Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High...

24
Joris Verbiest Swinburne University & ATNF Matthew Bailes (Swin) Richard Manchester (ATNF) George Hobbs (ATNF) William Coles (UCSD) Andrea Lommen (F&M) *: GWB = Gravitational Wave Background Pulsar Stability (and )

Transcript of Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High...

Page 1: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Joris Verbiest Swinburne University & ATNF

Matthew Bailes (Swin) Richard Manchester (ATNF)

George Hobbs (ATNF) William Coles (UCSD) Andrea Lommen (F&M)

*: GWB = Gravitational Wave Background

Pulsar Stability (and

)

Page 2: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Outline

• High precision timing of MSPs*

• Long-term timing stability

• Simple GWB limit technique

• Conclusions

*: MSP = Milli-Second Pulsar

Page 3: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Quick Basics of Pulsar Timing

Time (10 years)

Res

idua

l (20

0 ns

)

Page 4: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Precision Timing State-of-the-Art

• PSR J0437-4715

• 10 years

• 4 instruments

• 200 ns rms

• Highest precision over decade! (Verbiest et al., 2008)

Page 5: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Long-term Stability of MSPs

GWB sensitivity requires: (Jenet et al., 2005) – High timing precision ( ~102 ns)

–  Long observing campaigns (~101 yrs)

⇒ Highly stable MSPs

Page 6: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Expected GWB signature

LOW frequency

LOW strain (strength)

(Fig

ure

cour

tesy

of G

. Hob

bs)

Page 7: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Stability: Observations

• 12 years (avg.) on 20 PPTA* pulsars

*: PPTA = Parkes Pulsar Timing Array

Page 8: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Stability: Examples: 1824 PSR J1824-2452 (in Globular Cluster M28)

Time →

Resi

dual

(low) Frequency (high)

Pow

er

Page 9: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Stability: Examples: 1909 PSR J1909-3744:

158 ns over 5 yrs

Page 10: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Stability: Observations

• 12 years (avg.) on 20 PPTA* pulsars – 2: clear timing noise (J1939+2134, J1824-2452) – 2: some evidence for timing noise (J0613-0200, J1024-0719)

– 4: sub-μs timing (J0437-4715, J1909-3744, J1713+0747, J1744-1134)

– 12 remaining: white noise, μs-level rms

– average: 2.2 μs rms

*: PPTA = Parkes Pulsar Timing Array

Page 11: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Stability: Conclusion & Prospects

• Mostly stable, but high noise levels

• New instruments (bandwidth, resolution) • New calibration methods • New software • New pulsars (surveys) • Collaboration (more, bigger telescopes)

Detection prospects look good, provided:

Page 12: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

PTAs need to “see” the GWs True Residuals

True Residuals + simulated GWB

Simulated GWB

PSR J1939+2134 PSR J1857+0943 PSR J0437-4715

Page 13: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

GWB vs. Pulsar Spectrum

GWB

PSR J0437-4715

Page 14: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

A Very Simple GWB Limit •  Spectrum of Pulsar Residuals: PPSR(f)

•  Monte-Carlo GWB Spectrum: PGWB(A,f)

•  Statistic: S = Σ( W(f) * P(f) )

•  Bound: amplitude for which SGWB > SPSR , 95% of the time

Page 15: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Previous Limits in Literature

• Kaspi, Taylor & Ryba, ApJ, 1994

• Thorsett & Dewey, Ph. Rev. D, 1996

• McHugh et al., Ph. Rev. D, 1996

•  Jenet et al., ApJ, 2006

Page 16: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Earlier Limit Problems •  No GWB simulations - all analytic

–  Fitting, jumps & sampling effects –  Hard Statistics

•  White residuals required (Jenet et al., 2006)

•  GWB simulation software ( Hobbs et al., 2008)

– Monte-Carlo simulations •  Red noise allowed

Then

Now

Page 17: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Details to be Worked Out

• Precise weighting (i.e. combination of frequencies)

• Combination of Pulsars

• Spectral leakage

• Steep spectra

Page 18: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

No (New) Limit

Page 19: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Conclusions

• MSPs are intrinsically stable

• Limits are useful too

• Promising new limit coming soon

Page 20: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique
Page 21: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Gravitational Wave Effect

Source: Wikipedia

Page 22: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Results (Summary)

GC

Timing Noise

Page 23: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

GWB vs. Pulsar Spectrum

GWB

PSR J0437-4715

Page 24: Pulsar Stability - Australia Telescope National Facility · Pulsar Stability (and) Outline • High precision timing of MSPs* • Long-term timing stability • Simple GWB limit technique

Stability: Examples: 1713 PSR J1713+0747:

362 ns over 14 yrs