Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

35
Quantum Harmonic Oscillator 2006 Quantum Mechanics Prof. Y. F. Chen Quantum Harmonic Oscillator

Transcript of Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

Page 1: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

Quantum Harmonic Oscillator

2006 Quantum Mechanics Prof. Y. F. Chen

Quantum Harmonic Oscillator

Page 2: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

1D S.H.O. : linear restoring force , k is the force constant

& parabolic potential

.

harmonic potential’s minimum at = a point of stability in a system

2006 Quantum Mechanics Prof. Y. F. Chen

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

xkxF )(

2/)( 2xkxV

A particle oscillating in a harmonic potential

0x

Page 3: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

Ex : the positions of atoms that form a crystal are stabilized by the pre

sence of a potential that has a local min at the location of each atom

∵ the atom position is stabilized by the potential, a local min results in th

e first derivative of the series expansion = 0

→ a local min in V(x) is only approximated by the quadratic function of a

H.O.

2006 Quantum Mechanics Prof. Y. F. Chen

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

0

)()(

!

1)(

n

no

xxn

n

xxdx

xVd

nxV

o

2

2

2

)()(

2

1)(

)()()( o

xx

oxx

o xxdx

xVdxx

dx

xdVxVxV

oo

2

2

2

)()(

2

1)()( o

xx

o xxdx

xVdxVxV

o

Page 4: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

for the H.O. potential          , the time-indep Schrödinger wa

ve eq. :

use(1) & (2)

making the substitution

→ called Hermite functions.

2006 Quantum Mechanics Prof. Y. F. Chen

Schrödinger Wave Eq. for 1D Harmonic Oscillator

Quantum Harmonic Oscillator

2/)( 22 xmxV

)()(2

1

222

2

22

xExxmxd

d

mnnn

xm

n

n

E2

0)(~)(~2

2

2

nn

n

d

d

)()(~ 2/2

nn He

0)(1)(

2)(

2

2

nnnn Hd

dH

d

Hd

Page 5: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

One important class of orthogonal polynomials encountered in QM & las

er physics is the Hermite polynomials, which can be defined by the form

ula

the first few Hermite polynomials are :

in general :   

.

2006 Quantum Mechanics Prof. Y. F. Chen

Hermite Functions

Quantum Harmonic Oscillator

,2,1,0,)1()(2

2

nd

edeH

n

nn

n

128)(,24)(,2)(,1)( 33

2210 HHHH

knn

n

k

n knk

nH 2

]2/[

0

)2()!2(!

!)1()(

Page 6: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

the Hermite polynomials come from the generating function :

                  .

→ Taylor series :

                   .

substituting into   :

→ recurrence relation :

2006 Quantum Mechanics Prof. Y. F. Chen

Hermite Functions

Quantum Harmonic Oscillator

tn

tHetg

n

nn

tt ,!

)(),(0

22

tt

g

n

tetg

n tn

nntt ,

!),(

0 0

22

)()1(2

222

0

)(

0

n

u

n

unn

t

tn

n

tn

n

Hud

edee

te

t

g

2 2

0

( , ) ( )!

nt t

nn

tg t e H

n

gtt

g)22(

,2,1,)(2)(2)( 11 nHnHH nnn

Page 7: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

substituting into   :

→ recurrence relation :

with &

→ 2nd-order ordinary differential equation for

eigenvalues of the 1D quantum H.O. :

2006 Quantum Mechanics Prof. Y. F. Chen

Hermite Functions

Quantum Harmonic Oscillator

2 2

0

( , ) ( )!

nt t

nn

tg t e H

n

gtx

g2

1

00 !

)(2

!

)(

n

n

nn

n

n tn

Ht

n

H

,2,1,)(2)(

1 nHnd

dHn

n

1 1( ) 2 ( ) 2 ( )n n nH H n H 1

( )2 ( )n

n

dHn H

d

)(nH

0)(2)(

2)(

2

2

n

nn Hnd

dH

d

Hd

2

112 nEn nn

Page 8: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

the eigenfunctions of 1D H.O. :

with the help of , find normalization consta

nt , →

(i) in CM, the oscillator is forbidden to go beyond the potential, beyond t

he turning points where its kinetic energy turns negative.

