PROTEÍNAS

27
Universidad Mayor de San Andrés La Paz – Bolivia Práctica de Orgánica II Proteínas Nombre: Alfredo Alberto Valdivia Medina Carrera: Ing. Química

description

trabajo sobre proteinas

Transcript of PROTEÍNAS

Page 1: PROTEÍNAS

Universidad Mayor de San Andrés La Paz – Bolivia

Práctica de Orgánica IIProteínas

Nombre: Alfredo Alberto Valdivia MedinaCarrera: Ing. QuímicaFecha: 2 – 12 – 2008 Docente: Ing. Gustavo GonzálesMateria: Química Orgánica II teoría

Page 2: PROTEÍNAS

1.- Proteína

Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios Proteo, por la cantidad de formas que pueden tomar.Las proteínas desempeñan un papel fundamental en los seres vivos y son las biomoléculas más versátiles y más diversas. Realizan una enorme cantidad de funciones diferentes, entre las que destacan la estructural (colágeno y queratina), la reguladora (insulina y hormona del crecimiento), transportadora (hemoglobina), defensiva (anticuerpos), enzimática o contractil (actina y miosina). Las proteínas de todo ser vivo están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas podría tener una célula, tejido u organismo.Las proteínas se sintetizan dependiendo de como se encuentren regulados los genes que las codifican. Por lo tanto, son suceptibles a señales o factores externos. El estudio de las proteínas expresadas en un momento determinado es denominado proteoma.

2.- Características

Las proteínas son macromoléculas; son biopolímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las distinguen de las soluciones de moléculas más pequeñas.Por hidrólisis, las moléculas proteínicas son escindidas en numerosos compuestos relativamente simples, de pequeño peso, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.Todas las proteínas contienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteínas contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.Las proteínas son largas cadenas de aminoácidos unidas por enlaces peptídicos entre el grupo carboxilo (-COOH) y los grupos amino (NH2) de residuos de aminoácido adyacentes. La secuencia de aminoácidos en una proteína es definida por un gen y codificada en el código genético.

Page 3: PROTEÍNAS

Las proteínas están formadas en forma general por péptidos, pero, ¿Qué son los péptidos?

Los péptidos son parte de la formación de las proteínas entonces debemos saber que son los péptidos para entender mejor el concepto de proteína.

Los péptidos son un tipo de moléculas formadas por la unión de varios aminoácidos mediante enlaces peptídicos.Los péptidos, al igual que las proteínas, están presentes en la naturaleza y son responsables de un gran número de funciones, muchas de las cuales todavía no se conocen.La unión de un bajo número de aminoácidos da lugar a un péptido:

Oligopéptido : Número de aminoácidos < 10. Polipéptido  : Número de aminoácidos > 10. Proteína : Número de aminoácidos > 100. Las proteínas con una sola cadena

polipeptídica se denominan proteínas monoméricas, mientras que las compuestas de más de una cadena polipeptídica se conocen como proteínas multiméricas.

Los péptidos se diferencian de las proteínas en que son más pequeños (tienen menos de diez mil o doce mil Daltons) y que las proteínas pueden estár formadas por la únión de varios polipéptidos y a veces grupos prostéticos. Un ejemplo de polipéptido es la insulina la cual se compone de 55 aminoácidos y se conoce como una hormona de acuerdo a la función que tiene en el organismo de los seres humanos.

Comportamiento ácido/base de los péptidos

Puesto que tienen un grupo amino-terminal y un carboxilo-terminal; y pueden tener grupos R ionizables, los péptidos tienen un comportamiento ácido/básico similar al de los aminoácidos.Los péptidos, al igual que aminoácidos y proteínas son biomoléculas con un caracter anfótero que premiten la regulación homeostática de los organismos.Es de destacar este comportamiento en las enzimas, péptidos que funcionan como catalizadores biológicos de las reacciones metabólicas, ya que tienen una valencia de actuación dentro de ciertos niveles de pH. En caso de superarse se produce una descompensación de cargas en la superficie de la enzima, que pierde su estructura y su función

Reacciones químicas de los péptidos

Son las mismas que para los aminoácidos; es decir, las que dé su grupo amino, carboxilo y R. Estas reacciones (sobre todo las del los grupos amino y carboxilo) se han empleado para secuenciar péptidos.

Reacciones del grupo amino

En cuanto a las reacciones del grupo amino, es muy interesante la reacción con el reactivo de Sanger para secuenciar, ya que si tenemos el 2,4-dinitrofenil-péptido y lo hidrolizamos

