Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf ·...

57

Transcript of Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf ·...

Page 1: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM
Page 2: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Quantum physics in quantum dotsKlaus Ensslin

Solid State Physics

AFM nanolithography

Multi-terminal tunneling

Rings and dots

Time-resolved charge detection

Zürich

Page 3: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

1970 1975 1980 1985 1990 1995 2000 2005 2010103

104

105

106

107

108

109Transistors per chip

Year

80786PentiumPro

Pentium80486

80386

80286

8086

8080

4004

?

micro nano

Moore‘s Law

gate length 100 nm

Page 4: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

1985 1990 1995 2000 2010 2015 202010-1

100

101

102

103

104Electrons per device

2005

Year

(Transistors per chip)

(16M)

(4M)

(256M)

(1G)

(4G)

(16G)

(64M)

micro nano

Vanishing electrons

gate length 100 nm

Page 5: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Quantized charge

voltage U

Capacitance of a capacitor:

C =Q

U=

charge

voltage-Q

Q

Energy to charge the capacitor:

E = U dQ0

Q=

Q

C dQ

0

Q=

Q2

2C

Energy to put one electron (Q=e) on a capacitor with C = 1 nF

E =1.6 10 19 As( )

2

2 10 9 F=1.3 10 29 Joule = 8 10 9 eV

Equivalent to temperature T = 0.1 mK

Page 6: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

10 nm

Size of a capacitor

-Q

Qcapacitance

C = 0

areaseparation

=

= 0

1 μm( )2

1 μm=10 16 F

1 μm

1 μm1 μm

equivalent to temperature T = 7 K

-> use nanotechnology to make a small capacitor

decoupled from its environment

Page 7: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

direct patterning of AlGaAs/GaAs

high mobility two-dimensional electron gas (2DEG)below sample surface

Matsumoto et al., APL 68, 34 (1996)Held et al., APL 73, 262 (1998)

2DEG: W. Wegscheider Uni Regensburg

Page 8: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

lateral resolution

1μm

0

1

2

3

4

600 800 1000 1200 1400

he

igh

t (n

m)

x(nm)

35 nm

Ti film

oxide line

writing speed 1μm/s

humidity 40 %

bias 8V

Page 9: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

oxidation of GaAs - reproducibility

Page 10: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

AFM galleryquantum dot

quantumpoint contacts

antidot lattice 4-terminal ring

rings, dots + qpc’s

1μm

ring + dots

3μm

Page 11: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Lithography on 8nm Ti top gates:

Martin Sigrist, Andreas Fuhrer

Double layer AFM lithography

Page 12: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Aharonov-Bohm effect

1

2

= 1 2 = geom. +

q

h

r A d

r l

conductance becomes a periodic function of magnetic flux

Page 13: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

AFM defined quantum ring

300 nm

source

drain

QPCQPC

QPCQPC

plungerplunger

current flow KekuléBull. Soc. Chim. Fr. 3, 98 (1865)-> benzene

Aharonov & BohmPhys. Rev. 115, 485-491 (1959)-> magnetic flux

Büttiker, Imry, & LandauerPhys. Lett. 96A, 365-367 (1983)-> persistent currents

Page 14: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

AB-oscillations in an open ring

At T=1.7K up to h/6e

Magnetoresistance Fourier-Spectrum

l (T) T 1, typical for e- - e- interaction

l (1.7K) 3μm ; l (100mK) = 60μm

Page 15: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

electron rings on different scales

1 μm

Benzene ring: Ring accelerator :Large Electron Positron Collider at CERN in Geneva

0.5nm

1013

8.6km

Aharonov-Bohm effect: one flux quantum (h/e) through ring area

her2 = 5000 T

her2 = 7•10 23 T

Page 16: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Coulomb blockaded quantum ring

Ering (meV)0 0.4 0.8 1.2

0.02

0.01

0.00

source

drain

QPC QPC

QPC QPC

plungerplunger

T 100 mK

Page 17: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Coulomb blockade

kT << e /2C2

eU = E - E << e /2C2Fsource

Fdrain

-> no current transport

EF E

Fsource drain

e /2C2

discrete level between

EFsource

and EFdrain

-> coherent resonant tunneling

sourcedrain

EF

e /2C2

EF

disk: C = 4 0rr

r =100 nm

> C =100 aF

> e2 /2C = 600 μeV 7K

Page 18: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

quantum ring

0

-0.2

-0.4

0.2

0.4

0.6

0.1 0.2 0.3V (V)plunger

B (

T)

h/e

Ering (meV)0 0.4 0.8 1.2

0.02

0.01

0.00

source

drain

QPC QPC

QPC QPC

plungerplunger

Page 19: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

perfect 1D ring in a magnetic field

B = 0 - > H =h

2

2mr2

2

2

energies : El =h

2

2mr2 l2

wave functions : l ( ) =1

2eil

B 0 > Em,l =h

2

2mr2 (m l)2

m,l ( ) =1

2eil

El (m )

[h 2 2m*r02 ]

fixed N

m magnetic flux (h/e)

Page 20: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

0.4

0

1.0

1.2E

(meV

)ri

ng

0.30.20 0.1B (T)

