Quantitative analysis of multi-temporal and multi-modal in-vivo images in small animal models

55
[email protected] 06/10/2009 Ir. Janaki Raman Rangarajan Promoter: Prof. Dr. Ir. Frederik Maes Quantitative analysis of multi-temporal and multi-modal in-vivo images in small animal models

description

Quantitative analysis of multi-temporal and multi-modal in-vivo images in small animal models. Ir. Janaki Raman Rangarajan Promoter: Prof. Dr. Ir. Frederik Maes. Introduction Quantitative Image analysis Small animal models Image analysis pipeline: - PowerPoint PPT Presentation

Transcript of Quantitative analysis of multi-temporal and multi-modal in-vivo images in small animal models

Page 1: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

[email protected]

06/10/2009

Ir. Janaki Raman RangarajanPromoter: Prof. Dr. Ir. Frederik Maes

Quantitative analysis of multi-temporal and multi-modal in-vivo images

in small animal models

Page 2: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

18.12.2008

Janaki Raman R

Slide 2

Overview

• Introduction– Quantitative Image analysis– Small animal models

• Image analysis pipeline:– Multi temporal, multi

modal registration & segmentation methods

– Quantification tools

• Results & Discussion– Applications

• Conclusion– Future work

Image Acquisition (IAq)

Image Pre-processing (IPp)

Image Registration (IRg)

Image Quantification (IQn)

Page 3: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

30.09.2008

Janaki Raman R

Slide 4

Quantitative image analysis

• Image quantification - From ‘seeing’ to ‘measuring’

Requires object delineation or “image segmentation”

5w PI 8w PI

14w PI 30w PI

Page 4: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

30.09.2008

Janaki Raman R

Slide 5

Fusion of complimentary information

Requires spatial alignment or “image registration”

5w PI

30w PI

Multi-temporal: Follow up over time

Multi-modal: Anatomical & functional info

Page 5: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

30.09.2008

Janaki Raman R

Slide 6

In vivo Small Animal Image Analysis

• Image artifacts– RF in homogeneity

• Animal models– Transgenic/Wild-type– Rats - Wistor, SD..– Mice - C57BL6J,

ob/ob, ..

• Images– Group: 10– Sequence : 2– Time point: 5 + 1(exvivo)– Images to analyze: 60 x 2

Page 6: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

30.09.2008

Janaki Raman R

Slide 7

MoSAIC – QUANTIVIAM collaborations

Page 7: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 9

Image analysis pipeline: ESAT/PSI

• Automated (semi) methods– Segmentation, registration, quantification of small animal images

• Multi-temporal & multi-modal– µMR-µMR, µMR-µMRTemplate, µMR-µPET, …..

• Applications– MRI reporters, Morphological phenotyping, Planning acquisition

Page 8: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

30.09.2008

Janaki Raman R

Slide 10

PhD Goal

• Develop (semi) automated methods– Segmentation– Registration– Quantification in small animals

• Multi-temporal & multi-modal– µMR-µMR, µMR-µPET, µMR-µCT…..

• Registration– Rigid, affine, non-rigid registration

(mesh..)• Segmentation

– Atlas/Template based segmentation

• Application driven– MR reporters, Fat quantification,

morphological phenotyping, ……

Year 1: Build pipeline, evaluate existing methods

Year 2: Multi-temporal to Multi-modality Rigid to Non-rigid registration

Year 3:Multi-modality extension, Applications

Year 4:Validation, applications, report

Page 9: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 11

Micro-MRI acquisition:

Bruker

conversion:bruker-dicom-

analyze

Bias field correction

Segmentation:Brain mask

Motion correction:

bt. repetitions

Normalization:Follow up to

base line

Co-registration:template / atlas

Atlas based segmentation

Image Analysis Pipeline

Image Acquisition (IAq)

Image Pre-processing (IPp)

Image Registration (IRg)

Image Quantification (IQn)

Intensity normalization

Segmentation:VOI‘s

Quantification: MR constrast

TOPIM, Jan 2009

Page 10: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 12

Micro-MRI acquisition:Bruker

9.4T

conversion:bruker-dicom-analyze

Image Analysis Pipeline - Acquisition

Image Acquisition (IAq)

– Resolution ~156 µm or 32 µm (ex-vivo)

– FOV [3.0x5.0x1.5] cm

@ µNMR lab MoSAIC, KUL

Page 11: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 13

Micro-MRI acquisition:

Bruker

conversion:bruker-dicom-

analyze

Bias field correction

Segmentation:Brain mask

Motion correction:

bt. repetitions

Normalization:Follow up to

base line

Co-registration:template / atlas

Atlas based segmentation

Image Analysis Pipeline

Image Acquisition (IAq)

Image Pre-processing (IPp)

Image Registration (IRg)

Image Quantification (IQn)

Intensity normalization

Segmentation:VOI‘s

Quantification: MR constrast

TOPIM, Jan 2009

Page 12: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 14

Bias field correction

Segmentation:Brain mask

Motion correction:

bt. repetitions

Image Analysis PipelineImage Pre-processing

(IPp)

Raw data

Motion corrected,averaged,N=12

• RF field in-homogeneity– Source: RF coil /static field in-homogeneity, patient anatomy or

position

– Effect : Intensity variations of same tissue type

• Derails - segmentation, registration or quantification

Page 13: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• MR Inhomogeneity correction

06/10/2009

Janaki Raman R

Slide 15

Original Corrected(masked)

Bias field

OriginalCorrected

Multiplicative model,3D 4th order polynomial,entropy minimization,mean preserving(Likar et al.)

Intensity distribution

=> Background separation

Speed up from polynomial order 1 to 4

Corrected

Bias field correction

Segmentation:Brain mask

Motion correction

bt. repetitions

Image Pre-processing

Page 14: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 16

Multi-temporal study – ROI delineation

Baseline

Follow-up

ROI manually delineated in

baseline/atlas scan and automatically

propagated to co-registered follow-up

scans

allows voxel-wise analysis

MIRIT - affineMaximization of Mutual Information (Collignon A, Maes F, et. al)

Page 15: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 17

Alignment:Follow up to

base line

Normalization:template / atlas

Atlas based segmentation

Image registration – Multi-temporal

TOPIM, Jan 2009

Image Registration

Before registration After registration

Baseline

Follow-upImage difference:- different animal position- anatomical difference

5w PI

8w PI

30w PI

Maximization of Mutual Information (Collignon A, Maes F, et. al)- Mutual information of corresponding voxel pairs is maximal if the images are geometrically aligned. -12 parameter(translation/rotation/shear/scaling) affine transformation

3w PI

Page 16: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Spatial alignment – multi-temporal

06/10/2009

Janaki Raman R

Slide 18

5 months

MI based registration (affine): µMRI-µMRI (after bias correction)

Alignment:Follow up to base line

Normalization:template / atlas

Atlas based segmentation

Image Registration

Rat brain - Sprague Dawley

2 months

Page 17: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

02/06/2009

Janaki Raman R

Slide 19

Micro-MRI acquisition:

Bruker

conversion:bruker-analyze

Bias field correction

Multi-modality registration: µPET- µMR

Image Analysis Pipeline

Image Acquisition (IAq)

Image Pre-processing (IPp)

Image Registration (IRg)

Image Quantification (IQn)

Coregistration/Normalization

MR as prior:PET reco.

(J Nuyts, K.U.L)

Motion correction:

bt. repetitions

Segmentation:Brain mask

QuantificationµPET- µMR

Intensity normalization

(MR)

Segmentation:VOI‘s

Page 18: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Multi-modal registration

06/10/2009

Janaki Raman R

Slide 20

10 months

2 months

10 months

2 months

Without bias field correction & mask

With bias field correction & mask

J. Nuyts, A. Atre, K.Vunckx Nuclear medicine, KUL

ML reconstruction + MRI (prior) -> Bowscher Reconstruction

Page 19: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Spatial normalization to template

06/10/2009

Janaki Raman R

Slide 21

Alignment:Follow up to base line

Normalization:template / atlas

Atlas based segmentation

Image Registration

Study

Atlas

MI based registration (affine): µMRI-µMRT (after bias correction)

Atlas

AtlasP. Schweinhardt 2003, rat brain templateMBIRN, MDA 2006, mouse brain template

Page 20: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Atlas based segmentation

04/01/2010

Janaki Raman R

Slide 22

MBIRN data base – C57BL6 MDA

Control injection

Reference region

Test injection

Study

Atlas

TOPIM, Jan 2009

Page 21: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Inter-scan intensity normalization

06/10/2009

Janaki Raman R

Slide 23

Control injection Test injection

Reference region

Page 22: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

02/06/2009

Janaki Raman R

Slide 24

Micro-MRI acquisition:

Bruker

conversion:bruker-analyze

Bias field correction

Multi-modality registration: µPET- µMR

Image Analysis Pipeline

Image Acquisition (IAq)

Image Pre-processing (IPp)

Image Registration (IRg)

Image Quantification (IQn)

Coregistration/Normalization

MR as prior:PET reco.

