PWB

download PWB

of 75

Transcript of PWB

  • 8/7/2019 PWB

    1/75

    Copyright T-Buck DDI 2006

    1

    Power Distribution Basics

    By

    Tom Buck

  • 8/7/2019 PWB

    2/75

    Copyright T-Buck DDI 2006

    Overview

    Current capacity and temperature rise

    De-coupling and buried capacitance

    Buried resistors

  • 8/7/2019 PWB

    3/75

    Copyright T-Buck DDI 2006

    PWB Power Distribution

    Natural convection limit

    Proper design is essential for proper operation as signalspeeds go in the GHz range

    PWB power distribution must maintain a low impedancethrough a broad frequency spectrum to include harmonics

    As circuit speeds increase the inductance of smaller andsmaller PWB elements become critical

    Proper placement of bypass capacitance is critical

    Above several hundred MHz internal distributed planecapacitance is essential to maintain low impedance

    Design Considerations:

  • 8/7/2019 PWB

    4/75

    Copyright T-Buck DDI 2006

    DC Resistance Copper Traces

    Base width (bw)

    Top width (tw)

    Thickness(tk)

    R = Resistance in ohms

    L = Length in inches

    = Copper conductivity

    6.787 x 10-7

    = Temperature coefficient

    0.0039 for copper

    Temp = Temperature riseDegrees C

    R =L x

    (Bw - (bw - tw)/2) x tk(1 + (Temp - 20) x

  • 8/7/2019 PWB

    5/75

    Copyright T-Buck DDI 2006

    DC Resistance Copper Traces

    Copper Weight oz

    = 0.5oz

    = 1.0oz

    = 2.0

    oz

    Etch factor accountedfor in trace width

  • 8/7/2019 PWB

    6/75

    Copyright T-Buck DDI 2006

    DC Resistance Copper Traces

    Copper Weight oz

    = 0.5oz

    = 1.0oz

    = 2.0

    oz

    Etch factor accountedfor in trace width

  • 8/7/2019 PWB

    7/75

    Copyright T-Buck DDI 2006

    DC Resistance Copper Traces

    Copper Weight oz

    = 0.5oz

    = 1.0oz

    = 2.0

    oz

    Etch factor accountedfor in trace width

  • 8/7/2019 PWB

    8/75

    Copyright T-Buck DDI 2006

    DC Resistance Copper Traces

    Copper Weight oz

    = 0.5oz

    = 1.0oz

    = 2.0

    oz

    Etch factor accountedfor in trace width

  • 8/7/2019 PWB

    9/75

    Copyright T-Buck DDI 2006

    Current Capacity & Density vsTemperature Rise

    = 5C= 10C

    = 15C

    = 20C

    = 25C

    Temperature Rise

    Degrees C

    Data Based on DN 1968

    0 1.27 (50) 2.54 (100) 3.81 (150) 5.08 (200)

    Trace width in mm (mils)

    0 1.27 (50) 2.54 (100) 3.81 (150) 5.08 (200)

    Trace width in mm (mils)

  • 8/7/2019 PWB

    10/75

    Copyright T-Buck DDI 2006

    Current Capacity & Density vsTemperature Rise

    = 5C= 10

    C

    = 15C

    = 20C

    = 25C

    Temperature RiseDegrees C

    Data Based on IPC

    (External Traces)

    0 1.27 (50) 2.54 (100) 3.81 (150) 5.08 (200)

    Trace width in mm (mils)

    0 1.27 (50) 2.54 (100) 3.81 (150) 5.08 (200)

    Trace width in mm (mils)

  • 8/7/2019 PWB

    11/75

    Copyright T-Buck DDI 2006

    Current Capacity & Density vsTemperature Rise

    = 5C= 10

    C

    = 15C

    = 20C

    = 25C

    Temperature RiseDegrees C

    Data Based on IPC

    (Internal Traces)

    0 1.27 (50) 2.54 (100) 3.81 (150) 5.08 (200)

