Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven...

45
Quantum Optics in Quantum Optics in Wavelength Scale Wavelength Scale Structures Structures SFB SFB Summer School Summer School Blaubeuren Blaubeuren July 2012 July 2012 J. G. Rarity J. G. Rarity University of Bristol University of Bristol [email protected] [email protected]

Transcript of Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven...

Page 1: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Quantum Optics in Quantum Optics in

Wavelength Scale Wavelength Scale

StructuresStructures

SFBSFB Summer School Summer School

BlaubeurenBlaubeuren

July 2012July 2012

J. G. RarityJ. G. RarityUniversity of BristolUniversity of Bristol

[email protected]@bristol.ac.uk

Page 2: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Confining light: periodic dielectric structuresPhotonic crystals

From; Photonic Crystals:From; Photonic Crystals: Moulding the Flow of Light, Joannopoulos Moulding the Flow of Light, Joannopoulos

et al, 2008, Princeton University Presset al, 2008, Princeton University Press

Confining light: periodic dielectric structuresPhotonic crystals

Page 3: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Quantum optics in wavelength scale structures

Motivation

More efficient

• single photon sources

• gates, Hybrid QIP.

Content

• 2-level system in a cavity

• Charged quantum dots in cavity

• Spin-photon interface

• Quantum repeater

• Progress towards experiment

Page 4: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

True single photon sources

V+

Particle

like Wave-like during propagationParticle

like

Single atom or ion (in a trap)

Single dye molecule

Single colour centre (diamond NV)

Single quantum dot (eg InAs in GaAs)

Key problem: how to get single photons

from source efficiently coupled into

single spatial mode

Page 5: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Single photons from NV- centres

in diamond

Page 6: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Solid immersion lens fabricated on diamond

using focussed ion beam

~5% collection into 0.9NA lens from flat surface

~30% collection into SIL + 0.9NA lens

FDTD simulation

Page 7: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Serendipitous discovery

of single NV centres

under SILs

on Polycrystalline

diamond (E6)

J.P. Haddon et al

APL 97, 241901 2010

Page 8: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

QUANTUM DOTS IN MICRO

CAVITIES: SINGLE PHOTON

SOURCES

Page 9: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

FIB etching ICP/RIE etching

Pillar microcavities for enhanced out-

coupling of photons from single quantum

dots

Page 10: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Cavity Quantum Electrodynamics (CQED)

Weak coupling

Cavity decay

rate τω

κκ 1==+Q

s

QD dipole decay rate γ

sκκκ

η+

~Efficiency

Purcell Factor ( )effV

nQ

P2

3

4

31~

π

λ+

Weak cavity coupling γκκ ,sg +<<

Page 11: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

0 2000000 4000000 6000000 8000000 10000000

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Ex Field Intensity (a.u.)

Time(ps)

FDTD simulations: 0.50μm

radius micropillar microcavity:

Plane wave resonance=1001 nm

15 mirror pairs on top and 30 bottom

0

10

20

30

40

50

60

70

80

90

100

12 13 14 15 16 17 18 19 200

1500

3000

4500

6000

7500

9000

10500

12000

Q-factor

Number of top mirror pairs (Nt)

Efficiency (%)

Efficiency

Q-factor

Page 12: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Experimental Setup

Hanbury-Brown Twiss measurement

)(

):(~

)()()(

2

)2(

tp

ttp

n

tntng

τττ

+

><

>+<=

Time

Interval

Analyser

Page 13: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Single QD emission and

temperature tuning

962 963 964 965 966 967 968

50K48K46K

44K42K40K38K

36K34K32K

4.3K7K

10K15K

20K22K24K

26K

28K30K

PL Intensity (arb. units)

Wavelength (nm)

3µm×3µm

FIB

0 5 10 15 20 25 30 35 40 45 50 551282

1283

1284

1285

1286

1287

Energy (meV)

Temperature (K)

QD1

QD2

Cavity mode

• Single QD emission can be observed in smaller pillar at low excitation power

• QD emission line shifts faster than cavity mode

Page 14: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Single photon generation in circular pillars

With increasing excitation power

• QD emission saturates

• Cavity mode intensity develops

Page 15: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Single photon generation in circular pillars

( ) 11)()( )2(2)2( +−= τρτ ggb

backgroundcavitysignal

signal

III

I

++=ρ

2)2( 1)0( ρ−=bg

� g(2) (0)=0.05 indicates multi-

photon emission is 20 times

suppressed.