(ii) the quantum wave functions extend beyond the potential, and thus th

ere is a finite probability for the oscillator to be found in a classically forb

idden region  

2006 Quantum Mechanics Prof. Y. F. Chen

Stationary States of 1D Harmonic Oscillator

Quantum Harmonic Oscillator

)()(~ 2/2

nnn HeC

!2)( 22

ndHe nn

nC

!2)( 22

ndHe nn

Page 9: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

n=0 n=1

n=2 n=3

n=4 n=5

n

n=0 n=1

n=2 n=3

n=4 n=5

n=0 n=1

n=2 n=3

n=4 n=5

n=0 n=1

n=2 n=3

n=4 n=5

n

2006 Quantum Mechanics Prof. Y. F. Chen

Stationary States of 1D Harmonic Oscillator

Quantum Harmonic Oscillator

Page 10: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

the classical probability of finding the particle inside a region    :

.

the velocity can be expressed as a function of  :

2006 Quantum Mechanics Prof. Y. F. Chen

Stationary States of 1D Harmonic Oscillator

Quantum Harmonic Oscillator

2 / ( )( )

2 /cl

t vP

T

( ) sin ( )v A t

22)( Av

2 2

1 1( )clP

A

Page 11: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

(i) the difference between the two probabilities for n=0 is extremely

striking there is no zero-point energy in CM ∵

(ii) the quantum and classical probability distributions coincide when the

quantum number n becomes large

(iii) this is an evidence of Bohr’s correspondence principle

2006 Quantum Mechanics Prof. Y. F. Chen

Stationary States of 1D Harmonic Oscillator

Quantum Harmonic Oscillator

n=0 n=30n=30

Page 12: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

(1) classically, the motion of the H.O. is in such a manner that the positi

on of the particle changes from one moment to another.

(2) however, although there is a probability distribution for any eigenstat

e in QM, this distribution is indep of time → stationary states

(3) even so, the Ehrenfest theorem reveals that a coherent superpositio

n of a number of eigenstates, i.e., so-called “wave packet state”, will lea

d to the classical behavior

2006 Quantum Mechanics Prof. Y. F. Chen

Stationary States of 1D Harmonic Oscillator

Quantum Harmonic Oscillator

Page 13: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

show :

using the generation function , we can have

∵ the orthogonality property, the integration leads to

as a consequence, we can obtain

2006 Quantum Mechanics Prof. Y. F. Chen

Stationary States of 1D Harmonic Oscillator

Quantum Harmonic Oscillator

!2)( 22

ndHe nn

0 0

22

!!)()(

2222

m

mn

nmn

sstt

mn

stHHeeee

0

222)( )(!!

22

nn

nnststts dHe

nn

stedee

0

2

0

)(!!!

2 2

nn

nn

n

n

dHenn

st

n

ts

!2)( 22

ndHe nn

Page 14: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

given a mean rate of occurrence r of the events in the relevant interval,

the Poisson distribution gives the probability that exactly n

events will occur

for a small time interval the probability of receiving a call is .

the probability of receiving no call during the same tiny interval is

given by . the probability of receiving exactly n calls in the total

interval is given by

2006 Quantum Mechanics Prof. Y. F. Chen

The Poisson Distribution

Quantum Harmonic Oscillator

)( nXP

t tr

t

tr1

tt

trtPtrtPttP nnn )(1)()( 1

Page 15: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

rearranging , dividing through by ,

and letting , the differential recurrence eq. can be found and writt

en as

for :

which can be integrated to lead to

with the fact that the probability of receiving no calls in a zero time

interval must be equal to unity :

2006 Quantum Mechanics Prof. Y. F. Chen

The Poisson Distribution

Quantum Harmonic Oscillator

trtPtrtPttP nnn )(1)()( 1 t

0 t

)()()(

1 tPrtPrtd

tdPnn

n

0n )()(

00 tPrtd

tdP

trePtP )0()( 00

)0(0P

tretP )(0

Page 16: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

substituting into for :

, repeating this process, can be found to be

the sum of the probabilities is unity :

the mean of the Poisson distribution :  

2006 Quantum Mechanics Prof. Y. F. Chen

The Poisson Distribution

Quantum Harmonic Oscillator

tretP )(0 )()()(

1 tPrtPrtd

tdPnn

n 1n

tretrtP )()(1 )(tPn

( )( )

!

nr t

n

r tP t e

n

1!

)(

!

)()(

000

trtr

n

ntr

n

trn

nn ee

n

tree

n

trtP

rtn

rttree

n

trntnPn

n

ntr

n

trn

nn

1

1

00 !)1(

)()(

!

)()(

Page 17: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

in other words, the Poisson distribution with a mean of is given by :

2006 Quantum Mechanics Prof. Y. F. Chen

The Poisson Distribution

Quantum Harmonic Oscillator

en

Pn

n!

)(

Page 18: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

The Schrödinger coherent wave packet state can be generalized as

with

it can be found that the norm square of the coefficient is exactly

the same as the Poisson distribution with the mean of

2006 Quantum Mechanics Prof. Y. F. Chen

Schrödinger Coherent States of the 1D H.O.