    Trace width in mm (mils)

    0 1.27 (50) 2.54 (100) 3.81 (150) 5.08 (200)

    Trace width in mm (mils)

  • 8/7/2019 PWB

    12/75

    Copyright T-Buck DDI 2006

    Cu Foil Power Dissipation vs CurrentDensity

    = 2.0

    oz

    = 1.0oz

    = 0.5oz

    Copper Foil Weights

    Natural convection limit

  • 8/7/2019 PWB

    13/75

    Copyright T-Buck DDI 2006

    Overview

    Current capacity and temperature rise

    De-coupling and buried capacitance

    Buried resistors

  • 8/7/2019 PWB

    14/75

    Copyright T-Buck DDI 2006

    PWB Power Distribution Elements

    Natural convection limit

    Off board power supply and associated wiring

    (high inductance)

    On board DC:DC converters

    Board level bypass capacitors for low

    frequency

    Distributed bypass capacitors for bypass up to

    a few hundred MHz

    Distributed embedded plane capacitance forbypass to about 1 GHz

    Advanced distributed embedded plane

    capacitance materials for bypass to several

    GHz

    Supply Elements:

    PWB Inductance: Trace inductance to bypass caps and components

    Cu Plane sheet inductance

    Via hole inductance

  • 8/7/2019 PWB

    15/75

    Copyright T-Buck DDI 2006

    PWB Power Distribution Impedance

    Natural convection limit

    Imped

    anceinOhms

    Discretewiring

    inductance

    Board levelde-coupling

    DistributedbypassCaps

    Power&

    Groundplanes

    Package levelinductance &Capacitance

    Discrete wire inductance

    Board level de-couplingcapacitance

    Distributed de-couplingcapacitance

    Parallel plane capacitance(power & Ground)

    PWB Supplyimpedance

  • 8/7/2019 PWB

    16/75

    Copyright T-Buck DDI 2006

    Parallel Plane Impedance

    Natural convection limit

    Plane separation in mils

    pF/in2 nH/Square

    Inductance

    Capacitance

    Based on FR-4 r = 4.3

    Inductance & Capacitance as a function of plane separation

  • 8/7/2019 PWB

    17/75

    Copyright T-Buck DDI 2006

    Bypass Capacitor Placement

  • 8/7/2019 PWB

    18/75

    Copyright T-Buck DDI 2006

    Bypass Capacitance Requirements

    Minimum capacitance value per device I/O

    Cmin =I

    2 FRTV

    Where:

    Cmin

    = Capacitance

    I = Peek I/O drive current

    V = Supply noise level

    FRT = Spectral envelope

    (Signal rise time)RT = Signal rise time*

    FRT

    =

    0.35

    RT10%-90% * Use slowest rated rise time of the devise tocalculate capacitance to allow proper bypasslower frequencies since the cap will pass higherfrequencies until it is limited by series inductance

  • 8/7/2019 PWB

    19/75

    Copyright T-Buck DDI 2006

    Bypass Capacitance Requirements

    Maximum series inductance to the bypass capacitor

    Lmax =

    V

    2 FRTI

    Where:

    Lmax = InductanceI = Peek I/O drive current

    V = Supply noise level

    FRT = Spectral envelope

    (Signal rise time)

    RT = Signal rise time*

    Natural convection limitFRT

    =

    0.35

    RT10%-90%* Use fastest rated rise time of the devise tocalculate inductance since the inductance willpass the lower frequencies

  • 8/7/2019 PWB

    20/75

    Copyright T-Buck DDI 2006

    Bypass Capacitance Requirements

    Bypass Capacitor AC Impedance

    Xac(F) =

    Where:

    Xac = Impedance in ohms

    RESR= Effective Series Resistance

    L = Series InductanceC = Capacitance

    R2ES

    R

    + 2FL -1

    2F

    C

    3

    OK

    2

    ohms

  • 8/7/2019 PWB

    21/75

    Copyright T-Buck DDI 2006

    Return Currents

    +

    -

    Return current (I)