(J Nuyts, K.U.L)

Motion correction:

bt. repetitions

Segmentation:Brain mask

QuantificationµPET- µMR

Intensity normalization

(MR)

Segmentation:VOI‘s

Page 23: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 25

Case Study1: Imaging Neurogenesis

– Viral vector based genetic labeling

• Luciferase (BLI) vs Ferritin (MRI)

G Vande Velde, A. Ibrahimi, V. Baekelandt, Z Debyser

5wPI

Division of Molecular MedicineDivision of Molecular Medicine

Page 24: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06.10.2009

Janaki Raman R

Slide 26

Viral vector based MRI reporter genesFerritin Study

E.No. Vector Left/control Right

8 LV eGFP eGFP+Ferritin

11 LV eGFP FerrH-I-FerrL eGFP

PBSLentiviral Vector(LV)

Adeno associated Vector(AAV)

NOD-SCID

12 LV eGFP Ferritin

13 LV PBS eGFP

14 AAV PBS Ferritin

15 AAV PBS eGFP-T2A-fLuc

16 AAV eGFP-T2A-fLuc FerrH-T2A-fLuc

17 AAV PBS Medium- OMEM

18 LV eGFP-T2A-fLuc FerrH-T2A-fLuc

19 AAV eGFP FerrH-T2A-fLuc

20 AAV eGFP FerrH-T2A-fLuc

ISMRM, Hawaai Apr 2009; WMIC Sep 2009.

Page 25: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Image analysis of MRI reporters

• Conventional quantification– Qualitative visual examination– Manual delineation of ROI’s – Parametric maps

• Disadvantages– Manual analysis is tedious and error-prone (user,

artifacts)– Low resolution of parametric maps & hypo-intense

contrast of MRI reporters

06/10/2009

Janaki Raman R

Slide 27

5w PI 8w PI 14w PI 30w PI

Page 26: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• MRI reporter - Pre-processing step

06/10/2009

Janaki Raman R

Slide 28

Bias field correction

Segmentation:Brain mask

Source Initial mask Bias field Bias corrected MRI Final mask Brain mask

C57bL6/J black mice exp 15: AAV06c

Page 27: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• MRI reporter - Registration step

06/10/2009

Janaki Raman R

Slide 29

MI based Image alignment & normalization ofC57bL6/J black mice with MBIRN atlas exp 15: AAV06a vs. AAV 06c

Page 28: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• MRI reporter : Quantification step

• Visualization of segmented hypo-intense MR contrast (Ferritin) in axial & coronal planes

06/10/2009

Janaki Raman R

Slide 30

Visualization of segmented hypo-intense MR contrast (Ferritin) in Paxinos reference frame

Page 29: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Results : LV immune response

06/10/2009

Janaki Raman R

Slide 31

World Molecular Imaging Conference, Sep 2009

Page 30: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Results : LV immune response

06/10/2009

Janaki Raman R

Slide 32

World Molecular Imaging Conference, Sep 2009

Page 31: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Results: LV vs AAV background

06/10/2009

Janaki Raman R

Slide 33

World Molecular Imaging Conference, Sep 2009

Page 32: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Results: AAV immune response

06/10/2009

Janaki Raman R

Slide 34

World Molecular Imaging Conference, Sep 2009

Page 33: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Conclusions of MRI reporter study

• LV vector contributes significantly to background contrast

• Backgound contrast challenges SNR of potential vector based MR reporters(e.g. Ferritin)

• AAV vector results in very low background contrast in comparison to LV

AAV is promising for other potential MR reporter genes!

