Proton Exchange Membrane Fuel Cells PEMFC

10
1 Proton Exchange Membrane Fuel Cells PEMFC Jens Oluf Jensen Summer School on Materials for the Hydrogen Society, Reykjavik, June 19.-23. in 2008 Energy and Materials Science Group, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark Extraction of the energy H 2 2H + + 2e - (½O 2 + 2e - O 2- ) ½O 2 + 2H + + 2e - H 2 O H + Electrolyte Electrode Negative electrode Anode (oxidation) Positive electrode Cathode (reduction) Electrode Anode (H 2 , negative) Proton conducting membrane Cathode (O 2 , positive) Building up a MEA MEA = Membrane Electrode Assembly Polymer fuel cell (PEMFC) Cathode: Pt on carbon ½O 2 + 2H + + 2e - H 2 O Electrolyte: H + conducting polymer Perfluorosulphonic acid (e.g Nafion) Anode: Pt on carbon H 2 2H + 2e -

Transcript of Proton Exchange Membrane Fuel Cells PEMFC

Page 1: Proton Exchange Membrane Fuel Cells PEMFC

1

Proton Exchange Membrane Fuel Cells

PEMFC

Jens Oluf Jensen

Summer School on Materials for the Hydrogen Society, Reykjavik, June 19.-23. in 2008

Energy and Materials Science Group, Department of Chemistry, Technical University of Denmark,Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark

Extraction of the energy

H2 → 2H+ + 2e-(½O2 + 2e- → O2-)

½O2 + 2H+ + 2e- → H2O

H+ →

Electrolyte

Elec

trode

Negative electrodeAnode

(oxidation)

Positive electrodeCathode

(reduction)

Elec

trode

Anode(H2, negative)

Proton conducting membrane

Cathode(O2, positive)

Building up a MEA

MEA = Membrane Electrode Assembly

Polymer fuel cell (PEMFC)

Cathode: Pt on carbon ½O2 + 2H+ + 2e-

→ H2O

Electrolyte: H+ conducting polymer Perfluorosulphonic acid (e.g Nafion)

Anode: Pt on carbon H2 → 2H+ 2e-

Page 2: Proton Exchange Membrane Fuel Cells PEMFC

2

Single cell

ElectrolyteCatalyst layer

Channel plate

Diffusion layer

Electrode structure

Gas

ElectrolyteChannel plateRip

Electrode substrate Catalystlayer

Micro-porouslayer

Ions

Electrons,Heat

Gas diffusion layer (GDL)

An MEA Single cell

Electrolyte

Anode (-)Cathode (+

)

Cannel plate

Channel plate

Page 3: Proton Exchange Membrane Fuel Cells PEMFC

3

Stacking

+

-

Transport paths

Electrons and heat Reactants and products

Bipolarplate

Diffusion layer

Catalyst layerElectrolyte

Channel plates (bipolar plates)

Nexa from Ballard1200 W

Polymer fuel cell (PEMFC)

Page 4: Proton Exchange Membrane Fuel Cells PEMFC

4

Polymer fuel cell (PEMFC)

260 kW PEMFC with 205 kW motor, Ballard

GM/Opel Fuel Cell Marathon

http://www.gmeurope.com/marathon/

2004, 10 000 kmHydroGen3 (Opel Zafira)

Polymer fuel cell (PEMFC)

Reykjavik

Polymer fuel cell (PEMFC)

German submarine U - 212Siemens PEM fuel cellGfE metal hydride storage tank

Page 5: Proton Exchange Membrane Fuel Cells PEMFC

5

Polymer fuel cell (PEMFC)

2kWCHP

6kWCHP

From IRD Fuel Cells

Polymer fuel cell (PEMFC)

Advantages:• Compact construction• Large current density• Solid electrolyte• Low working temperature• Fast start-up

Disadvantages:• Water management• Noble metal catalyst• CO sensitive (must be < 20 ppm)• Cooling issues

Perfluorosulfonic acid polymers (Nafion®)

Nearly all PEMFC’sbased on

PFSA polymers(perfluorosulphonic acid)

