PyroprocessingTechnology Development at...

33
0 Hansoo Lee IPRC 2010 29 Nov. - 3 Dec., 2010 Pyroprocessing Technology Development at KAERI Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Transcript of PyroprocessingTechnology Development at...

  • 0

    Hansoo LeeIPRC 2010

    29 Nov. - 3 Dec., 2010

    Pyroprocessing Technology Development at KAERI

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 1

    Outline

    Spent Fuel ManagementI

    Pyroprocessing Research ActivitiesII

    Integrated Pyroprocessing in PRIDEIII

    SummaryIV

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 2

    Spent Nuclear Fuel Management

    ‘08 ’11 ’15 ’20 ’28’26

    Gen IVSFR

    System Performance

    TestStandard

    DesignDetailedDesign

    DemoPlant

    Mock-up PyroFacility(Nat. U)

    10t/yr

    Eng.-scale PyroFacility(Hotcell)

    10t/yr

    PrototypePyro Facility

    100t/yr

    PrototypePyro FacilityOperation

    Pyro-process

    Advanced Design Concept

    Licensing Technology Development

    Fuel Irradiation Test

    Approved by AEC in 2008

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 3

    Flow Diagram of Pyroprocessing (KAERI)Diagram of Pyroprocessing (KAERI)

    TRU fuelfabrication

    Decladding & Voloxidation Electrolyticreduction Electrorefining

    Electrowinning

    Molten saltwaste treatment

    Uraniumrecovery

    Recycleor LLWRecycleor treatment

    Cladding material

    Low level waste

    Off-gastreatment

    Sodium-cooledfast reactor

    Fission gas

    Air

    U3O8+(TRU+FP)oxide

    (U+TRU+FP)metal

    PWR spent fuel

    TRU : Transuranic elementsNM : Noble metal elementsFP : Fission products

    TRU fuelfabrication

    Decladding & Voloxidation Electrolyticreduction Electrorefining

    Electrowinning

    Molten saltwaste treatment

    Uraniumrecovery

    Recycleor LLWRecycleor treatment

    Cladding material

    Low level waste

    Off-gastreatment

    Sodium-cooledfast reactor

    Fission gas

    Air

    U3O8+(TRU+FP)oxide

    (U+TRU+FP)metal

    PWR spent fuel

    TRU : Transuranic elementsNM : Noble metal elementsFP : Fission products

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 4

    R&D Issues of Pyroprocessing

    Purposes Increase throughput Simple and easy remote operability Enhance interconnection between unit processes Reduce waste volume

    Improvement High performance electrolytic reduction process Graphite cathode employment to recover U in electrorefining system Application of residual actinides recovery (RAR) system Crystallization method applied to recover pure salt from waste mixture

    Spent Fuel Voloxidation Electroreduction Electrorefinning Electrowining Fuel Fabrication SFR

    HM

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 5

    Issues of Electroreduction

    Purposes Reduce oxide to metal Provide feed for the following process – electrorefining

    Issues Operating condition : Li2O concentration Cathode Process : salt powder Increase surface area Pt anode Corrosion of reactor crucible

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 6

    6Electrolytic Reduction Process - I

    • In 2002, electrolytic reduction concept development• 2005 – 2007, ACPF inactive tests of electrolytic

    reduction (10 kg U3O8/batch) • In 2009, demonstration of high capacity electrolytic

    reducer (20 kg UO2/batch)• Construction of eng-scale electrolytic reduction system

    by 2011• Construction of ESPF electrolytic reduction system by

    2016

    Eng-scale design of electrolytic reduction, KAERI

    Lab-scale electrolytic reduction,KAERI

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 7

    7Electrolytic Reduction Process - II

    Pre-treatment

    Electrolytic Reducer Electro-refining

    Waste Salt Treatment

    Cathode Processor

    UO2

    MS + Cs, SrMS: LiCl-Li2O molten salt

    Metal U

    Metal U+ MS + Cs, Sr

    LiCl

    Electrode Handling Apparatuses

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 8

    Electrolytic Reduction Process - III

    Key Item Previous Process(Before ’08)Present Process

    (After ’08) Effects

    Cathode Integrated Porous Magnesia BasketMetal Basket (‘08),

    Separable Cathode (‘10)

    - Easy Operation- Strengthening Connectivity- Prevention of Li2O Accumulation

    Anode Pt rod Pt plate,Metal shroud (‘10)- Maximization of Anode Utilization- Protection of Anode

