreaking field Bx

N=3

Page 17: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Competing AFM: spin frustration

AFM

AFM AFM

J12=J13=J23 > 0

?

K. Kim, et al., Nature 465, 590 (2010)

|Y = | +|+| +| +|+|

ground state is entangled Bx=0

P0 P1 P2 P3

|Y1 = | +|+|

still entangled!

symmetrybreaking field Bx

|Y2 = | +|+|

still entangled!

Bx0

P0 P1 P2 P3

Frustration Entanglement

N=3

Page 18: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Emergence of ferromagnetism vs. # spins N(all FM couplings: Jij<0)

|mx|

R. Islam et al., Nature Communications 2, 377 (2011)

t(ms)

0

0.25

0.5

B/|J|

N

Page 19: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

4J

B1

J

B 3.0J

B05.0

J

B12

J

B

Ion index, j

Time/τ0 52.5

0

12

6

B

Long Range Antiferromagnetism (N=10)

i

iy

jx

ix

jijieff BJH )()()(

, ˆˆˆ

)()1()()1( jxx

jxx

pair correlation

G1,j =

Ji,j 1

|i-j|1.1

Page 20: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Frustration and energy gaps

Short range: exponent 1.5

Long range: exponent 0.5

Ground state Neel ordered:

Abandoning adiabaticity probes frustration

Low-lying energy states in antiferromagnetic model

Page 21: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

StructureFunction

||

||),(1

ji

jiikejiGN

Spatial frequency k (2p)

Short range

Long range

R. Islam et al., Science340, 583 (2013)

Frustration of Magnetic Order (N=10)

Page 22: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Antiferromagnetic Néel order of N=10 spinsAll in state

2600 runs, a=1.12

AFM ground state order 222 events

441 events out of 2600 = 17% Prob of any state at random =2 x (1/210) = 0.2%

219 events

R. Islam et al., Science340, 583 (2013)

All in state

Page 23: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

First Excited States(Pop. ~2% each)

Page 24: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Second Excited States(Pop. ~1% each)

Page 25: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Distribution of all 210 = 1024 states

Prob

abili

ty

0 341 682 1023

NominalAFMstate

B << J0

0101010101 1010101010

Prob

abili

ty

0.10

0.08

0.06

0.04

0.02

Initialparamagnetic

state

B >> J0

R. Islam et al., Science340, 583 (2013)

Page 26: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Distribution of states ordered by energy (N=10)

Energy/J0R. Islam et al., Science

340, 583 (2013)

a = 1.12a = 0.86

ji

JJ ji

0

,Thermalization??

Cum

uliti

ve P

rob

Page 27: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

AFM order of N=14 spins (16,384 configurations)

Page 28: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

i

ixx

i

iyy

jx

ix

ji

jix BtBJH )()()()(, ˆˆ)(ˆˆ

==

At By = 0:

AFM Ising with AXIAL field

Page 29: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

AFM Ising with AXIAL field

Page 30: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

010010

AFM Ising with AXIAL field

Page 31: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

010010

AFM Ground States

2-Bright Ground State

1-Bright Ground States

0-Bright Ground State

P. Richerme, et al., ArXiv 1303.6983 (2013)

AFM Ising with AXIAL field

Page 32: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

0-Bright Ground State

1-Bright Ground States

2-Bright Ground States

3-Bright Ground States

4-Bright Ground States

5-Bright (AFM) Ground States

System exhibits a completedevil's staircase for N → ∞

P. Bak and R. Bruinsma, PRL 49, 249 (1982) P. Richerme, et al., ArXiv 1303.6983 (2013)

AFM Ising with AXIAL field

Page 33: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Modulate transverse B field to drive transitions

between ground and excited states

i

iyy

jx

ix

ji

jixeff tBJH )()()(, ˆ)(ˆˆ

timeBy

Jxi,j

ampl

itude

Dynamics: many-body spectroscopy

C. Senko et. al., in preparation

Page 34: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

timeBy

Jxi,j

ampl

itude

Start from

Drive to

N = 6 Dynamics: many-body spectroscopy

C. Senko et. al., in preparation

Page 35: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Start from

Drive to

N = 5

timeBy

Jxi,j

ampl

itude

Dynamics: many-body spectroscopy

C. Senko et. al., in preparation

Page 36: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Start from

Drive to

N = 5 Dynamics: many-body spectroscopy

C. Senko et. al., in preparation

Page 37: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

N = 5

Modulation frequency (kHz)

Measurement

Theory

Spin states in order of energy

Dynamics: many-body spectroscopy

Complete spectrum of 5 spins

C. Senko et. al., in preparation

Page 38: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

111111111110011111111111

111111111101101111111111

111111111011110111111111

111111110111111011111111

111111101111111101111111

111111011111111110111111

C. Senko et. al., in preparation

Dynamics: many-body spectroscopyN = 12

Page 39: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Modulation frequency (kHz)