    Signal current (I)

    Ground Plane

    Signal Trace

    PWB Dielectric

    CMOS DriverBypass Cap

    ERS

    L

    C

    I

    on

    off

    +

    -

    Return current (I/2)

    Signal current (I)

    Ground Plane

    Signal Trace

    PWB Dielectric

    CMOS DriverBypass Cap

    ERS

    L

    C

    I/2

    on

    off

    Return current (I/2)Power Plane

    Microstrip

    Symmetric Stripline

  • 8/7/2019 PWB

    22/75

    Copyright T-Buck DDI 2006

    Return Path Considerations

    Natural convection limit

  • 8/7/2019 PWB

    23/75

    Copyright T-Buck DDI 2006

    Return Path Considerations

    Natural convection limit

    Increased inductance forhigh frequency currents

    Increased radiation (EMI)

    Higher crosstalk

    Elevated noise levels inboth power and ground

    Design Considerations

  • 8/7/2019 PWB

    24/75

    Copyright T-Buck DDI 2006

    Return Path Considerations

    Natural convection limit

    Simple plane split

    Plane return current path(100 MHz)

    Signal

    Path

    Planesplit

    Complex plane split

    Signalpath

    Plane return current path

    Plane return current pathwith split removed

    Data Source: Zuken

    More complex plane splits result

    in less intuitive return paths

  • 8/7/2019 PWB

    25/75

    Copyright T-Buck DDI 2006

    Return Path Considerations

    External plane fills are difficult to implementon fine pitch components due to the large

    geometry required by through holes

    Via-In-Pad allow easy external planefills reducing the return path loop area

    and lowering signal path inductance

    LoopArea

  • 8/7/2019 PWB

    26/75

    Copyright T-Buck DDI 2006

    Return Path Considerations

    Low inductancemicrovia (0.22 nH) Through hole signal via

    Ground plane

    Power plane

    Single plypre-preg layer(106 or 1080)0.002 TO 0.003

    Thin dielectric layers yield approximately 400-500 pf/in.^2

    Reduced plane separation reduces sheet inductance

    Laser drilled vias significantly reduce hole barrel inductance

    Laser drilled vias reduce anti-pad plane voiding

    External plane layers are Cu foil + electroplated Cu (0.002 thick)

  • 8/7/2019 PWB

    27/75

    Copyright T-Buck DDI 2006

    Planar Embedded CapacitanceTechnologies

    Natural convection limit

    BC 2000 (0.002 +/- .0005) 503 pF/in106E-glass - Isola, Polyclad, & MEM

    BC 1000 (0.001) 1200 pF/in.2

    3M C-Ply (0.0003) 10 nF/in.2 & (0.0008) 4

    nf/in.2 Ceramic filled epoxy

    MEM BC 2000 (.001 +/- .0002) 1200 pF/inUltra-m E-glass

    Gould TCC (.002 +/- .0003) 740 pF/inPolyimide Film (0.0005 @ 1400 pF /in )

    Oak-Mitsui Farad-Flex (0.00063) 1500 pF/in Dupont InterraTM HK4 Series polyimide (18/25

    m) 800 pF/ 1100 pF

    Dupont InterraTM HK9 Series ceramic filled

  • 8/7/2019 PWB

    28/75

    Copyright T-Buck DDI 2006

    Planar Embedded Capacitance Technologies

    Natural convection limit

    Capacitance per unit area is

    proportional to K and inversely

    proportional to d

    Capacitance between planes in

    PCBs is reduced by anti-pads

    Copper Plane

    Dielectric (r) Thickness (d)

    Copper Plane

    Simple Thin Film Capacitor

    C =K 0 A

    d

    Where:

    C = Capacitance (F/m2)K = Dielectric constant (r)

    o = 8.85-12

    A = Area (m2)

    d = Thickness (m)