    Reference Electrode Pt Li-Pb

    - Stable Reference Electrode- Measuring the Ending Point

    Cooling Active Passive (‘10) - No Usage of Cooling Water- Increased Process Stability

    Salt Vaporization -

    Structure Modification,Heat Shield

    - Suppression of Salt Vaporization- Reuse of Salt

    Operation Mode Control of Current Control of Voltage - Protection of Pt Anode- Easy Operation

    Current Supply Wire Bus bar (‘10) - Handling of High Current- Easy Handling

    Current Density 80 mA/cm2 250 mA/cm2 - High Throughput Electrolytic Reduction

    Li2O Con. 3 wt% 1 wt%- Increased Corrosion Resistance- Increased Reduction Yield

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 9

    Issues of Electrorefining

    Purposes Recover U from metal Provide feed for following process – electrowinning

    Issues Operating condition : voltage cut Cathode Process : salt powder Increase surface area Melting furnace without cooling water UCl3 preparation Salt transportation for electrowinning

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http:http://www.novapdf.com

  • 10

    Time (s)

    0 1000 2000 3000 4000 5000

    Pote

    ntia

    l (V

    vs.

    Ag/

    AgC

    l)

    -3

    -2

    -1

    0

    1

    2

    3

    Cathode Voltage (V)Anode Voltage (V)Cell Volatage (V)

    Time (s)

    0 1000 2000 3000 4000 5000 6000 7000

    Pote

    ntia

    l (V

    vs.

    Ag/

    AgC

    l)

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    Cathode Voltage (V)Anode Voltage (V)Cell Volatage (V)

    Electrorefining - I

    Time (s)

    0 2000 4000 6000 8000 10000 12000 14000

    Pote

    ntia

    l (V

    vs.

    Ag/

    AgC

    l)

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Cathode Voltage (V)Anode Voltage (V)Cell Volatage (V)

    Cell 1.0 V

    Anode -0.5 V

    Cathode -1.5 V

    Cell 1.7 V

    Anode 0.0 V

    Cathode -1.7 V

    Cathode -1.8 V

    Anode 0.5 V

    Cell 2.3 V

    Salt content :

    7.0%

    Applied current : 100A

    U deposit as a function of current density

    Decrease of U crystal size & increase of salt content

    Applied current : 200A Applied current : 300A

    Salt content : 10.2%

    Salt content : 15.1%

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 11

    Potential (V vs. Ag/AgCl)

    -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    Cur

    rent

    (A)

    0

    50

    100

    150

    200

    250

    300

    350

    Cathode with 21kg U loading, 2.4% UCl3Anode with 21kg U loading, 2.4% UCl3Cathodewith 13kg U loading, 4.0% UCl3Anode with 13kg U loading, 4.0% UCl3Cathode with 32kg U loading, 3.9% UCl3Anode with 32kg U loading, 3.9% UCl3Cathode with 32kg U loading, 6.0% UCl3Anode with 32kg U loading, 6.0% UCl3

    Effects of anode Loading and UCl3 concentration

    Effect of UCl3 concentration As the concentration of UCl3

    increased, the anodic overpotential decreased.

    Effect of anode loading As the anode loading

    increased, the anodic overpotential decreased due to the enlarged surface area

    Effect of anodic cut-off potential KAERI: -0.5 V(Ag/AgCl) based

    on Fe dissolution potential INL: 0.4 V(Ag/AgCl) based on

    NM dissolution potential Additional experiments will be

    performed to clarify the cut-off potential

    AnodeINL

    KAERI

    Electrorefining - II

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 12

    Impedance spectroscopy

    Ru: Uncompensated resistanceCdl: Double layer capacitanceRct: Charge transfer resistanceZW: Warburg impedance

    Equivalent Circuit

    3.7 3.8 3.9 4.0 4.1 4.2-0.2

    -0.1

    0

    0.1

    0.2

    0.3

    Experimentally measured Numerically fitted

    - Im

    agin

    ary

    Impe

    danc

    e, Z

    '' /

    cm

    2

    Real Impedance, Z' / cm2 Ru = 3.710 Ω cm2

    Rct = 0.383 Ω cm2

    RW = 0.009 Ω cm2

    Fitting Results

    Electrorefining - III

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 13

    Impedance spectroscopy

    AnodeAnode

    UTRUMAFP

    UTRUMAFP

    U → U 3+ + 3e

    TRU → TRU 3+ + 3eMA → MA z+ + zeRE → RE z+ + ze

    U → U 3+ + 3e

    TRU → TRU 3+ + 3eMA → MA z+ + zeRE → RE z+ + ze

    U 3+ + 3e →

    U

    U 3+ + 3e →

    U

    U 3+U 3+ U 3+U 3+ U 3+U 3+

    CathodeCathode

    Charge transfer resistance (Rct) Warburg impedance (ZW) Uncompensated resistance (Ru)