� g(2) (0) increases with pump

power due to the cavity mode

Page 16: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Progress outside Bristol

Single-photon sources

• Optically driven with multiphoton emission <2%

• 1.3µm single photons: Quantum Key Distribution demonstrated over 35km

• Electrically driven single-photon sources Single photon LED

• HoM Interference demonstrated between separate photons from the same QD (75% visibility)

Bennett et al, Optics Exp 13, 7778 (2005)

Journal of Optics B 7, 129-136 (2005).

Entangled photon pairs from Biexciton

Exciton cascaded emission

Nature 439, 179-182, PRL 102, 030406 (2009),

Douce et al., Nature 466, 217 (2010)

Biexciton State

Ground State

Exciton States

‘bright’ m=±1

‘dark’ m=±2

Large dot

15nm

Large dot

15nm

Page 17: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

On-chip generation and transmission of single-photons

� In-plane emission of single

photons from a semiconductor

QD.

1.38 1.39 1.400

5000

10000

15000

20000

25000

30000

Intensity (counts/s)

Photon energy (eV)

XX

X

-40 -20 0 20 400

20

40

Coincidences

Time (ns)

0.2

0.4

0.6

0.1 1

10000

100000

Counts per second

Excitation power (µµµµW)

g(2) (0)

X peak - Pulsed mode

More details: Appl. Phys. Lett. 99, 261108 (2011)

Page 18: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Hybrid QIP

Page 19: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Linear gates η<0.5 F>0.9

Non-linear optics?

The PROBLEM: many qubits quantum processor

U

NN

g F,η

Unitary transform

N

Single Qubit source

Single 2-level ~ 2-10%

Heralded from pair ~ 80%

N

Detectors

Si 600-800nm ~70% (100%?)

InGaAs 1.3-1.6um ~30%

Superconducting~10-88%

Linear gates η<0.5 F>0.99

Non-linear optics η~1 F>0.9?

Throughput~ RFfNg

Nd

Ns ).(.ηηη

Page 20: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Spin photon interface using charged

quantum dots in microcavities

C.Y. Hu, A. Young, J. L. O’Brien, W.J. Munro, J. G. Rarity, Phys. Rev. B 78,

085307 (08)

C.Y. Hu, W.J. Munro, J. G. Rarity, Phys. Rev. B 78, 125318 (08)

C.Y. Hu, W.J. Munro, J. L. O’Brien , J. G. Rarity, Arxiv: 0901.3964(09)

C.Y. Hu, J. G. Rarity, Arxiv: 1005.5545, PRB XX, XXX (2011)

Page 21: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Cavity Quantum Electrodynamics (CQED)

eff

2

0

2

4 mV

feg

r

πεπε

h=

QD-cavity

interaction

Cavity decay

rate Q

s

ωκκ

h=+

QD dipole decay rate γ

Strong

coupling

f=oscillator strength

m= electron

effective mass

V= cavity volume

To optimise g/κ

Maximise Q/V1/2

4

sgκκ +

>

Page 22: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Reflection coefficient

Giant optical Faraday rotation

Phase shift gate

Single-sided cavity

( )↓↓⊗+↑↑⊗∆=∆

RRLLieU

ϕϕ )(ˆ

( )

1)~( ,

2tan2)( 1)( 0 1

0

=>>

−+±=== −

c

c

rg

rg

ωωγκκωω

πωϕωCold Cavity

Hot cavity

C.Y. Hu, Rarity et al, Phys. Rev. B 78, 085307 (08)

C.Y. Hu, Rarity et al, Phys. Rev. B 78, 125318 (08)

Page 23: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission
Page 24: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

� Electron spin ↑, L-light feels a hot cavity and R-light feels a cold cavity

� Electron spin ↓, R-light feels a hot cavity and L-light feels a cold cavity

� By suitable detuning can arrange orthogonal, Giant Faraday rotation angle

2 45

2

00 πϕθ

ϕϕθ >∆=−=

−= ↓↑

FF

Giant optical Faraday rotation

Achievable with

1 5.1)(

1~ 1.0)(

>>>+

>+

ss

ss

g

g

κκ

κκ

κκ

κκLow efficiency

High efficiency

Page 25: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Quantum non-demolition detection of a single electron spin

Input light )(2

1LRH +=

Spin up

↑+ →↑⊗ 0)2/(45

2

1πUH

&

Spin down

↓− →↓⊗ 0)2/(45

2

1πUH

&

Spin superposition state ↓+↑ βα

{ }↓−+↑+→↓+↑⊗ 00 45452

1)( βαβαH

C.Y. Hu, et al, Phys. Rev. B 78, 085307 (08)

A photon spin

entangler!