  • 8/7/2019 PWB

    29/75

    Copyright T-Buck DDI 2006

    Planar Embedded Capacitance Technologies

    Natural convection limit

    = 3

    = 4

    = 5

    DielectricConstant

    = 2

  • 8/7/2019 PWB

    30/75

    Copyright T-Buck DDI 2006

    Planar Embedded Capacitance Technologies

    3M C-Ply Distributed embeddedcapacitance layer

    1oz copper panes

    3M C-Ply Dielectric layer

  • 8/7/2019 PWB

    31/75

    Copyright T-Buck DDI 2006

    Dupont InterraTM

    planar embeddedcapacitance material

    Polyimide Dielectric

    Planar Embedded Capacitance Technologies

  • 8/7/2019 PWB

    32/75

    Copyright T-Buck DDI 2006

    Source:SunMicrosystems

    Planar Embedded Capacitance Technologies

  • 8/7/2019 PWB

    33/75

    Copyright T-Buck DDI 2006

    Power Distribution

    Natural convection limit

    Data from NCMS Embedded Decoupling Capacitance Project Report - 12/00

    (Time Domain - 50 MHz)

    Power Bus Noise

  • 8/7/2019 PWB

    34/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Data from NCMS Embedded Decoupling Capacitance Project Report - 12/00

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    No Caps (FR4) Decoupling Caps BC2000 EmCap HiK DuPont 3M C-Ply

    1MHz to 1GHz

    1 GHz to 3 GHz

    3 GHz to 5 GHz

    Power Bus Noise

    Data normalized to FR-4 with no caps

    Power Distribution

  • 8/7/2019 PWB

    35/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    RLC relationships for 1.0 mm array patterns

    Simulations cover a range of antipad diametersthat could be encountered with mechanicaldrilling and laser drilling

    1.0 oz copper planes Copper planes are separated by 50 mm (0.002)