    Electrochemical cell for anodic dissolution

    Electrorefining - IV

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 14

    Comparison of Lab and Eng-scale Electrorefiner

    Lab-scale Eng-scale Remarks

    Capacity/batch 20 kgU 50 kgU

    Cathode

    GraphiteФ2 x L 20 cm

    GraphiteФ3 x L 28 cm Current density

    24 ea(Double layer configuration)

    30 ea(Double layer configuration)

    ~ 300 mA/cm2

    Anode 50 kg reduced metal loading100 kg reduced metal loading

    Sufficient surface area of anode

    Amount of salt 60 kg 300 kg Withdrawing of U

    deposit Screw conveyor Design modified

    Electrorefining - V

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 15

    Comparison of Lab and Eng-scale Salt Distiller

    Lab-scale Eng-scale Remarks

    Vapor condensing Water cooled Water cooled

    Heating zone 4 3 Easy maintenance

    Dendrite crucible Alumina Alumina

    Salt recovering bucket STS STS

    Crucible loading Manual Automatic Top loading

    Recovering bucket loading Manual Automatic Bottom loading

    Capacity/batch 5 kg salt 15 kg salt

    Dendrite transfer Open airSpecially designed container

    Transfer to ingot casting process

    Electrorefining - VI

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 16

    Issues of Electrowinning

    Purposes Recover TRUs from salt Provide feed for SFR fuel

    Issues Operating condition : rapid U growth Cathode Process : salt powder Optimum conditions for RAR Salt transportation for waste salt treatment

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 17

    Electrowinning Process - I

    CdTRU/U/RE/Cd- HM>10wt%- RE/TRU

  • 18

    Measurement of the reduction potentials on the Cd electrode

    Glassy carbon

    Reference

    Cd electrode

    Quartztube

    Fig. Electrolytic cell

    -2.4

    -2.2

    -2.0

    -1.8

    -1.6

    -1.4

    -1.2

    Y

    LiCl-KCl @ 500oC

    Pote

    ntia

    l (V

    vs. A

    g/A

    gCl) U

    Gd

    Pr Gd Ce Nd La

    Am

    Np Pu

    U Pu Am Pr

    Y

    Ce La Np Nd

    Cd CathodeSolid Cathode

    A lot of potential data on the solid cathodes,

    but inaccurate potential data on the Cd electrode

    Fig. CV of a LiCl-KCl-1wt%CeCl3solution at 773K on liquid Cd electrode.

    -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4-0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    C

    urre

    nt(A

    )

    Cathode Voltage(V) vs. Ag/AgCl

    LiCl-KCl(a) LiCl-KCl-CeCl

    3(b)

    CeCl3(c)

    (a)(b)

    (c)

    W Cd

    Ce -2.02 V - 1.547 V

    Y -2.09 V -1.623 V

    Table. Reduction potential data on the liquid Cd electrode at 773K.

    Electrolyte crucible : Quartz(18mmID)LCC crucible : Quartz(8mmID)Electrodes : W.E. : Cd, W(dia. 1mm)

    C.E.: Glassy carbon(dia. 3mm)R.E.: 1wt% AgCl in LiCl-KCl

    Solute concentrations : LiCl-KCl -1%CeCl3, LiCl-KCl -1%YCl3

    Temperature : 773 K

    Measurement of the reduction

    potentials on the liquid Cd electrode

    Electrowinning Process - II

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 19

    Automatic operation of the LCC assembly (Mesh). Electrodes : anode (U basket), reference (1wt%AgCl), cathode (Cd)

    . Temperature : 490-500oC

    . Salt stirring : 70 rpm

    . LCC crucible : Alumina I.D. 50mm (Cd 316g)

    . Mesh : Dia. 45mm, 1cycle/10 minutes

    . Current density : 100 mA/cm2

    . No dendrite growth

    . U deposits in the Cd

    . 10.2wt% in Cd

    0 2 4 6 8 10 12-1.8

    -1.6

    -1.4

    -1.2

    -1.0

    -0.8

    Cur

    rent

    [A]