• Publications- Ferritin case study– G. Vande Velde, J.R. Rangarajan, T. Dresselaers et. al Evaluation of lentiviral and adeno-associated viral vector systems for ferritin

expression as MRI reporter gene in mouse brain.  Journal of NeuroImaging (in preparation)

– G. Vande Velde, J.R. Rangarajan, T. Dresselaers, J. Toelen, Z. Debyser, V. Baekelandt, U. Himmelreich, Quantification of 3D T2*-weighted MR images allows evaluation of different viral vectors for stable MR reporter gene expression in the rodent brain , ISMRM - ESMRMB joint annual eeting, May 1-7, 2010, Stockholm, Sweden (accepted)

– G. Vande Velde, J.R. Rangarajan, T. Dresselaers, A. Ibrahimi, Z. Debyser, V. Baekelandt, U. Himmelreich, Comparison of lentiviral and adeno-associated viral vectors for stable MRI reporter gene expression in the rodent brain, 2009 world molecular imaging congress Sep. 2009, Montréal, Canada

– G. Vande Velde, J.R. Rangarajan, T. Dresselaers, O. Krylyshkina, A. Ibrahimi, Z. Debyser, V. Baekelandt, U. Himmelreich, Evaluation of LV and AAV vector systems for stable delivery of MRI reporter genes to the rodent brain, ISMRM April 2009, Honolulu, Hawaii

– J.R. Rangarajan, G. Vande Velde, U. Himmelreich, T. Dresselaers, C. Casteels, A. Atre, D. Loeckx, J. Nuyts, F. Maes, An image analysis pipeline for quantitative analysis of multi-temporal and multi-modal in vivo small animal images , TOPIM 2009 - dual and innovative imaging modalities, January 26-30, 2009, Les Houches, France

– “Quantitative multi-temporal image analysis of MRI reporters in rodent brain” (in preparation)

06/10/2009

Janaki Raman R

Slide 35

Page 34: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Longitudinal MPIO quantification

06/10/2009

Janaki Raman R

Slide 37

NeuroImage 2009

Page 35: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Pilot study – MPIO vs. reporter gene

– MPIO in RMS using the pipeline, on best known protocol– MPIO quantification both within in vivo and ex vivo – Compare MPIO vs. Vector based MRI reporter – In progress :

• Pre-processing (done); Registration & Quantification (ongoing);

06/10/2009

Janaki Raman R

Slide 38

Page 36: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• MPIO @Rostral Migratory System

06/10/2009

Janaki Raman R

Slide 39

Registration to MBIRN MDA atlas, overlayed with labels

Page 37: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Atlas based segmentation of RMS

06/10/2009

Janaki Raman R

Slide 40

LabelOutline

LabelMask

Page 38: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 41

Case study 2: Multimodal imaging in HR

• Morphological phentoyping– Transgenic (HD)– Wild type (control)

• Multi-temporal quantification– 2M, 5M, 10M, 18M…– Morphological changes

• Within & between phenotypes

• Multi-modal study– µMR-µPET (rigid)– µMR-µMR template (affine,

non-rigid)

Wild type (control) Transgenic (HD)

2 M 5 M 10 M

WT

Tg

µMRI : RARE 3D, T2

µPET : FDG, CB1

HD

von Horsten, S. et al. Hum. Mol. Genet. 2003

18 M

C Casteels, J Nuyts, K Van Laere, Nuclear Medicine, KU Leuven

Page 39: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Image analysis Huntington rats

06/10/2009

Janaki Raman R

Slide 42

10 months

2 months

10 months

2 months

Casteels C 2006

Casteels C

Page 40: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 43

Multi-temporal, multi-modal registration

MMI based Registration

MR atlas in Paxinos space

A) RIGID(R1) B) AFFINE (R2) NON-RIGID (R3)

C) R1 (R2, R3)

PET MR

Page 41: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Pre-processing step

06/10/2009

Janaki Raman R

Slide 44

2 months 5 months 10 months 18 months

2 months 5 months 10 months 18 months

No Bias correction

Bias corrected & brain mask

Page 42: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Multi-temporal spatial alignment in HR

06/10/2009

Janaki Raman R

Slide 45

10 months

2 months

Page 43: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 46

Multi-modal registration: PET-MR

MI based registration (rigid): µPET-µMR Influence of bias field correction and brain mask selection

µMRI µPET (no BFC) µPET (with BFC)

Page 44: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Morphological phenotyping

06/10/2009

Janaki Raman R

Slide 47

18M

5M

Transgenic – Huntington rats

Wild Type – control group

18M

I > mean + 2*stddev (- not robust )- Good BFC & registration can help better segmentation

Page 45: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Results

• Initial results– Successful PET- MRI registration– Benefits PET reconstruction– MRI - MRI temporal & template

registration– A good brain mask & bias field

correction(BFC) is important

• In progress– Improve BFC in cooperation with VisionLab– Building individual template/ time point–

affine/NRR– Robust segmentation of both striatum &

ventricles

06/10/2009

Janaki Raman R

Slide 49

Page 46: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Future work: Image analysis

• Summary– The image analysis pipeline with image registration

framework facilitates quantification of multi-temporal & multi-modal study in small animal models

• Future work• Planning of stereotactic surgery

– Plan optimal trajectory.