    Dielectric constant of 4.0

    Temperature of 20 degrees C

    Current density (j) in amps/meter

    Power Distribution

  • 8/7/2019 PWB

    36/75

    Copyright T-Buck DDI 2006

    Current Density : 1.0 mm Array Pattern

    1.0 mm Array pattern: 0.76mm (0.030) anti-pads

    1oz copper50m dielectric

    r = 4.0

    Currentflow

    R= 1.433 x 10-3

    L= 1.55 x 10-10

    C= 4.695 x 10-12

    R= 5.656 x 10-4

    L= 8.021 x 10-11

    C= 6.884 x 10-12

    Solid planes Anti-pads

    R= 253%

    L= 193%

    C= -31.8%

    Change

    0.76 mm (0.030) dia. Anti-pad

    Area = 1.395 x 10-2 in.2

    Anti-Pad Area = 6.36 x 10-3 in.2 Area = - 45.6%

    Area = 9.0 x 10-2 cm.2

    Anti-Pad Area = 4.1 x 10-2 cm2

    Area = - 45.6%

  • 8/7/2019 PWB

    37/75

    Copyright T-Buck DDI 2006

    Current Density : 1.0 mm Array Pattern

    1.0 mm Array pattern: 0.63 mm (0.025) anti-pads

    1oz copper50 m dielectric

    r = 4.0

    Currentflow

    R= 1.036 x 10-3

    L= 1.228 x 10-10

    C= 5.448 x 10-12

    R= 5.656 x 10-4

    L= 8.021 x 10-11

    C= 6.884 x 10-12

    Solid planes Anti-pads

    R= 183%

    L= 153%

    C= -20.8%

    Change

    0.63 mm (0.025) dia. Anti-pad

    Area = 1.395 x 10-2 in.2

    Anti-Pad Area = 4.42 x 10-3 in.2 Area = - 31.7%

    Area = 9.0 x 10-2 cm.2

    Anti-Pad Area = 2.85 x 10-2 cm.2

    Area = - 31.7%

  • 8/7/2019 PWB

    38/75

    Copyright T-Buck DDI 2006

    Current Density : 1.0 mm Array Pattern

    1.0 mm Array pattern: 0.51 mm (0.020) anti-pads

    1oz copper50 m dielectric

    r = 4.0

    Currentflow

    R= 8.206 x 10-4

    L= 1.025 x 10-10

    C= 6.048 x 10-12

    R= 5.656 x 10-4

    L= 8.021 x 10-11

    C= 6.884 x 10-12

    Solid planes Anti-pads

    R= 145%

    L= 127%

    C= -12.1%

    Change

    .051 mm (0.020) dia. Anti-pad

    Area = 1.395 x 10-2 in.2

    Anti-Pad Area = 2.83 x 10-3 in.2 Area = - 20.26%

    Area = 9.0 x 10-2 cm.2

    Anti-Pad Area = 1.82 x 10-2

    cm.2

    Area = - 20.26%

  • 8/7/2019 PWB

    39/75

    Copyright T-Buck DDI 2006

    Current Density : 1.0 mm Array Pattern

    1.0 mm Array pattern: 0.38 mm (0.015) anti-pads

    1oz copper50 m dielectric

    r = 4.0

    Currentflow

    R= 6.907 x 10-4

    L= 9.016 x 10-11

    C= 6.488 x 10-12

    R= 5.656 x 10-4

    L= 8.021 x 10-11

    C= 6.884 x 10-12

    Solid planes Anti-pads

    R= 122%

    L= 112%

    C= -5.75%

    Change

    0.38 mm (0.015) dia. Anti-pad

    Area = 1.395 x 10-2 in.2

    Anti-Pad Area = 1.59 x 10-3 in.2

    Area = - 11.4%

    Area = 9.0 x 10-2 cm.2

    Anti-Pad Area = 1.03 x 10-2 cm.2 Area = - 11.4%

  • 8/7/2019 PWB

    40/75

    Copyright T-Buck DDI 2006

    RLC as a Function of Copper Area 1.0 mm Array

    3 mm square9 anti-pads1 oz copper50 m dielectric

    er 4.0

    Anti-Pad Data Points

    (mil)15

    202530

    (mm)0.381

    0.5080.6350.762

    Array Details

  • 8/7/2019 PWB

    41/75

    Copyright T-Buck DDI 2006

    RLC as a Function of Copper Area 1.0 mm Array

    3 mm square9 anti-pads1 oz copper50 m dielectric

    er 4.0

    Anti-Pad Data Points

    (mil)15

    202530

    (mm)0.381

    0.5080.6350.762

    Array Details

    M i i i C O 1 0 A

  • 8/7/2019 PWB

    42/75

    Copyright T-Buck DDI 2006

    Maximizing Copper On 1.0 mm ArraysUsing Blind Vias

    Natural convection limit

    Using alternating blind and through holes onarray patterns will increase the copper areawithin an array pattern thereby:

    Reducing the plane resistance

    Reduce the plane inductance

    Increase capacitance when using plane pairs forde-coupling

    Improve thermal performance

  • 8/7/2019 PWB

    43/75

    Copyright T-Buck DDI 2006

    Channel Generation With Via Structures

    1.0 mm Array pattern with alternating blind vias

    48.8mils

    BGA land pad

    0.010 via, 0.020 Pad

    0.010 blind via, 0.020 Pad

    Bused copper, lower

    resistance & Inductance

    0.030 Anti-pad

  • 8/7/2019 PWB

    44/75

    Copyright T-Buck DDI 2006

    Channel Generation With Via Structures

    1.0 mm Array pattern with alternating blind vias

    BGA land pad

    0.010 via, 0.020 Pad

    0.010 blind via, 0.020 Pad

    Bused copper, lower

    resistance & Inductanceincreased capacitance

    0.030 Anti-pad

    0.00

    2

    Plane pairs

  • 8/7/2019 PWB

    45/75

    Copyright T-Buck DDI 2006

    Current Density : 1.0 mm Array Pattern

    1.0 mm Array pattern: 0.030 anti-pads

    1oz copper0.002 dielectric

    r = 4.0

    Currentflow

    R= 8.513 x 10-4

    L= 1.002 x 10-10

    C= 4.96 x 10-12

  • 8/7/2019 PWB

    46/75

    Copyright T-Buck DDI 2006

    Current Density : 1.0 x 2.0 mm Array Pattern

    1.0 x 2.0 mm Array pattern: 0.030 anti-pads

    1oz copper0.002 dielectric

    r = 4.0

    Currentflow

    R= 6.297 x 10-4

    L= 8.244 x 10-11

    C= 5.48 x 10-12

  • 8/7/2019 PWB

    47/75

    Copyright T-Buck DDI 2006

    Power Distribution

    Natural convection limit

    RLC relationships for 0.8 mm array patterns

    Simulations cover a range of antipad diametersthat could be encountered with mechanicaldrilling and laser drilling

    1.0 oz copper planes Copper planes are separated by 50 mm (0.002)

    Dielectric constant of 4.0

    Temperature of 20 degrees C

    Current density (j) in amps/meter

  • 8/7/2019 PWB

    48/75

    Copyright T-Buck DDI 2006

    Current Density : 0.8 mm Array Pattern

    0.8 mm Array pattern: 0.028 anti-pads

    1oz copper0.002 dielectric

    r = 4.0

    Currentflow

    R= 2.324 x 10-3

    L= 1.939 x 10-10

    C= 2.583 x 10-12

    R= 5.656 x 10-4

    L= 7.908 x 10-11

    C= 4.498 x 10-12

    Solid planes Anti-padsR= 411%

    L= 245%

    C= - 42.5%

    Change

    Area = 8.93 x 10-3 in.2

    Anti-Pad Area = 5.54 x 10-3 in.2 Area = - 62.1%

    Area = 5.76 x 10-2 cm.2

    Anti-Pad Area = 3.58 x 10-2 cm.2 Area = - 62.1%

  • 8/7/2019 PWB

    49/75

    Copyright T-Buck DDI 2006

    Current Density : 0.8 mm Array Pattern

    0.8 mm Array pattern: 0.023 anti-pads

    1oz copper0.002 dielectric

    r = 4.0

    Currentflow

    R= 1.305 x 10-3

    L= 1.363 x 10-10

    C= 3.28 x 10-12

    R= 5.656 x 10-4

    L= 7.908 x 10-11

    C= 4.498 x 10-12

    Solid planes Anti-pads

    R= 230%

    L= 172%

    C= - 27.1%

    Change

    Area = 8.93 x 10-3 in.2

    Anti-Pad Area = 3.74 x 10-3 in.2 Area = - 41.9%

    Area = 5.76 x 10-2 cm.2

    Anti-Pad Area = 2.41 x 10-2 cm.2 Area = - 41.9%

  • 8/7/2019 PWB

    50/75

    Copyright T-Buck DDI 2006

    Current Density : 0.8 mm Array Pattern

    0.8 mm Array pattern: 0.018 anti-pads

    1oz copper0.002 dielectric

    r = 4.0

    Currentflow

    R= 9.126 x 10-4

    L= 1.069 x 10-10

    C= 3.824 x 10-12

    R= 5.656 x 10-4

    L= 7.908 x 10-11

    C= 4.498 x 10-12

    Solid planes Anti-pads

    R= 161%

    L= 150%

    C= - 14.98%

    Change

    Area = 8.93 x 10-3 in.2

    Anti-Pad Area = 2.29 x 10-3 in.2 Area = - 25.65%

    Area = 5.76 x 10-2 cm.2

    Anti-Pad Area = 1.48 x 10

    -2

    cm.

