PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ......

28
PY2N20-8 PY2N20 Material Properties and Phase Diagrams Lecture 8 P. Stamenov, PhD School of Physics, TCD

Transcript of PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ......

Page 1: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

PY2N20-8

PY2N20

Material Properties and

Phase Diagrams

Lecture 8

P. Stamenov, PhD

School of Physics, TCD

Page 2: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Phase transformations

Fe

3C

(ce

me

ntite

)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

g

(austenite)

g +L

g + Fe3C

a + Fe3C

L+Fe3C

d

Co , wt% C

1148°C

T(°C)

727°C

Page 3: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Eutectic, Eutectoid and Peritectic

Reactions

Eutectic Reaction

Eutectoid reaction

)2()1( phaseSolidphaseSolidLiquid

)3()2()1( phaseSolidphaseSolidphaseSolid

Peritectic Reaction

)3()2()1( phaseSolidphaseSolidphaseLiquid

Page 4: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Phase Transformations

Nucleation nuclei act as seed points to grow crystals

for nucleus to form

rate of addition of atoms > rate of loss

once nucleated, growth equilibrium

Driving force to nucleate increases as we increase T supercooling (eutectic, eutectoid)

superheating (peritectic)

Small supercooling few nuclei - large crystals

Large supercooling rapid nucleation - many nuclei,

small crystals

Page 5: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Solidification: Nucleation

Processes

Homogeneous nucleation

nuclei form in the bulk of liquid metal

requires supercooling (typically 80-300 °C max)

Heterogeneous nucleation much easier since stable “nucleus” is already present

Could be wall of mold or impurities in the liquid phase

Think of why you’d been asked never to put a used spoon back into a honey jar…

allows solidification with only 0.1-10 ºC supercooling

concentration drive is also possible and often used!

Page 6: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

The rate is: r = 1 / t0.5

Avrami (JMAK) rate equation: y = 1- exp(-k t n)

k & n are constants for specific system – n is roughly

related to the growth front dimensionality + 1

Rate of Phase Transformation

All out of material –

transformation complete

log t

Fra

cti

on

tra

nsfo

rmed

, y

Fixed T

maximum rate reached – now amount unconverted decreases so rate slows

0.5

1.0

t0.5 rate increases as surface area increases

& nuclei grow

JMAK – Johnson, Mehl,

Avrami, Kolmogorov

Page 7: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

In general, rate increases as T

r = 1/t0.5 = A e -Q/RT

R = gas constant

T = temperature (K)

A = pre-exponential factor

Q = activation energy

Rate of Phase Transformations

• r often small: equilibrium not possible!

135C 119C 113C 102C 88C 43C

1 10 102 104 10

102 104

1

Adapted from Fig.

10.11, Callister 7e.

(Fig. 10.11 adapted

from B.F. Decker and

D. Harker,

"Recrystallization in

Rolled Copper", Trans

AIME, 188, 1950, p.

888.)

Page 8: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Eutectoid Transformation Rate

Course pearlite formed at higher T - softer

Fine pearlite formed at low T - harder

Diffusive flow of C needed

a

a

g g

a

• Growth of pearlite from austenite:

g a a a a

a

a

pearlite growth direction

Austenite (g)

grain boundary

cementite (Fe3C)

Ferrite (a)

g

• Eutectoid

transformation

rate increases

with T. 675°C

(T smaller)

0

50

y (

% p

earlite)

600°C

(T larger) 650°C

100

Page 9: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

• Reaction rate is a result of nucleation and growth of crystals.

• Examples:

Nucleation and Growth

% Pearlite

0

50

100

Nucleation

regime

Growth

regime

log (time) t 0.5

Nucleation rate increases with T

Growth rate increases with T

T just below TE

Nucleation rate low

Growth rate high

g

pearlite colony

T moderately below TE

g

Nucleation rate med .

Growth rate med.

Nucleation rate high

T way below TE

g

Growth rate low

Page 10: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Transformations & Supercooling

• Can make it occur at: ...727ºC (cool it slowly)

...below 727ºC (“supercool” it!)

