Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1...

37
Quantum computing with molecular nanomagnets Spring school on NANOMAGNETISM and SPINTRONICS Cargese, Corsica May 2005 M. Affronte INFM - S 3 National Research Center on nanoStructures and Biosystems at Surfaces Modena, Italy.

Transcript of Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1...

Page 1: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Quantum computing withmolecular nanomagnets

Spring school on

NANOMAGNETISM and SPINTRONICS

Cargese, Corsica May 2005

M. AffronteINFM - S3 National Research Center

on nanoStructures and Biosystems at SurfacesModena, Italy.

Page 2: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Overview of the presentation.Part 1• Back in time…• Classical bit & qubit• Quantum algorithms• Quantum hardware• Read out.

Part 2•Recipe: the DiVincenzo criteria•Grover’s algorithm with Mn12

•AF spin clusters•Cr7Ni molecular ring as qubits.

Page 3: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Motivations:• Miniaturization: Moore’s law

Gordon Moore“every 1.5 years complexity doubles”

Page 4: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

a

b

Ê

Ë Á

ˆ

¯ ˜

fa

b

Ê

Ë Á

ˆ

¯ ˜

Quantum gate

Q

Page 5: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

abstract notion of programmable machine:the Turing machine.

Can any algorithm process be simulated efficiently using a Turingmachine?

Efficient algorithm is one that runs in time polynomial in size of theproblem solved.

Alan Turing (1912-1954)

Page 6: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

R. Feynman (‘80s).

… there seemed to be essential difficulties insimulating quantum mechanical systems

He suggested to build computers basedon the principles of quantum mechanics

Page 7: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Universal Quantum computer• 1985 D. Deutsch suggested that a universal quantum

computer is sufficient to efficiently simulate an arbitraryphysical system.

Page 8: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Parallelism Computer- Quantum system

Processor - Physical systemComputation - Motion

Input -Initial stateRules -Law of motion

Output -Final state

Page 9: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

classical circuits

bit 0, 1

the first transistor made of Germanium0.5”

logic Boolean gates:

Universal set of gates:

Truth table

Page 10: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Bit & qubit

Page 11: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Atomsatoms of rubidium (ENS experiments) or berylium (NIST experiments)

Page 12: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Quantum algorithms.Quantum mechanics: algebra of s=1/2Logic gates.Quantum Algorithms:

Loss-DiVincenzo, Universal setShor’s,Grover’s,

Page 13: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Representation of qubitDirac’s notation of two-level system

0 , 1

y = a 0 + b 1 ¨ Æ æ a

b

Ê

Ë Á

ˆ

¯ ˜

Bloch sphere

y = cos J2

0 + eif sin J2

1†

y y = a2

+ b2

=1

Page 14: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Spin 1/2

x

y

z

Pauli matrices

is a perfect qubit!

Ø

H = gmBS ⋅ B

S =12

r s

s x =0 11 0

Ê

Ë Á

ˆ

¯ ˜ ;s y =

0 -ii 0

Ê

Ë Á

ˆ

¯ ˜ ;s z =

1 00 -1

Ê

Ë Á

ˆ

¯ ˜ ;

Page 15: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Multiple qubit

00 ; 01 ; 10 ; 11

y = a00 00 +a01 01 +a10 10 +a11 11

x1x2...xn

xi = 0,1Hilbert space 2n

y =

a1

a2

...an

Ê

Ë

Á Á Á Á

ˆ

¯

˜ ˜ ˜ ˜

Page 16: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Motion & Quantum gates

Schrödinger equation

ihd y

dt= H(t)y

y(t) = e-

iH (t )h y(0)

Unitary transformation

y(t) = U y(0)U +U = I

Page 17: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Examples of Quantum gates:one qubit gates

I =1 00 1

È

Î Í

˘

˚ ˙

X =0 11 0

È

Î Í

˘

˚ ˙

S =1 00 i

È

Î Í

˘

˚ ˙

H =12

1 11 -1È

Î Í

˘

˚ ˙

Unity

NOT

Phase

Hadamard

truth table

a 0 + b 1 Iæ Æ æ a 0 + b 1a 0 + b 1 Xæ Æ æ b 0 + a 1

a 0 + b 1 Sæ Æ æ a 0 + ib 1

a 0 + b 1 Hæ Æ æ a0 + 1

2+ b

0 + 12

Page 18: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

two-qubit gates

A

A

B

A ⊕ B

UCN =

1 0 0 00 1 0 00 0 0 10 0 1 0

È

Î

Í Í Í Í

˘

˚

˙ ˙ ˙ ˙

truth table†

11

10

01

00

00

01

10

11

C-Not

Page 19: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Universal set of quantum gatesAny unitary operators can be approximated by acombination of few one-qubit and two-qubit gates