Quantum Harmonic Oscillator

0

)(~),(n

tEi

nn

n

ect

2/2

!

)( en

ec

ni

n

2|| nc

2

Page 19: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

substituting & into

using

2006 Quantum Mechanics Prof. Y. F. Chen

Schrödinger Coherent States of the 1D H.O.

Quantum Harmonic Oscillator

1

2nE n

)(!2)(~ 2/2/1 2

n

nn Hen

0

( , ) ( ) :nEi t

n nn

t c e

2 2

2 2

/ 2 / 2 ( 1/ 2)

0

( )

( ) / 2 / 21/ 4

0

( ) 1( , ) ( )

! 2 !

/ 21 ( )

!

i ni n t

nnn

ni t

i tn

n

et e H e e

n n

ee e H

n

2 2

0

( , ) ( ) :!

nt t

nn

tg t e H

n

2 2

2 2

2( ) / 2 / 2 ( ) ( )

1/ 4

( ) / 2 / 2 2 2( ) ( )1/ 4

1( , ) exp / 2 2

1 exp / 2 2

i t i t i t

i t i t i t

t e e e e

e e e e

Page 20: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

as a result, the probability distribution of the coherent state is given by :

it can be clearly seen that the center of the wave packet moves in the p

ath of the classical motion

2006 Quantum Mechanics Prof. Y. F. Chen

Schrödinger Coherent States of the 1D H.O.

Quantum Harmonic Oscillator

2 2( ) 2

2 2 2

2

1( , ) ( , ) ( , ) exp cos[2( )] 2 2 cos( )

1 exp 2 cos ( ) 2 2 cos( )

1 exp [ 2 cos( )]

P t t t e t t

t t

t

)cos(2 t

Page 21: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

with , &

the operator acting on the eigenstate

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

xm

1 1( ) 2 ( ) 2 ( )n n nH H nH 21/ 2

/ 2( ) 2 ! ( )nn nn e H

x )(~ n

)(~)(~12

1

)()(2

1!2

)(!2

)(!2)(~ˆ

11

112/2/1

2/2/1

2/2/1

2

2

2

nn

nnn

nn

nn

n

nnm

HnHenm

Henm

Henm

x

Page 22: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

in a similar way, the operator acting on the eigenstate

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

)(~ nxp

)(~)(~12

1

)()(2

1!2

)()()(!2

)(!2

)(!2)(~ˆ

11

112/2/1

2/2/2/1

2/2/1

2/2/1

2

22

2

2

nn

nnn

nnn

nn

nn

nx

nnmi

HnHenmi

HeHenmi

Henmi

Henx

ip

Page 23: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

&

consequently, it is convenient to define 2 new operators :

&

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

)(~1)(~ˆ1

ˆ2

11

nnx np

mix

m

)(~)(~ˆ1

ˆ2

11

nnx np

mix

m

xp

mix

ma ˆ

2

1ˆ†

xp

mix

ma ˆ

2

Page 24: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

the operator is the increasing (creation) operator :

this means that operating with on the n-th stationary states yields a s

tate, which is proportional to the higher (n +1)-th state

the operator is the lowering (annihilation) operator :

this means that operating with on the n-th stationary states yields a s

tate, which is proportional to the higher (n -1)-th state  

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

†a

)(~1)(~ˆ 1† nn na

†a

a

)(~)(~ˆ 1 nn na

a

Page 25: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

in terms of & , the operators & can be expressed as :

&

we can find the commutator of these 2 ladder operators :

which is the so-called canonical commutation relation

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

a †a x xp

†ˆˆ2

ˆ aam

x

†ˆˆ2

ˆ aam

ipx

1ˆ,ˆˆ,ˆ2

1

ˆ1

ˆ,ˆ1

ˆ2

1]ˆ,ˆ[ †

xpi

pxi

pm

ixm

pm

ixm

aa

xx

xx

Page 26: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

is the hermitian conjugate  :

proof :

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

†a a

1

†221 |ˆ||ˆ| aa

1 2 1 2

1 2 1 2

2 1 2 1

2 1

1 1ˆ ˆ ˆ| |

2

1 1ˆ ˆ

2

1 1ˆ ˆ

2

1 1ˆ ˆ

2

x

x

x

x

ma x i p

m

mx i p

m

mx i p

m

mx i p

m

†2 1ˆ | |a

Page 27: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

with , &

the operator acting on the eigenstate

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

xm

1 1( ) 2 ( ) 2 ( )n n nH H nH 21/ 2

/ 2( ) 2 ! ( )nn nn e H

x )(~ n

)(~)(~12

1

)()(2

1!2

)(!2

)(!2)(~ˆ

11

112/2/1

2/2/1

2/2/1

2

2

2

nn

nnn

nn

nn

n

nnm

HnHenm

Henm

Henm

x

Quantum Harmonic Oscillator

Page 28: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

in a similar way, the operator acting on the eigenstate

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

)(~ nxp

)(~)(~12

1

)()(2

1!2

)()()(!2

)(!2

)(!2)(~ˆ

11

112/2/1

2/2/2/1

2/2/1

2/2/1

2

22

2

2

nn

nnn

nnn

nn

nn

nx

nnmi

HnHenmi

HeHenmi

Henmi

Henx

ip

Quantum Harmonic Oscillator

Page 29: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

&

consequently, it is convenient to define 2 new operators :