    2

    Area = - 25.65%

  • 8/7/2019 PWB

    51/75

    Copyright T-Buck DDI 2006

    Current Density : 0.8 mm Array Pattern

    0.8 mm Array pattern: 0.012 anti-pads

    1oz copper0.002 dielectric

    r = 4.0

    Currentflow

    R= 6.922 x 10-4

    L= 8.796 x 10-11

    C= 4.263 x 10-12

    R= 5.656 x 10-4

    L= 7.908 x 10-11

    C= 4.498 x 10-12

    Solid planes Anti-pads

    R= 103%

    L= 111%

    C= - 5.22%

    Change

    Area = 8.93 x 10-3 in.2

    Anti-Pad Area = 1.02 x 10-3 in.2 Area = - 11.4%

    Area = 5.76 x 10-2 cm.2

    Anti-Pad Area = 6.57 x 10-3 cm.2 Area = - 11.4%

  • 8/7/2019 PWB

    52/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    2.4 mm square9 anti-pads1 oz copper50 m dielectric

    er 4.0

    Anti-Pad Data Points

    (mil)12

    182328

    (mm)0.304

    0.4570.5840.711

    Array Details

    RLC as a Function of Copper Area 0.8 mm Array

  • 8/7/2019 PWB

    53/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    2.4 mm square9 anti-pads1 oz copper50 m dielectric

    er 4.0

    Anti-Pad Data Points

    (mil)12

    182328

    (mm)0.304

    0.4570.5840.711

    Array Details

    RLC as a Function of Copper Area 0.8 mm Array

  • 8/7/2019 PWB

    54/75

    Copyright T-Buck DDI 2006

    Overview

    Current capacity and temperature rise

    De-coupling and buried capacitance

    Buried resistors

  • 8/7/2019 PWB

    55/75

    Copyright T-Buck DDI 2006

    Embedded Resistor Technology

    Natural convection limit

    Advantages:

    Increase Active Circuit Density

    Replace discrete resistors

    Build resistors inside the PWB

    Reduce board size

    Convert boards to single sidedSMT

    Improved Electrical Performance

    Reduce signal path length toresistors

    Lower inductance

    Reduce surface EMI

    Improve signal integrity

    Improved Reliability

    Eliminate solder joints

    Increase board testability

    Reduce holes and vias Simplify rework

    Reduce Cost

    Eliminate discrete resistors Reduce rework

    Reduce board size

    Increase yield

    Source: Ohmega Technologies Inc.

  • 8/7/2019 PWB

    56/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Technology

  • 8/7/2019 PWB

    57/75

    Copyright T-Buck DDI 2006

    PhotoResist

    PhotoResist

    PhotoResist

    PhotoResist

    Copper

    Copper

    Copper

    Copper Copper

    Copper

    Copper

    Copper

    Base Laminate Base Laminate

    Base Laminate Base Laminate

    Basic Process Sequence

    Step 1: Apply photo resist

    Step 2: Primary Image copperisolation area and develop

    Step 3: Chemically etch copper

    Step 4: Chemically etch nickelresistor layer forming the resistor

    Embedded Resistor Technology

  • 8/7/2019 PWB

    58/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Step 5: Strip photo resist

    Step 6: Apply photo resist forsecondary image

    Step 7: Image and develop resistorgeometry for precise resistance value

    Step 8: Strip photo resist and testfor resistance values

    Basic Process Sequence

    Finished Resistor

    Embedded Resistor Technology

  • 8/7/2019 PWB

    59/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Within A Plane Layer

    Embedded Resistor Technology

  • 8/7/2019 PWB

    60/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Resistors on an internal signal layer

    Via hole land pad

    Low resistance copper

    High resistance nickelresistor element

    Embedded Resistor Technology

  • 8/7/2019 PWB

    61/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    25 ohm 25 ohm25 ohm

    Increasing power dissipation

    2 x 25 ohm/square= 50 ohm

    3 x 25 ohm/square= 75 ohm

    4 x 25 ohm/square= 100 ohm

    Increasing resistanceL

    W

    Resistance = (L x W) x Sheet Resistance

    Embedded Resistor Technology

  • 8/7/2019 PWB

    62/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    33 ohm resistor example