El (m )

[h 2 2m*r02 ]

fixedN

m magnetic flux (h/e)

13

energy spectrum

El =

h2l

m*r02 / 0 = I

l

l = 8; Il

22nA

Experiment:

Page 21: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

imperfect ring

m ,l ( ) =1

2eil

perfect ring: -> probability density uniformly

spread over the ring

-> cannot explain oscillations of

Coulomb peak amplitude

m ,l* ( ) =

1sin m( 0 )( )

0

1

2

3

4

5

6

-1 -0.5 0 0.5 1 1.5 2 2.5 3

magnetic flux (h/e)

Em,l

(h2 2mr2)

0

imperfection at position = 0

Page 22: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

symmetry breaking

asymmetric ringwith finite width

perfect ring

0 >

0 1 cos(2 )( )

Page 23: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

energy levels and wave functions

flux quanta through ring

ener

gy

Page 24: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

How to measure resistances

U

I

two-terminal

measurement of a

classical resistor

I

V four-terminal

measurement of a

classical resistor

-> elimination of contact

resistances

Page 25: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

How to measure resistances

U

I

two-terminal

measurement of a

quantum dot

What about more than two terminals?

How to differentiate between contacts and quantum dot?

Quantum dot in the Coulomb blockade regime:

high impedance device

Page 26: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

LG 1

LG 2

LG 3

LG 4

PG

lithographic size:600 450 nm2

electronic size:400 250 nm2

charging energy: EC

0.5 meV

mean level spacing: 35 eV

electronic temperature: kBT 10 eV

1

2

34

1 m

multi-terminal quantum dot

Renaud Leturcq & Davy Graf

Page 27: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Experimental set-up

VLG4

(V)

0.04

I/V

bia

s (e

2/h

)

lead 1

lead 2 lead 3

-0.24

0.02

0

-0.02

-0.04

0.04

0.02

0

-0.02

-0.04

0.02

0

-0.02

-0.22 -0.20 -0.18 -0.16

multi-terminal quantum dot

Page 28: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

conductance matrix

VLG4

(V)

0.04

conduct

ance

Gij (

e2/h

)

lead 1

lead 2 lead 3

-0.24

0.02

0

-0.02

-0.04

0.04

0.02

0

-0.02

-0.04

0.02

0

-0.02

-0.22 -0.20 -0.18 -0.16

I1I2

I3

=

G11 G12 G13

G21 G22 G23

G31 G32 G33

V1

V2

V3

multi-terminal quantum dot

current conservation:

Ii = 0 Gij

i=1

3

= 0

V1 = V2 = V3 Ii = 0 Gij

j=1

3

= 0

sum rules

Page 29: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

measurement set-upapply voltage to one terminalmeasure current in three terminals

Kirchhoff rules

G11 G12 G13

G21 G22 G23

G31 G32 G33

=

1

G1 + G2 + G3

G1(G2 + G3) G1G2 G1G3

G1G2 G2(G1 + G3) G2G3

G3G3 G3G2 G3(G1 + G2)

Gij: three-terminal conductanceGl: lead conductance

Gn =e2

4kT

1

nS

+1

nD

1

cosh 2 G VGn VG( )

2kT

sequentialtunneling:

Page 30: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

VLG4

(V)

Lea

d c

on

du

ctan

ces

Gk (

e2/h

)

Tu

nn

elin

g r

ate ℏ

(eV

)

Weak coupling regime

⇒ independent fluctuations

strong overlap

weak overlap

Individual coupling to the leads

⇒ extend of the wave function in the dot

in the vicinity of the leads.

F

~5

0 n

individual tunnel couplings

Page 31: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

D. Loss & D. DiVincenzo, PRA 57 (1998) 120

Spins in Coupled Quantum Dots for Quantum Computation

n.n. exchange local Zeeman

each dot has different g-factor

->individually addressable via ESR

magnetic field gradients

by current wire

Page 32: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

spin as a qubit

one spin 1/2 particle is a natural qubit

singlet state: 1

2( )

triplet states: , 1

2+( ),

(entangled)

two spin 1/2 particles:

Spin coherence times have been shown to be much longer

than charge coherence times, up to 100 μs

Page 33: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Spin qubits in quantum dots

General qubit state: two-level system

Possible realizations employing quantum dots:

charge qubit spin qubit

Zeeman

= cos2

0 + ei sin2

1

Page 34: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

S D

gate gate

gate

QPC

2 μm

detector

024

68

N N+1 N+2

I dot (

pA

)

Vgate

1.21.31.41.51.6

GQ

PC (

e2/h

)

Vgate

semi-circular dot with charge readout

Vgate (V)-0.1 -0.08 -0.06 -0.04 -0.02 0

4

5

6

dG

/dV

gate

(a.u

.)

Roland Schleser

Elisabeth Ruh

Thomas Ihn

See also Gardelis et al, PRB67, 073302 (2003), Elzermann et al. , Phys. Rev. B 67, 161308 (R), (2003)

Page 35: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

time-resolved detector signal

time (s)

2 1064 8

close tunnel barriers -> electron transport one-by-one

pinch-off one tunnel barrier completely:

- one-off time is a measure for the tunnel rate on and off the quantum dot

- one-off probability is a measure for the state occupation -> Fermi distribution

dG

/dV

gate

(a.u

.)