    Pote

    ntia

    l [V]

    A-hr

    anode potential(V) cathode potential(V) current(A)

    -3.0

    -2.5

    -2.0

    -1.5

    -1.0

    Fig. Glove box and automatic LCC assembly

    Electrowinning Process - III

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdhttp://www.novapdf.com

  • 20

    Evaluation of the non-consumable anodes. Anode (diam. 2mm): Mo/Graphite/Glassy carbon

    . Cathode : Graphite (3 mm)

    . Electrolysis : 100 mA/cm2

    . UCl3 concentration : 2, 4 wt%

    . Anode reaction : 2Cl- Cl2 + 2e-

    0 10 20 30-1.8

    -1.6

    -1.4

    -1.2

    0.0

    0.5

    1.0

    1.5

    2.0

    Cathodic potential

    Cat

    hodi

    c P

    oten

    tial(V

    )

    Time (min)

    (a) Mo anode

    Ano

    dic

    pote

    ntia

    l (V

    )

    Anodic potential

    0 10 20 30-1.8

    -1.6

    -1.4

    -1.2

    -1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    Cathodic potential

    Cat

    hodi

    c po

    tent

    ial(V

    )

    Time (min)

    (b) Graphite anode

    Anodic potential

    Ano

    dic

    pote

    ntia

    l (V

    )

    0 10 20 30-1.8

    -1.6

    -1.4

    -1.2

    -1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    Cathodic potential

    Cat

    hodi

    c po

    tent

    ial(V

    )

    Time (min)

    Anodic potential

    Ano

    dic

    pote

    ntia

    l (V

    )

    (c) Glassy carbon anode

    Most stable anode

    : glassy carbon

    Mo : unstable anode potential because of the Mo dissolution

    Graphite : stable anode potential, but easily fragmented during the deposition

    Glassy carbon : stable anode potential and solid electrode

    Mo Graphite Glassy Carbon

    Electrowinning Process - IV

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 21

    2La(Nd-U-Cd)+ 3CdCl2 2La(Nd)Cl3 + 3Cd

    LaCl3+NdCl3

    UCl3

    LaCl3+NdCl3

    UCl3

    CdCl2

    Confirm the residual concentration of U in a salt: < 100 ppm (after 4th electrolysis for

    preparing the La(1)-Ce(1)-U(3)-Cd alloy)

    Oxidation of U metals can be hindered by increasing the height of LCC.

    LCC Electrolysis

    OxidationAfter 3rd electrolysis

    After 4thelectrolysis

    After 2nd oxidationDuring 2ndoxidation

    RAR operation test for reusing an LCC

    0.39 %0.34 %530 ppm3rd

    Electrolysis U Nd La

    4th

  • 22

    Lab-scale Eng-scale Remarks

    AnodeInert GC rod

    Inert GC tube(porous MgO

    crucible)Electrode area

    1 ea 2 ea Current distribution

    Cl2 trapVent line apart from

    the anodeShroud combined with the anode

    Effective Cl2 removal

    LCC position Side Center Current distribution

    Mesh operation Up-down, manuallyUp-down and

    rotation, automatically

    Reference electrode

    Ag/AgCl Ag/AgCl

    Electrolytic Cell Alumina STS

    LCC crucible Alumina Alumina

    Salt stirrer 1ea 2ea (4 baffles) Mixing efficiency

    Capacity/batch 0.05 kgHM 1 kgHM

    Comparison of Lab-scale and Eng-scale Electrowinner

    Electrowinning Process - VI

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 23

    Issues of Waste Salt Treatment

    Purposes Purify the salt from ER and EWWaste solidification

    Issues LiCl salt treatment LiCl-KCl salt treatment waste solidification salt distillation

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 24

    Waste Salt Treatment – I

    Electrorefining (Drawdown)Electrorefining (Drawdown)

    PWR Spent Fuel

    VoloxidationU, TRU, FPs U, TRU, FPs

    (Oxides)(Oxides)

    LiCl Waste (Sr/Cs)

    LiCl Recycle

    U, TRU, FPs U, TRU, FPs (Metal)(Metal)

    LiCl-KCl Recycle

    RE Oxides

    LiCl+KCl Waste (RE)

    RE : Oxidation

    Residual SaltCs & Sr/Ba

    Disposal

    Solidifying Agent High-integrity

    Solidification

    Waste Salt

    minimization(FPs Removal &

    Salt Recycle)

