PRR of the TRD Cooling

22
PRR TRD COOLING A. Marín (GSI) 7/01/2004 ALICE PRR TRD COOLING ALICE PRR TRD COOLING P.Glässel, A.Marín, V.Petracek, J.Stachel, M.R.Stockmeier, P.Glässel, A.Marín, V.Petracek, J.Stachel, M.R.Stockmeier, J.P.Wessels J.P.Wessels

description

ALICE PRR TRD COOLING P.Glässel, A.Marín, V.Petracek, J.Stachel, M.R.Stockmeier, J.P.Wessels. PRR of the TRD Cooling. The TRD detector in ALICE Cooling plant Heat generated by the detector Map of heat sources Routing of pipes Test measurements - PowerPoint PPT Presentation

Transcript of PRR of the TRD Cooling

Page 1: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

ALICE PRR TRD COOLINGALICE PRR TRD COOLING

P.Glässel, A.Marín, V.Petracek, J.Stachel, M.R.Stockmeier, J.P.WesselsP.Glässel, A.Marín, V.Petracek, J.Stachel, M.R.Stockmeier, J.P.Wessels

Page 2: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

PRR of the TRD Cooling PRR of the TRD Cooling

The TRD detector in ALICE Cooling plant Heat generated by the detector Map of heat sources Routing of pipes Test measurements Construction and tests during assembly List of materials used

Page 3: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

The TRD detector in ALICEThe TRD detector in ALICE

18 SuperModules in 30 chambers/SM in 6

layers

6/8 Readout Boards/ chamber

16 MCMs/RB

1.18x106 channels

TRD

RB24

RB26

Page 4: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Readout Board in a chamberReadout Board in a chamber

MCMsMCMs

Test room

Readout board TRD chamber

Page 5: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Map of heat sources in TRDMap of heat sources in TRD

Stack of chambers Readout board

Page 6: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Heat sources in TRD (I)Heat sources in TRD (I)

Source # Power (W) Amount Total Amount (SM)

Total Power per SM (W)

0 (VR) 0.21 2/RB 456 96

1 (VR) 0.88 2/RB 456 401

2 (VR) 0.066 2/RB 456 30

3 (VR) 0.352 2/RB 456 161

4 (VR) 0.009 1/RB 228 2

5 (VR) 0.044 1/RB 228 10

6 (MCM) 0.52 16/RB 3648 1897

7 (DCS) 5 1/chamber 30 150

8 (bars) 16 2/layer 12 192

The total dissipated power is ~ 53kW

Page 7: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

The TRD cooling plant (CERN-ST/CV)The TRD cooling plant (CERN-ST/CV)

18 cooling circuits (1/SM) Inlet RB26/ Outlet RB24

1500L/h @ 16~20oC TRD supermodule

RB26 side RB24 side

Layout of Supply pipes around the TRD Cooling of one TRD super-module

Page 8: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

The TRD cooling plant (CERN-ST/CV)The TRD cooling plant (CERN-ST/CV)

Flow rate: TRD: 18 1.5m3/h Total flow = 27 m3/h

Total heat to be removed: ~55kW

Total Volume of water in the installation: ~2000L

Range of available water temperature at the Heaters outlet:

Super-modules: 16~18ºC

Heaters

TRDSupply

manifold18 outlets

ThermalscreenSupply

manifold18 outlets

Mixed water

Compressedair

1500L/h @16~20oC

TRD supermodule

RB26 side RB24 side

300L/h @ 18~20oC

Thermal screen

Returnmanifold36 inlets

C

Mixed-bed

de-ionizer

Page 9: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Routing of services inside SMRouting of services inside SM

Main water supply in each layer: 250 l/h

Power bars: 16 W

Page 10: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Voltage regulators (VR)Voltage regulators (VR)

Temperature in VR test board seen by IR camera No cooling is applied

#1 #3 #1#3

Page 11: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

VR: temperature profile (IR camera)VR: temperature profile (IR camera)

