Quadratic Residues
-
Upload
suryanarayanan-balasubramanian -
Category
Documents
-
view
222 -
download
0
Embed Size (px)
Transcript of Quadratic Residues
-
7/26/2019 Quadratic Residues
1/9
-
7/26/2019 Quadratic Residues
2/9
px
np
np
p
p
a
p
=
1 x Z x2 a p1 x Z x2 a p0 a 0 p
a
p
(a)p12 p
p
q
p
q
=
q
p
p q 3
4
p
q
=
q
p
a b p a
p = b
p
ab
q
=
a
q
b
q
a+n a+ 2n a n Z gcd(a, n) = 1
n n
p
= 1 p > n
n n= 2kqk11 qk22 qkrr
P > n n
P
= 1
pn
p
=
2
p
kq1
p
k1 q2p
k2
qr
p
kr=
2
p
k
n
ki k
P > n P 3 8 n
P
=
2
P
k= (1)kP
218 = 1.
P > n
8k+ 3
8k+ 3
-
7/26/2019 Quadratic Residues
3/9
pi i
8k+ 3 pn
N=
n
i=1
p2i + 2.
gcd(N, pi) = 1i pi 1 i n 8k+ 3 p 3 8 p | N p | N p 1 5 7 8
ni=1p
2i + 2 0 p p | N
=ni=1
p2i 2 p =n
i=1p2i
p
= 1 =
2p
=2
p
=
1p
2
p
= (1)p12 (1)p
218 = 1
p 1 8 p 8k+ 3
N
8k+ 1
8k + 1 8k + 1 N 3 8
8k + 1 8k + 3
ki k1
P > n P 1 8 P t q1 t q1 P 1 qi 2 i r
n
p
=
2
p
k q1
p
k1 q2p
k2
qr
p
kr=
q1
p
k1
=P
q1k1
= t
q1k1
= (1)k1
= 1. P t
n
t+ q1k > q1 t q1 8 q1 q2 qr P
P > n nP
= 1
n n
p
= 1 p > n
n= 2k
qk11 q
k22 q
krr
P > n n
P
= 1
p
n
p
=
2
p
kq1
p
k1 q2p
k2
qr
p
kr=
2
p
k
n
ki k
P > n P 1 8
nP = 2
Pk
= (
1)k
P218 = 1.
-
7/26/2019 Quadratic Residues
4/9
P > n
8k+ 1
8k+ 1
pi
i
8k+ 1 pn
M =
ni=1
pi ; N=M4 + 1
gcd(N, pi) = 1i N p | N N=
M22
+ 12 p 4k + 1 8k + 5 8k+ 1 pi| N p 8k+ 5
M4 + 1 M4 + 2M2 + 1 2M2 0 p= M
2 12 2M2 0 p
= M2 12 2M2
p
M2 12
p
= 1 =
2M2p
=
1p
2
p
M2
p
= (1)p12 (1)p
218
p
8k+ 5
1 = (1) (1) = 1 p 8k+ 1 p1, p2, , pn
x4
1 p p 1 8
ki k1
P > n P 1 8 P s q1 s q1 P 1 qi 2 i r
n
p
=
2
p
k q1
p
k1 q2p
k2
qr
p
kr=
q1
p
k1
=
P
q1
k1=
s
q1
k1= (1)k1 = 1.
P
s+ q1k > q1 s q1 8 q1 q2 qr P
px
np
n= m2
m Z px
n
p
=px
1 d(n) =(x) d(n)
d(n)
n
(x)
-
7/26/2019 Quadratic Residues
5/9
n px
n
p
n
px
n
p
=o ((x))
x
px
n
p
=px
p
n
; = {1, 1}
p x a + kn a n
px
p
n =
apamodnx
a
na,n(x)
a,n(x) a+ n a+ 2n a+ 3n x
a,n(x) 1(n)
(x)
px
p
n
a
pamodnx
a
n
1(n)
(x).
px
pn
a
pamodnx
an
(x)(n)
< a
pamodnx
an
1(n)
(x).
px
n
p
apamodnx
a
n
(x)(n)
< a
pamodnx
1.(x)
(n)
(n) a
pxn
p apamodnx
a
n(x)
(n) < (n)(x)
(n) =(x)
=px
n
p
N n a2 p = n
a
2
+kp
p
N
x
2
, y
2
N x < y
y2 x2 = (y+x) (y x) = p.1 1 p y x = 1 y+ x = p x y x, y > N a2 +kp
12
px
n
p
=o ((x)) = PR(n) =PNR(n) = 1
2.
px
np
=o ((x)) 12
12
px
np
= o ((x))
PR(n) = 1
2=PNR(n) =
px
n
p
=o ((x))
n n 1 4. px
n
p
= 0
x
px
n
p
=px
pn
.
n
12
limxpx
pn
= 0
+1
1
n 3 4 px
n
p
=
px
p1mod4
pn
px
p3mod4
pn
.
n
px
pn =
pxp1mod4
pn+
pxp3mod4
pn = 0
-
7/26/2019 Quadratic Residues
8/9
=px
p3mod4
pn
=
px
p1mod4
pn
n 3 4 px
n
p
= 2
px
p1mod4
pn
=px
n
p
= 2
px
p3mod4
pn
.
px
np
0
x n
n
p
n
p
n
p
= 1
n
P n
P
= 1
limx
px
n
p
= lim
x
pP
n
p
+
P P
limx
pP
n
p
+
P
-
7/26/2019 Quadratic Residues
9/9
Q
a1,
a2, , al
Q
http://en.wikipedia.org/wiki/Quadratic_reciprocityhttp://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressionshttp://en.wikipedia.org/wiki/Prime_number_theorem