&

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

)(~1)(~ˆ1

ˆ2

11

nnx np

mix

m

)(~)(~ˆ1

ˆ2

11

nnx np

mix

m

xp

mix

ma ˆ

2

1ˆ†

xp

mix

ma ˆ

2

Quantum Harmonic Oscillator

Page 30: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

the operator is the increasing (creation) operator :

this means that operating with on the n-th stationary states yields a s

tate, which is proportional to the higher (n +1)-th state

the operator is the lowering (annihilation) operator :

this means that operating with on the n-th stationary states yields a s

tate, which is proportional to the higher (n -1)-th state  

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

†a

)(~1)(~ˆ 1† nn na

†a

a

)(~)(~ˆ 1 nn na

a

Quantum Harmonic Oscillator

Page 31: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

in terms of & , the operators & can be expressed as :

&

we can find the commutator of these 2 ladder operators :

which is the so-called canonical commutation relation

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

a †a x xp

†ˆˆ2

ˆ aam

x

†ˆˆ2

ˆ aam

ipx

1ˆ,ˆˆ,ˆ2

1

ˆ1

ˆ,ˆ1

ˆ2

1]ˆ,ˆ[ †

xpi

pxi

pm

ixm

pm

ixm

aa

xx

xx

Quantum Harmonic Oscillator

Page 32: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

is the hermitian conjugate  :

proof :

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

†a a

1

†221 |ˆ||ˆ| aa

1 2 1 2

1 2 1 2

2 1 2 1

2 1

1 1ˆ ˆ ˆ| |

2

1 1ˆ ˆ

2

1 1ˆ ˆ

2

1 1ˆ ˆ

2

x

x

x

x

ma x i p

m

mx i p

m

mx i p

m

mx i p

m

†2 1ˆ | |a

Quantum Harmonic Oscillator

Page 33: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

with

&

using the commutation relation

define the so-called number operator :

→ the H.O. Hamiltonian takes the form :

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

††††††2

ˆˆˆˆˆˆˆˆ4

ˆˆˆˆ42

ˆaaaaaaaaaaaa

m

px

††††††22 ˆˆˆˆˆˆˆˆ4

ˆˆˆˆ4

ˆ2

1aaaaaaaaaaaaxm

aaaaxmm

pH x ˆˆˆˆ

2

1

2

ˆˆ ††222

1ˆˆˆˆ]ˆ,ˆ[ ††† aaaaaa

2

1ˆˆˆ †aaH

aaN ˆˆˆ †

2

1ˆˆ NH

Quantum Harmonic Oscillator

Page 34: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

the eigenstates of can be found to be coherent states :

coherent states have the minimum uncertainty

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

a );0,(

0

2/||0

ˆ2/|| )(~!

)(~);0,(2†2

nn

na

neee

†ˆ ˆ ˆ( ) ( ,0; ) ( ,0; ) ( ,0; ) ( ,0; )2

2 ( ) cos

2

i x a am

m m

22 †

2 2

ˆ ˆ ˆ( ,0; ) ( ,0; ) ( ,0; ) ( ,0; )2

( 1)2

x a am

m

22 2ˆ ˆ( ,0; ) ( ,0; ) ( ,0; ) ( ,0; )2

x x xm

Page 35: Quantum Harmonic Oscillator 2006 Quantum MechanicsProf. Y. F. Chen Quantum Harmonic Oscillator.

as a consequence, we obtain the minimum uncertainty state :

2006 Quantum Mechanics Prof. Y. F. Chen

Creation & Annihilation Operators

Quantum Harmonic Oscillator

†ˆ ˆ ˆ( ) ( ,0; ) ( ,0; ) ( ,0; ) ( ,0; )2

( ) 2 sin2

x

mii p i a a

mi m

22 †

2 2

ˆ ˆ ˆ( ,0; ) ( ,0; ) ( ,0; ) ( ,0; )2

( 1)2

x

mp a a

m

2);0,(ˆ);0,();0,(ˆ);0,( 222 m

ppp xxx

2

xpx