• Eutectoid transf. (Fe-C System): g a + Fe3C

0.76 wt% C 0.022 wt% C

6.7 wt% C

Fe

3C

(cem

entite

)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

g

(austenite)

g +L

g +Fe3C

a +Fe3C

L+Fe3C

d

(Fe) Co , wt%C

1148°C

T(°C)

a

ferrite 727°C

Eutectoid: Equil. Cooling: Ttransf. = 727ºC

T

Supercooling by Ttransf. < 727C

0.7

6

0.0

22

Page 11: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Isothermal Transformation Diagrams

• Fe-C system, Co = 0.76 wt% C

• Transformation at T = 675°C.

100

50

0 1 10 2 10 4

T = 675°C

y,

% tra

nsfo

rmed

time (s)

400

500

600

700

1 10 10 2 10 3 10 4 10 5

Austenite (stable) TE (727C)

Austenite (unstable)

Pearlite

T(°C)

time (s)

isothermal transformation at 675°C

Page 12: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

• Eutectoid composition, Co = 0.76 wt% C

• Begin at T > 727°C

• Rapidly cool to 625°C and hold isothermally.

Effect of Cooling History in Fe-C System

400

500

600

700

Austenite (stable) TE (727C)

Austenite

(unstable)

Pearlite

T(°C)

1 10 10 2 10 3 10 4 10 5

time (s)

g g

g

g g

g

Page 13: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Transformations with

Proeutectoid Materials

Hypereutectoid composition – proeutectoid cementite

a

CO = 1.13 wt% C

TE (727°C)

T(°C)

time (s)

A

A

A +

C

P

1 10 102 103 104

500

700

900

600

800

A +

P

Fe

3C

(ce

me

ntite

)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

g (austenite)

g +L

g +Fe3C

a +Fe3C

L+Fe3C

d

(Fe) Co , wt%C

T(°C)

727°C T

0.7

6

0.0

22

1.1

3

Page 14: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Non-Equilibrium Transformation

Products: Fe-C

• Bainite: (Davenport & Bain) - a strips with long

needles of Fe3C

- diffusion controlled.

• Isothermal Transf. Diagram

Fe3C

(cementite)

5 mm

a (ferrite)

10 10 3

10 5

time (s) 10

-1

400

600

800

T(°C) Austenite (stable)

200

P

B

TE

pearlite/bainite boundary

A

A

100% bainite

100% pearlite

120 mm

cf: Pearlite

Page 15: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

- a + grains with spherical

Fe3C

- diffusion dependent.

- heat bainite or pearlite

for long times

(e.g. 18 h at 700°C)

- reduces interfacial area

(driving force)

Spheroidite: Fe-C System

(ferrite)

60 mm

a

(cementite)

Fe3C

Page 16: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

• Martensite: (Martens) - g(FCC) to Martensite (BCT)

• Isothermal Transf. Diagram

• g to M transformation.. - is rapid!

- % transf. depends on

T only.

- can be stress-induced

Martensite: Fe-C System

Martensite needles Austenite

60

mm

10 10 3

10 5 t/s 10

-1

400

600

800

T(°C) Austenite (stable)

200

P

B

TE A

A

M + A M + A

M + A

0% 50% 90%

x

x x

x

x

x potential

C atom sites

Fe atom

sites

(involves single atom jumps)

Page 17: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

g (FCC) a (BCC) + Fe3C

Martensite Formation

slow cooling

tempering

quench

M (BCT)

M = martensite is body centered tetragonal (BCT)

Diffusionless transformation BCT if C > 0.15 wt%

BCT few slip planes hard, brittle

Page 18: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Phase Transformations of Alloys

Effect of adding

other elements

Change transition

temp.