60 0 C reached without cooling

Size of VR:6x3mm2

Page 12: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Desing of Cooling PadsDesing of Cooling Pads

MCM: 0.520 W 40x40x0.4 mm3 Al pad (minimize radiation length) 2(3) mm inner (outer) diameter Al pipe of length ~ 9 cm 3M heat conductive tape (9890,5506)

Page 13: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Cooling meander Cooling meander

Cooling circuit across per SM) Type A: (#0)+8x(#6)+(#0)+(#1) = 5.45 W Type B: (#1)+(#2)+(#3)+(#4)+(#5)+8x(#6)+(#2)+(#3)+(#4)+

(#5)=5.9W Water flow : 3.4 l/h T=1.50C

Page 14: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Test cooling system, MCMTest cooling system, MCM

Tap water Needle valve Pressure meter

Readout boardMCM

Tin = 14.60C

Tout = 15.60C

TMCM = 21.30C 19.60C 20.50C

dTglob-top = 4.10C 3.20C 4.40C

Page 15: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Optimization VROptimization VR

foam(a) 2 Al pipes over VR

1 Al pipes touching RB (b) 1/2 Al pipes over VRHeat bridges

dTVR1 = 8.50C /9.30C dTVR3 = 4.40C

dTVR0 = 3.50C/5.40C

(a) (b)

Page 16: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

IR cameraIR camera2 Al pipes over VR

1/2 Al pipes over VRHeat bridges

Page 17: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Long term test using VR setupLong term test using VR setup

Power dissipated: 5.2W (equivalent to a cooling meander) All pipes in series Air gap: 15 mm Good thermal insulation: pipes, air volume Pipes touching VR (no heat bridges), pipe over RB in both

sides

Page 18: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Results of long term testResults of long term test

Twater out=1.3-1.50C

expected 1.50C) Tair=6.70C

Tair stable over 4 days Heat on3.4-3 l/h

Page 19: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

DCS cooling testDCS cooling test

Pipes over main heat dissipation components

FPGA/EPXA1 VR

Ethernet SDRAM

Flash

TTCrx

Tin = 18.70C Tout= 200C

TVR1 = 33.70CTVR2 = 35.80CTTTCrx= 33.70C TFPGA= 36.80C

Tair= 290CNew DCS ,VR in parallel!

Page 20: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Grounding schemeGrounding scheme

Cooling pipes along electrically insulated from electronics (MCM) and Supermodule

Cooling pipes along can be electrically insulated from cooling pads or electrically connected To be decided based on noise measurements

Possibility of connecting cooling pipes to RB (or SM) ground To be decided based on noise measurements

Page 21: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Assembly and testsAssembly and tests

1. Meander construction in a company2. Measure pressure drop in each meander3. Glue Al plates in each cooling meander. Electrically insulating material

between pipe and plate if needed for noise requirements.4. Put heat conductive tape on top of each component5. Glue cooling meanders to RB in a flat table using Al-filled epoxy.6. Inspect visually that all Al plates are touching the heat sources. Mark

each checked component.7. Power electronics and measure the temperature underneath each heat

source using a plate equipped with Pt100 at given positions.8. Check that all electronics is still working. Avoid damage during gluing9. Position the RB preequipped with cooling meanders in the chambers.

Connect the cooling meanders between the two RB and between RB and the main water supply using Viton connectors. Fix RB to chambers

10. Once every layer is fully equipped test for leak tightness by pumping with vacuum pump

Page 22: PRR of the TRD Cooling

PRR TRD COOLING A. Marín (GSI) 7/01/2004

Material usedMaterial used

1. Al tube of 2(3) mm inner (outer) diameter.

2. Al plates of 40x40x0.4 mm3

3. 3M tape (5506,9890) for thermal conductivity and electrical isolation

4. Al powder and epoxy