Measurement

Theory

111111111110011111111111

111111111101101111111111

111111110111111011111111

111111101111111101111111

C. Senko et. al., in preparation

Dynamics: many-body spectroscopyN = 12

Page 40: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

FM

Po

pu

lati

on

+ +

+ +

+Y =

Drive system with all frequencies simultaneously(and control relative phases)

Create equal superposition of single-spin flip states

(W state)

Dynamics: quantum engineering (FM: N=4)

C. Senko et. al., in preparation

Page 41: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

)sin()( 11 tAtBy )sin( 22 tA

timeBy

Jxi,j

ampl

itude

+ ++Y =

2222

21 zyxxbipartite JJ

NJJNW

entangled

f = 340°

f = 160°

Dynamics: quantum engineering (FM: N=4)

C. Senko et. al., in preparation

Page 42: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

ji

JJ ji

0

,

“Ising Quench”(a) Prepare (↓+↑)N “kT = ”(b) Meaure correlations Cmidpoint, j (t)

Dynamics: “light cone” of interaction propagationwith long range interactions

Theory: Z. Gong and A. Gorshkov (JQI)

a=2.5N=41 N=41 N=41 a=1.5 a=0.5

N=11 J0=0.5kHz a=0.81

shorter rangelonger range

N=11 J0=0.5kHz a=1.3

neutrals (nearest-neighbor interactions): M. Cheneau et al., Nature 481, 484 (2012)

E.H. Lieb and D.W. Robinson, “The finite group velocity of quantum spin systems,” Commun. Math. Phys. 28, 251–257 (1972).

Page 43: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Dynamics: L-R bounds with long range interactions

PreliminaryData

N=11 spins

Page 44: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

• Formation of localized defects: nonequilibrium dynamicsM. Knap, E. Demler, I. Bloch (in preparation)

• XY model

• Spin-1: topological excitations

• Programmable fully connected spin network

Up next…

N beams, each with N spectral components

:ˆˆ )()(, jx

ix

ji

jiJH

2

)1( NNinteractions

S. Korenblit, et al., New. J. Phys. 14, 095024 (2012)

i

i

ji

jy

iy

jiy

jx

ix

jixeff BJJH )()()(,)()(, ˆˆˆˆ

Page 45: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Example: programming a 2D kagome lattice with a linear chain of 36 ions

atom # spectral component

Theory

J. Garcia-Ripoll et al., Phys. Rev. A 71, 062309 (2005)S. Korenblit et al., ArXiv 12010776 (2012)

Page 46: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

• GET MORE SPINS!!

B/J = 0.01B/J = 5

16 spin AFM simulation 18 spin FM simulation

mx = total spin along x

Prob

abili

ty

Page 47: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

N=16 ()

N=1

N=0 ()

Photon count histograms for N=16 ions

# photons

Global Spin Detection: 16 ions

N=8

Page 48: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Quantum simulation with N=16 ions

B>>J

B ~ J

B << J

Ferro couplings

Quantum Phase

Transition

Decreasing B/J

FM/AFM order

paramagnetic polarization

Anti-ferro couplings

G(1

,j)G

(1,j)

Distance from 1st ion, j

B ~ J

B << J

N=16 ()

N=0 ()

Theoretical photon count histograms

# photons

N=8

B>>J

Ferro couplings

Page 49: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

~few 100Be+ ions ina Penning Trap

J. Britton et al., Nature 484, 489 (2012)

QuantumHard-drive?

Page 50: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Going Cold: N>50

Page 51: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

GaTech Res. Inst.Al/Si/SiO2

Maryland/LPSGaAs/AlGaAs

Sandia Nat’l Lab: Si/SiO2

NIST-BoulderAu/Quartz

Page 52: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

a (C.O.M.)

b (stretch)

c (Egyptian)

d (stretch-2)

Mode competition – example: axial modes, N = 4 ions

Fluo

resc

ence

cou

nts

Raman Detuning dR (MHz)

-15 -10 -5 0 5 10 15

20

40

60

a b

c

d

a

bcd

2a

c-a

b-a

2b,a

+c b+

c

a+b

2a

c-a

b-a

2b,a

+c

b+c

a+b

carrier

axial modes only

modeamplitudes

cooling beam

D. Kielpinski, CM, D. Wineland, Nature 417, 709 (2002)

Page 53: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Large scale vision (103 – 106 atomic qubits?)

• New hierarchical and modular quantum computer architecture• Different model for circuit optimization• Error correction thresholds exist! (R. Raussendorf)

C.M., et al., ArXiv 1208.0391 (2012).

0.001 Hz then, ~1 Hz now, ~1 kHz soon

Page 54: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

ENIAC (1946) Solid-state transistor (1947)

Page 55: Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

right idea, wrong platform