    Resistor widt1h = 27 milsResistor length = 36 milsSheet resistance = 25 ohms/square

    R= (36/27) * 25 = 33.3 ohms

    R = (L x W) x Sheet Resistance

    Where:

    Embedded Resistor Technology

    E b dd d R i T h l

  • 8/7/2019 PWB

    63/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Variation sheet resistance dueto thickness

    Copper etching tolerance Nickel etching tolerance

    Temperature

    Source of resistance variations

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    64/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Serpentine ResistorsCorner squares have lower resistanceR= 0.56 * Sheet resistance

    Example using 100 ohm/square material

    Total squares = 20Non-corner squares = 16Corner squares = 4

    Resistance = (16 * 100) + (4 * 0.56 * 100)

    Resistance = 1824 ohms

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    65/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Serpentine Resistors

    Low resistance copper barseliminate the corner resistanceof the nickel resistive layer

    Total squares = 14Non-corner squares = 14Corner squares = 0

    Resistance = 14 * 100 = 1400 ohms

    Example using 100 ohm/square material

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    66/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    67/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    68/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    69/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    70/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Technology

    E b dd d R i t T h l

  • 8/7/2019 PWB

    71/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Embedded Resistor Technology

    Embedded Resistor Technology

  • 8/7/2019 PWB

    72/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    100 1000 10000

    0.1

    1

    10

    45o C

    70o C

    110o C

    140o C

    Time in hours

    %Changeinresistance

    Resistor Stability vs Temperature

    Data Source: Ohmega Technologies Inc

    Embedded Resistor Technology

    Embedded Resistor Technology

  • 8/7/2019 PWB

    73/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    200 400 600 800 10000

    0

    20

    40

    6080

    100

    120

    140160

    Power dissipation in mWT

    emperaturerise

    indegreesC

    R1

    R2R3R4R5

    Temperature vs Power Density

    Data Source: Ohmega Technologies Inc

    R1= 25 ohm (0.500 x 0.500) = 0.2500 in.2

    R2= 25 ohm (0.250 x 0.250) = 0.0625 in.2

    R3= 25 ohm (0.125 x 0.125) = 0.0156 in.2

    R4= 25 ohm (0.063 x 0.063) = 0.0039 in.

    2

    R5= 25 ohm (0.031 x 0.031) = 0.0096 in.2

    Resistance Size Area

    Embedded Resistor Technology

    Embedded Resistor Technology

  • 8/7/2019 PWB

    74/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    10 20 30 40 50 60 70 80 90 10000

    20

    40

    60

    80

    100

    120

    140

    160

    180200 R1

    R2

    R3 R4R5 R6

    Power density in watts/in.2

    TemperatureriseindegreesC

    Temperature vs Power Density

    Data Source: Ohmega Technologies Inc

    R1= 250 ohmR2= 250 ohmR3= 250 ohmR4= 250 ohm

    R5= 250 ohmR6= 250 ohm

    0.00250.00250.0250.025

    0.0620.062

    1R25/0 (unclad)1R25/1 (Clad)1R25/0 (unclad)1R25/1 (Clad)

    1R25/0 (unclad)1R25/1 (Clad)

    Resistance Thickness Construction

    Embedded Resistor Technology

    Embedded Resistor Technology

  • 8/7/2019 PWB

    75/75

    Copyright T-Buck DDI 2006

    Natural convection limit

    Design Considerations Resistor width is the most critical dimension in determining yield

    Wider resistor geometry yield tighter tolerances

    At present, 10 mil resistor widths are the hard limit to yield +/- 15 %

    tolerance

    Signal traces should run no closer than 8 mils to the resistor element

    Resistor elements should be placed no closer than 15 mils to the drilled

    hole

    Use 25 ohm/square material if design criteria allows

    Minimum core thickness of 4 mils (thicker cores provide better yield)

    Embedded Resistor Technology