Teflon

PFSA(Nafion)Developed

by DuPont

Proton conduction

Vehicle mechanismProton carried by water as H3O+, H5O2

+ etc

Grotthus mechanismProton jumping from H3O+ to H2O(Then another H+ can take the next jump)

Page 6: Proton Exchange Membrane Fuel Cells PEMFC

6

Water drag

Conductivity depends strongly on water content

H2

H2O

H7O3+ O2

Anode CathodeMembrane

e- e-H2O

Water management - a technical challengeToo little water => drying out, loss of conductivity

Too much water => condensation, flooding of electrodes

Cooling in cars

Water 60-70ºC 90-100ºCΔT(40 ºC) 20-30ºC 50-60ºC

Cooling a FC car requires a larger cooling system (radiator)

From DaimlerChrysler

How can a higher working temperature help ?

Advantages:• Higher CO tolerance• No water management• No liquid water• Higher value of excess heat• Easier cooling

Reformer / Reformer Brændselscelle / Fuel cell

ElNat. Gas,Methanol

H2CO2CO CO-oprensning

til 0,001 %

CO clean-upto 0,001 %

H2CO2

Varme/heat

Luft indAir in

Luft udAir out

Befugtning afluften

Humidificationof the air

Page 7: Proton Exchange Membrane Fuel Cells PEMFC

7

Luft indAir in

Luft udAir out

Befugtning afluften

Humidificationof the air

H2CO2

H2CO2CO CO-oprensning

til 0,001 %

CO clean-upto 0,001 %

Reformer / Reformer Brændselscelle / Fuel cell

ElNat. Gas,Methanol

Varme/heat

Other attempts

Replacement of sulphonic acid- Phosphonic acid- Other side chains- Other acceptor/donors

Replacement of water-H2SO4-H3PO4-CF3SO3H

Almindelige PEM-celler er baseretpå membraner som Nafion

Maksimal temperatur:ca. 80°C

Conventional PEMFC are basedon Membranes like Nafion

Maximum temperatureca. 80°C

NafionN

N

N

Nn

HH

Poly (2,2´-m-(phenylene)-5,5´-bibenzimidazole)

PBI

Nymembranaf PBI og

phosphorsyre

Maksimal temperatur:ca. 200°C

New membrane of PBI and phosphoricacid

Maximum temperature: ca. 200°C

Direct methanol fuel cell (DMFC)

(A special PEMFC)

Anode: CH3OH + H2O → 6H+ +6e- + CO2

Cathode: 1.5O2 + 6H+ + 6e- → 3H2O

Electrolyte: Ion conducting polymer (e.g. Nafion)Catalysts: Noble metals (Pt and Pt alloys)

Page 8: Proton Exchange Membrane Fuel Cells PEMFC

8

Direct methanol fuel cell (DMFC)

Size: < 1W - 1 kW

Applications:• Portable electronics (laptops, phones, MP3...)• Small/medium UPS systems• Remote power

DMFC

DMFC

DMFCIRD Fuel cells

DMFC

ToshibaDMFC for 1) a laptop2) an MP3 player

Page 9: Proton Exchange Membrane Fuel Cells PEMFC

9

DMFC DMFC

Direct methanol fuel cell (DMFC)

Advantages:• Liquid fuel• Easy and fast fuelling• Easy and compact fuel storage

Disadvantages:• Low efficiency• Fuel crossover• Expensive catalyst (10xPt amount)• MeOH poisonous

Example System (bus)

Motor etc. 14 kW

DC

/DC

13 kW

Cooler 20 kW

Com

pr47 kWFC

heat285 kW

Fuel545 kW

FC el.260 kW 213 kW 193 kW 180 kW

Work166 kW

30%

Losses:

Power

Page 10: Proton Exchange Membrane Fuel Cells PEMFC

10

Some of the problems

• Cost• Hydrogen storage in vehicles• Efficient hydrogen production• Durability of cells• Noble metals supply• Infrastructure• Numerous technical details

Polymer fuel cell (PEMFC)

From IRD Fuel cells