Cr, Ni, Mo, Si, Mn

retard

g a + Fe3C

transformation

Page 19: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Dynamic Phase Transformations

On the isothermal transformation diagram

for 0.45 wt% C Fe-C alloy, sketch and label

the time-temperature paths to produce the

following microstructures:

a) 42 % proeutectoid ferrite and 58 % coarse

pearlite

b) 50 % fine pearlite and 50 % bainite

c) 100 % martensite

d) 50 % martensite and 50 % austenite

Page 20: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

A + B

A + P

A + a A

B P

A 50%

0

200

400

600

800

0.1 10 103 105 time (s)

M (start)

M (50%)

M (90%)

Example Problem for Co = 0.45 wt%

a) 42 % proeutectoid ferrite and 58 % coarse pearlite (amounts determined by phase diagram)

first make ferrite

then pearlite

coarse pearlite

higher T

T (°C)

Page 21: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

a. the amount of pearlite and proeutectoid ferrite (a)

note: amount of pearlite = amount of g just above TE

Co = 0.45wt% C

Ca = 0.022 wt% C

Cpearlite = Cg = 0.76 wt% C

%9.57100x

ag

a

ag

g

CC

CCo

pearlite = 58 %

proeutectoid a = 42 %

Fe

3C

(ce

me

ntite

)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

g (austenite)

g +L

g + Fe3C

a + Fe3C

L+Fe3C

d

Co , wt% C

1148°C

T(°C)

727°C

CO

R S

Cg Ca

Example Problem for Co = 0.45 wt%

Page 22: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

b) 50 % fine

pearlite and

50% bainite

first make pearlite

then bainite

fine pearlite

lower T

T (°C)

A + B

A + P

A + a A

B P

A 50%

0

200

400

600

800

0.1 10 103 105 time (s)

M (start)

M (50%)

M (90%)

Example Problem for Co = 0.45 wt%

Page 23: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

A + B

A + P

A + a A

B P

A 50%

0

200

400

600

800

0.1 10 103 105 time (s)

M (start)

M (50%)

M (90%)

Example Problem for Co = 0.45 wt%

c) 100 %

martensite

– quench =

rapid cool

d) 50 % martensite

and 50 %

austenite d)

c)

T (°C)

Page 24: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Mechanical Prop: Fe-C System (1)

• More wt% C: TS and YS increase , %EL decreases.

• Effect of wt% C

Co < 0.76 wt% C

Hypoeutectoid

Pearlite (med) ferrite (soft)

Co > 0.76 wt% C

Hypereutectoid

Pearlite (med)

C ementite (hard)

300

500

700

900

1100

YS

TS(MPa)

wt% C 0 0.5 1

hardness

0.7

6

Hypo Hyper

wt% C 0 0.5 1

0

50

100

%EL

Imp

act e

ne

rgy (

Izo

d, ft

-lb

)

0

40

80

0.7

6

Hypo Hyper

TS

EL

Izod

Page 25: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Mechanical Prop: Fe-C System (2)

• Fine vs coarse pearlite vs spheroidite

• Hardness:

• %RA: fine > coarse > spheroidite

fine < coarse < spheroidite

80

160

240

320

wt%C 0 0.5 1

Bri

ne

ll h

ard

ne

ss fine

pearlite coarse pearlite

spheroidite

Hypo Hyper

0

30

60

90

wt%C D

uctilit

y (

%A

R)

fine pearlite

coarse pearlite

spheroidite

Hypo Hyper

0 0.5 1

Page 26: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Mechanical Prop: Fe-C System (3)

• Fine Pearlite vs Martensite:

• Hardness: fine pearlite << martensite.

0

200

wt% C 0 0.5 1

400

600

Bri

ne

ll h

ard

ne

ss

martensite

fine pearlite

Hypo Hyper

Page 27: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Tempering Martensite

• reduces brittleness of martensite,

• reduces internal stress caused by quenching.

• decreases TS, YS but increases %RA

• produces extremely small Fe3C particles surrounded by a.

9 m

m

MPa

800

1000

1200

1400

1600

1800

30

40

50

60

200 400 600 Tempering T (°C)

%RA

TS

YS

%RA

Page 28: PY2N20 Material Properties and Phase Diagrams Material Properties and Phase Diagrams Lecture 8 ... eutectoid) superheating ... Solidification: Nucleation

Summary: Processing Options

Austenite (g)

Bainite (a + Fe3C plates/needles)

Pearlite (a + Fe3C layers + a

proeutectoid phase)

Martensite (BCT phase

diffusionless transformation)

Tempered Martensite (a + very fine

Fe3C particles)

slow cool

moderate cool

rapid quench

reheat

Str

en

gth

Ductilit

y

Martensite T Martensite

bainite fine pearlite

coarse pearlite spheroidite

General Trends