    Electrolytic ReductionElectrolytic Reduction

    Cs/Sr : Salt refining(Crystallization)

    Distillation &Condensation

    UU

    TRUTRU

    FinalWasteForm I

    FinalWasteForm II

    SolidificationSolidification

    Characterizationof Waste FormsCharacterization

    of Waste Forms

    Solidifying Agent

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 25

    Lab-scale layer crystallization apparatus

    Direction of crystal growth

    bath size : 4 kg-salt/batch

    Main components

    1) Crystallizer (formation of LiCl crystal) :

    Ta-Crucible, Inconel plates (3 EA)

    2) Melter (recovery of purified LiCl crystal) : Ta-Crucible,

    3) Cooling gas(air) supply system

    Waste Salt Treatment – II

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.co

  • 26

    Operating conditions

    - to obtain both high FPs separation efficiency and high LiCl salt reuse rate(=high

    pure LiCl crystal formation rate) in condition of short operation time

    - initial stage ; pure seed formation(~610 oC)→ low crystal formation flux

    - after that ; crystal growth (610~600 oC) → high crystal formation flux

    Crystallization process

    [time]

    LiCl recover rate

    [%]

    Separation efficiency

    [%]

    Sr

    2 ~ 3 70 ~ 80

    92 ~ 93

    Ba 91 ~ 92

    FPs concentrated in salt(about 20wt%)

    separation

    chemical agent addition and

    Distillation/condenstaion

    (under study)

    Waste Salt Treatment – III

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 27

    Lab-scale RE precipitation apparatus (4kg/batch)

    • oxidative precipitation reactor : for RE oxidation reaction (oxygen sparging), vertical-type sparger• solid salt detachment device : detach cooled salt from Ta crucible• layer separation device : using thin metal saw → upper pure salt layer + precipitates layer

    oxidative precipitation reactor and oxygen sparger

    solid salt detachment

    layer separation device solid LiCl particle collector

    Oxidative precipitation reactor

    gassparger

    Solid saltdetachment

    Layer separation

    Waste Salt Treatment – IV

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://w

  • 28

    phosphate injection process- phosphate ; Li3PO4(0.592 mol%) - K3PO4(0.408 mol%) no mole ratio change of LiCl-KCl eutectic salt during reaction process

    - phosphate reaction of rare-earth with Ar sparging within one hour, 450-500 oC ; termination of phosphate reaction

    sequential use of phosphate reaction and then oxygen sparging process- low operation temperature, short operation time

    1 2 3 4 5 6 7 80

    20

    40

    60

    80

    100

    Con

    vers

    ion

    effic

    ienc

    y [%

    ]

    Time [hr]

    70%-phosphate30%-oxidation

    1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

    2 -T h e ta

    REPOREPO44REOClREOClREOREO22 or REor RE22OO33

    phosphate

    oxidation

    Waste Salt Treatment – V

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 29

    Capacity of 2 kg/batch

    This distillation system can heat to 1100 oC and reduce the pressure to 10-3 Torr

    A single-body of distillation and condensation chamber system

    Closed chamber operation is possible

    Four heaters are able to independently program

    Cooling water is only circulated in the bottom of the salt collection bottle

    Installation Schematic diagram

    Cooling water

    T2T3

    T5

    T6T7

    T4

    Vaporization chamber

    Condensation chamberHeater 1

    Heater 2

    Heater 3

    Heater 4

    T1

    Sample bottle

    Salt collector

    Pressuregauge Valve

    FilterVacuum

    pump

    Waste Salt Treatment –VI

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 30

    LiCl waste : Dechlorination by SAP (SiO2-Al2O3-P2O5) & Consolidation

    RE waste : Consolidation by ZIT (ZnO-TiO2-SiO2-CaO-P2O5-B2O3)

    Layer crystallization Precipitation

    RE phosphate/oxide

    Waste Salt Treatment – VII

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 31

    Process Layout in PRIDE

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com

  • 32

    Summary

    Based on the national long-term R&D program, the pyroprocessing technology will be developed to achieve the milestones.

    Research on lab-scale unit processes will be continued in terms of throughput increase, remote operability enhancement, process optimization, waste minimization, and so on. 20 kg/batch scale experiments have been successfully conducted. Eng. scale unit processes have been designed based on the lab-scale research activity. KAERI welcomes international collaboration for development of pyroprocessing technology.

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    http://www.novapdf.comhttp://www.novapdf.com