EF

1

0

source drain

dot

Page 36: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.40.5

0 0.2 0.4 0.6 0.8 1f (E)

E (m

eV)

Fermi-Dirac distribution

time (s)

2 106

0

1

0

1

0

1

0

1

0

1

0

1

fit: Fermi distribution

distribution extracted

from data

example sweeps

-> T ~ 150 mK

gate

vol

tage

Page 37: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Spectroscopy of

electronic states

source drainquantum

dot

EC

kBT

GS

GD

DE

VPG

(mV)

GS

D (

10

-3 e

2/h

) N

N+1

N-1

EC (+ )

kBT_ __ E C

source

drain

pg

Page 38: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Quantum point

contact as a charge

detector

VPG

(mV)

GS

D (

10

-3 e

2/h

) N

N+1

N-1

EC (+ )

kBT_ __ E C

source

drain

pg

VP

GQPC

2e2/h

M. Field et al., Phys. Rev. Lett. 70, 1311 (1993)

Page 39: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

A few electron

quantum dot

source

drain

pg

M. Sigrist

Page 40: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Detection of

single electron transport• Quantum point contact

as a charge detector

• Low bias voltage on the

quantum dot

source drainquantum

dot

kBT

Te = 350 mK

Page 41: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Low bias - thermal noise

: effective dot-lead tunnel coupling

E: energy difference between Fermi level of the lead and

electrochemical potential of the dotR. Schleser et al., Appl. Phys. Lett. 85, 2005 (2004)

L. M. K. Vandersypen et al., Appl. Phys. Lett. 85, 4394 (2004)

Page 42: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Determination of the individual

tunneling rates

• Exponential distribution of waiting times

for independent events

• S=< in>, D=< out>

N

N+1

Page 43: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Measuring the current

by counting electrons

• Count number n of electrons entering the dot within a

time t0: I = e<n>/t

0

• Max. current = few fA (bandwidth = 30 kHz)

• BUT no absolute limitation for low current and noise

measurements

– we show here: I few aA, SI 10-35 A2/Hz

N

N+1

Page 44: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Histogram of current fluctuations

maximum: mean current

width: fluctuations, noise

Page 45: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Histogram of current fluctuations

• Poisson distribution for

asymmetric coupling

• Sub-Poisson distribution for

symmetric coupling

Theory: Hershfield et al., PRB 47, 1967 (1993)Bagrets & Nazarov, PRB 67, 085316 (2003)

Page 46: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Current fluctuations vs. asymmetry

• Reduction of the second and third

moments for symmetric coupling

Theory: Hershfield et al., PRB 47, 1967 (1993)Bagrets & Nazarov, PRB 67, 085316 (2003)

asymmetric

barriers

a=1

symmetric

barriers

a=0

Page 47: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Current fluctuations vs. asymmetry• Reduction of the second and third

moments for symmetric coupling

Theory: Hershfield et al., PRB 47, 1967 (1993)Bagrets & Nazarov, PRB 67, 085316 (2003)

width - noise asymmetry

Page 48: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Time-resolved electron transport

- small current level (< atto-Amperes)

- low noise levels (SI 10-35 A2/Hz)

- higher correlations in current are accessible

-> correlations, interactions and

entanglement in quantum dots

bandwidth 20 kHz

Page 49: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Aharonov-Bohm with cotunneling

Co-tunneling

– Electrons are injected

from the right lead

– They pass through either

the upper or lower arm

– The interference take

place in the left QD

Page 50: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

WavesThe double slit experiment

double

slit

source

screen

Light

A. Tonomura et al.,

American Journal of Physics 57 117-120 (1989)

Page 51: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

WavesThe double slit experiment

double

slit

source

screenParticles

Page 52: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Double slit experiment<-> Aharonov Bohm

Simon Gustavsson

Matthias Studer

Page 53: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

huge visibility! >90%

little decoherence - > due to long dwell time in the collecting dot?

requires the couplings of upper and lower arm to be well symmetrized

1

-400 -200 0 200 4000

50

00

B-Field [mT]

counts

/ s

Aharonov-Bohm oscillations

Page 54: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

AB amplitude stable below T=400mK

Destruction most likely due to thermal broadening

Temperature dependence

Page 55: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

Future directions

• from quantum devices to quantum circuits

• non-equilibrium quantum mechanics

-> time dependent experiments, MHz - GHz

• detection of entanglement in solid state quantum systems

-> non-classical (microwave) radiation

• Combination of spatial and

temporal resolution

• novel quantum materials

graphene, nanowires

DDDD

QPC

Page 56: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM

thanksSimon Gustavsson

Thomas

Ihn

Martin SigristAndreas

Fuhrer

Renaud

Leturcq

Page 57: Quantum physics in quantum dots - MFS School Cargesemfs-cargese.grenoble.cnrs.fr/Ensslin.pdf · 2007-09-06 · Quantum physics in quantum dots Klaus Ensslin Solid State Physics AFM