Possible universal sets:

•Phase+Hadamard+CNOT+p/8 gates• General rotation of one-qubit+CNOT

Page 20: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Loss-DiVincenzo scheme

one-qubit gate

two-qubit gate

read-out

D. Loss, P. DiVincenzo Phys. Rev.A57, 120 (1998)Nanotechnology 16, R27 (2005)

universal quantum gates

Page 21: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Shor’s algorithm• 1994 P. Shor demonstrates that the problem of finding prime

factors of an integer can be efficiently solved on a quantumcomputer.

Efficiency: classical ˜exp(n1/3) ; quantum ˜n2logn

j Æ1N

e2pijk / N

k=0

N -1

 kQuantum Fourier transform

discrete log

factoring

order finding

Page 22: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Grover’s algorithm• 1995 L. Grover showed that the problem of

conducting a search through some unstructuratedsearch space can be sped up on a quantum computer.

Efficiency: classical ˜N ; quantum ˜√N

Quantum search

StatisticsNP problems

x p oracle-operatoræ Æ æ æ æ æ x p ⊕ f (x)

f (x) =01

Ï Ì Ó oracle operator

Page 23: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Quantum hardware

cold ion trapssingle photonsnucleiquantum dotsJosephson Junctions…

Page 24: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Cold ion trap

J.I. Cirac and P. Zoller PRL 74, 4091 (1995)

Page 25: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Single Photons

Q.A. Turchette etal. PRL 75, 4710 (1995)

Quantum Phase gate

Page 26: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

NMR:

L.M. K Vandersypen et al. Nature 414, 883 (2001)

factoring 15 in prime numbers!

Page 27: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Quantum dots

See L. KouwenhovenS. Tarucha

Page 28: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Josephson Junctions

Mc Dermott, SCIENCE VOL 307 25 FEBRUARY 2005

Page 29: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

environment

decoherence

qubitnoise

Page 30: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Read out: measuring qubits.

Operators Mm are associated to measurements of quantum properties

Projection measurement of a qubit in the computational basis:

M0 = 0 0M1 = 1 1

M0 y = a 0M1 y = b1

Page 31: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

entanglement

When two systems, of which we know the states by their respectiverepresentatives, enter into temporary physical interaction due to known forcesbetween them, and when after a time of mutual influence the systems separateagain, then they can no longer be described in the same way as beforeSchrödinger

00 + 112

Bell state or EPR pair(Einstein, Podolsky, Rosen)

A measurement of the second qubitalways gives the same result as thefirst

Page 32: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Quantum probability

• average in time in single devices• “one shot” measurement, average over ensemble

Page 33: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

measurements on ensemble:molecular magnets

W. Wernsdorfer R. Sessoli, Science 284, 133 (1999)

Thomas, L.!; Lionti, F.!; Ballou, R.!; Gatteschi, D.!; Sessoli, R.!; Barbara,B.,!Nature, 1996, 383, 145-147.

Sangregorio, C.!; Ohm T.!; Paulsen C.!; Sessoli R.!; Gatteschi D. Phys. Rev. Lett., 1997, 78, 4645-4648.

Page 34: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Magnetic Resonance Force Microscopy

D. Rugar et al. Nature 430, 329 (2004)

Page 35: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Single-shot read-out of an individual electronspin in a quantum dot

J.M. Elzerman et al. Nature 430, 431 (2004)

Page 36: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

Spin Polarized-STM

Wiesendanger, Science 288, 1805 (2000); Science 298, 577 (2002); Science 292, 2053 (2001)

Page 37: Quantum computing with molecular nanomagnets pres... · Overview of the presentation. Part 1 •Back in time… •Classical bit & qubit •Quantum algorithms •Quantum hardware

useful readings and web-sighting.• M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum

Information, (Cambridge University Press, Cambridge, 2000).

• http://www.qubit.org/• http://www.theory.caltech.edu/people/preskill/ph229/• http://qubit.damtp.cam.ac.uk/• http://www.quiprocone.org/Protected/DD_lectures.htm• http://www.weizmann.ac.il/condmat/heiblum.html