Page 26: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Photon-spin quantum interface

(a)

State transfer from photon to spin

(b)

State transfer from spin to photon

• Deterministic

• High fidelity

• Two sided cavity makes an entangling

beamsplitter (Phys Rev B 80, 205326, 2009)

Page 27: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Quantum Repeater: arXiv1005.5545

Page 28: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Quantum Repeater: arXiv1005.5545

Page 29: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Experiments

• Strong coupling seen in resonant reflection

experiment

• Phase shift between resonant and non-

resonant case ~0.2 radians

• Young, Rarity et al arXiv 1011.384, PRB

2011

Page 30: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Reflection spectroscopyConditional phase shift interferometer

)(sin ωφ=×

HV

AD

Page 31: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Empty cavity

-0.10 -0.05 0.00 0.05 0.100.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

|r(ω)|

Detuning (meV)

κs=0

κs=κ/5

κs=3κ

-0.10 -0.05 0.00 0.05 0.10-4

-3

-2

-1

0

1

2

3

4

φ (rad)

Detuning (meV)

κs=0

κs=κ/5

κs=3κ

Page 32: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Resonant reflection spectra of an empty 4µ pillar

(Q~84000)

902.01 902.02 902.03 902.04 902.05 902.06

180000

200000

220000

240000

260000

280000

300000

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Intensity (counts)

Wavelength(nm)

Reflected intensity

Lorentzian fit

Phase

Phase Radians

Page 33: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

-0.2 -0.1 0.0 0.1 0.2-4

-3

-2

-1

0

1

2

3

4

g=5k κs=κ/5

g=5k κs=3κ

g=k κs=κ/5

g=k κs=3κ

φ (rad)

Detuning (meV)

Strongly coupled cavity on

resonance

-0.2 -0.1 0.0 0.1 0.2

0.5

0.6

0.7

0.8

0.9

1.0

|r(ω)|

Detuning (meV)

g=5k κs=κ/5

g=5k κs=3κ

g=k κs=κ/5

g=k κs=3κ

Page 34: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Resonant reflection spectra of a 2.5µ pillar containing a single dot:

temperature tuning to resonance (Q~54000)

Page 35: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Comparing PL and resonant spectroscopy

Page 36: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Conditional phase seen between a

dot on and off-resonance with cavity

g~9.4ueV κ+ κs ~ 26ueV γ~5ueV

g> (κ+ κs + γ)/4 ∆φ~0.05 rad

(0.12rad)

21K

22K

21K

22K

Page 37: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Attojoule switch

Input a few photons

Input enough photons (1 in principle) to saturate the

dot and return to weak coupling.

Change phase of reflection, modulate D and A

All optical switch (1 photon ~0.1 attojoule)

Page 38: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Future:

• Improve coupling and reduce losses to achieve phase shift > pi/2

• Establish strong coupling with charged dots.• modulation doped

• electrically charged

• Investigate dynamics of spin via Faraday rotation• We cool the spin by measurement

• Creating spin superposition states (hard)

• Rotating spin around equator for spin echo (easy=U(φ))

• Spin coherence times (of microseconds?)

• Nuclear ‘calming’ to extend coherence times

Page 39: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Approaches to 3D cavities

With Daniel Ho

Page 40: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Z

XY

Y

XZ

Y

XZ

Top view of

central 2D

Photonic

Defect

Layer

Top view

1D Photonic Defect in 3D Inverted Structure

FCC array of spherical holes in Silicon

Page 41: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

The finite difference time domain method FDTD

Page 42: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

λres= 536.65 nm, Eymode

3.000000E+02

Y

XZ

(c)

Page 43: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

Preliminary calculations of cavity volume and Q-

factor: inverse FCC in n=3.5 material ‘silicon’.

• Veff~ 9e-5µm3 =0.19(λ/2n)3

• Q = 80856

• Q/V = 2.84E8

• Q/(V)0.5 = 4.8E6 For NV centres

κ/2π ~ 6 GHz

γ/2π ~ 3-10 MHz (ZPL)

g/2π ~ 20 GHz

Page 44: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

3D Two-photon Lithography

5µm

67µm

6µm

100µm

2µm

10µm

100 nm

200 nm

100µm

Page 45: Quantum Optics in Wavelength Scale Structures€¦ · Single-photon sources • Optically driven with multiphoton emission

45

Summary and Outlook

• Interaction between light and matter in wavelength scale optical structures

• Quantum dots in nanocavities, • 1D systems such as pillar microcavities

• Diamond based microstructures• Solid immersion lenses

• suspended waveguide photonic crystal cavities

• Strong coupling leading to gates• Attojoule classical switches

• Spin photon interface

• Quantum ‘repeater’

• Modelling 3D systems capable of showing strong coupling