• Variability in needle tracts– Possibility of missing anatomical ROI– Trajectory could hit vasculature=> immune response

• MR acquisition– Localize better acquisition plane during image acquisition of

time series images.

04/01/2010

Janaki Raman R

Slide 51

Page 47: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

04/01/2010

Janaki Raman R

Slide 52

Neuro Anatomical Surgical Planning

• Functional neurosurgery– Anorexia (e.g. Septal

nucleus)

• Neuromodulation– Injections

– Electrical stimulation

– Lesions

• Bleeding– Burr holes (Visible)

– Other brain regions(?)

• Influences..– Systematic unwanted side

effectsSource: U. Himmelreich, KUL

Kris van Kuyck, Bart Nuttin. Lab. of experimental & functional neurosurgery, KUL

Page 48: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Planning optimal trajectory using MRA

06/10/2009

Janaki Raman R

Slide 53

• Register/Overlay– Anatomical MRI with MRA

– Anatomical MRI with Paxinos Atlas

– Anatomical variability

– Probabilistic atlas of vasculature in PaxinosKris van Kuyck, Bart Nuttin. Lab. of experimental & functional neurosurgery, KUL

Page 49: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

04/01/2010

Janaki Raman R

Slide 54

Neuronal connectivity @Neuromodulation

1. Optimal trajectory in Paxinos space

• Lesions (e.g. septal nucleus)

2. ROI based image plane positioning

3. Tractography along Neuromodulation regions

Kris van Kuyck, Bart Nuttin. Lab. of experimental & functional neurosurgery, KUL

1. Trajectory: Lesion/Stimulation Electrode

2. ROI: Lesion

3. Fiber tract running along ROI

Investigate

• Registration (ESAT)

• Atlas construction (ESAT)

• Quantification of brain connnectivity(VLAB/ESAT)

Page 50: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

04/01/2010

Janaki Raman R

Slide 55

3 mm

2 mm

Lateral 1.6 mm Lateral 1.6 mm

1 1

2 2

Localization: SOI in paxinos2MR

SOI – Site of injection

Page 51: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Planned vs actual trajectory

04/01/2010

Janaki Raman R

Slide 56

Page 52: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Asymmetric needle tracts

04/01/2010

Janaki Raman R

Slide 57

Page 53: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Variability in Injection trajectory

• Localization of injection axis in 3D– Principal component analysis on voxel coordinates(P)

– First Eigen vector(A) => axis direction– Visualize within & across group

• Variability of tip of axis, height, radius

04/01/2010

Janaki Raman R

Slide 58

C+max[P.A]

H

C+min[P.A]

C

Page 54: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

• Next 3-6 months: Prospective registration

04/01/2010

Janaki Raman R

Slide 59

• Need: Image plane positioning– Localization of region of interests– Define image plane using baseline/atlas as reference

Tripilot 2D 3D MSME DWI

Tripilot 2D 3D MSME DWI

5w PI

8w PI

Page 55: Quantitative analysis of  multi-temporal and multi-modal in-vivo images in small animal models

06/10/2009

Janaki Raman R

Slide 60

Acknowledgment

• KU Leuven– Prof. Dr. Ir. F. Maes, Prof. Dr. Ir. P. Suetens– Prof. Dr. U. Himmelreich, Dr. Ir. T. Dresselaers– Prof. Dr. V. Baekelandt, G. Vande Velde– Prof. Dr. Z. Debyser, Dr. A Ibrahimi– Prof. Dr. Ir. J. Nuyts, A. Atre– Prof. Dr. K. Van Laere, C. Casteels

• University of Antwerp– Prof. Dr. A. Van der Linden, Ruth Vreys, Dr. M. Verhoye,

Ir. J. Van Audekerke– Prof. Dr. Ir. J. Sijbers, M. Zhenhua