Page 4: PROTEÍNAS

por hidrólisis ácida, se hidrolizarán todos los enlaces peptídicos y obtendremos el dinitrofenil del primer aminoácido de la secuencia, el NH2 terminal, más el resto de los aminoácidos disgregados en el medio.Con esta reacción Sanger consiguió secuenciar la insulina.En esta reacción, el núcleo coloreado de dinitrobenceno se une al átomo de nitrógeno del aminoácido para producir un derivado amarillo, el derivado 2,4-dinitrofenil o DNP-aminoácido. El compuesto DNFB reaccionara con el grupo amino libre del extremo amino de un polipéptido, así como también con los grupos amino de los aminoácidos libres. El enlace C – N que se forma es por lo general mucho más estable que un enlace peptídico. De esta forma, haciendo reaccionar una proteína nativa o un polipéptido intacto con el DNFB, hidrolizando la proteína en ácido y aislando los DNP-aminoácidos coloreados, puede identificarse el grupo amino terminal del aminoácido en una cadena polipeptídica. El grupo amino-terminal de la lisina y algunos otros grupos funcionales de las cadenas laterales también reaccionaran con el DNFB.Sin embargo, después de la hidrólisis, solo el derivado del grupo amino terminal del aminoácido original tendrá su grupo α-amino bloqueado; asimismo, tales DNP-α-aminoácidos pueden separarse de otros derivados DNP mediante procedimientos de extracción simples. Con cualquiera de los variados métodos cromatograficos se podrá identificar a los DNP-α-aminoácidos

Pero este proceso consume mucha energía, ya que, teniendo el primer aminoácido hay que obtener los demás rompiendo por otras zonas. Esto se evita con el procedimiento de Edman (también es una reacción de aminoácidos): Como la ciclación se da en condiciones ácidas suaves, no se rompen los enlaces, y se da la feniltiohidantoína del aminoácido NH2-terminal + el resto del péptido intacto.

Page 5: PROTEÍNAS

Se separan ambos compuestos y por cromatografía se detecta. Con el resto del péptido se sigue con el mismo procedimiento hasta tener la secuencia completa. Éste método se conoce como Degradación de Edman, y es la reacción que usan los secuenciadores automáticos de proteínas. Pero estos secuenciadores sólo pueden secuenciar los 20-30 primeros aminoácidos, por lo que tendremos que hidrolizar y seguír después. Esto es porque el rendimiento no es del 100% y perdemos péptido poco a poco, y al final no nos queda. Sólo las enzimas consiguen un rendimiento al 100%.

Reacciones del grupo carboxilo

También podemos secuenciar empezando por el extremo carboxilo-terminal, para lo que se usan enzimas como la carboxipeptidasa. Es una proteasa que hidroliza los enlaces peptídicos. Ésta en concreto es una exoproteasa (ataca a la proteína por un extremo) que ataca al extremo carboxilo-terminal. Se emplean 2 tipos, la carboxipeptidasa A y B. Catalizan la misma reacción, pero tienen especificidad distinta. La A sólo rompe el enlace peptídico si el aminoácido carboxilo-terminal es hidrofóbico. La B lo rompe si es básico. Hay que controlar muy bien el tiempo de reacción, ya que cuando se libera un carboxilo-terminal el siguiente aminoácido se convierte en el carboxilo-terminal.

Reacciones de los grupos R

Respecto a las reacciones de los grupos R, existen muchos reactivos que reaccionan de forma específica con determinados grupos R (OH de la serina, tiol de la cisteína...). Esto se usa para ver qué aminoácido es esencial para el funcionamiento de la proteína. Dentro de las reacciones de ls grupos R, una interesante desde el punto de vista de aislamiento y purificaciñon de proteínas es la del grupo tiólico (SH) de la cisteína, que es fuertemente reductor. En presencia de O2 tiene mucha tendencia a oxidarse. Si hay dos moléculas de cisteína; en presencia de oxígeno, se oxidan para originar una molécula de cistina:

Page 6: PROTEÍNAS

Esto ocurre frecuentemente en una proteína, cuando se pliega y dos moléculas de cisteína quedan próximas en el espacio, generando un puente disulfuro. El puente disulfuro ocurre de forma natura, y debe formarse para estabilizar la estructura tridimensional de la proteína. Sin embargo, puede que no deba ocurrir de forma natural, por ejemplo, si hay cisteínas esenciales expuestas (necesarias para la funcionalidad). Cuando aislamos una proteína de su entorno natural, ponemos a la proteína en presencia de oxígeno, con lo que esos grupos tiólicos se pueden oxidar, y la proteína perder su funcionalidad. Para evitar esto, en los medios de aislamiento y purificación de proteínas añadimos β-mercapto-etanol, cuyo grupo tiólico es más reductor que el de la propia cisteína; tiene más tendencia a oxidarse.

De modo que al añadir β-mercapto-etanol, éste se oxida y protege así los grupos tiólicos de la cisteína.Cuando queremos estudiar la composición de aminoácidos de una proteína tenemos que hidrolizarla completamente, con lo que tenemos una mezcla de todo el conjunto de aminoácidos libres que consituyen dicha proteína. Para evitar, en toda esta manipulación, que las Cys que tengamos en el medio se oxiden, tenemos que proteger su grupo tiólico añadiendo como reactivo iodoacetato:

Así transformamos la cisteína en carboximetilcisteína.

Los péptidos son aminoácios unidos por enlaces peptídicos así que ahora debemos ver ¿Qué son los enlaces peptídicos?

Page 7: PROTEÍNAS

El enlace peptídico es un enlace covalente entre el grupo amino (–NH2) de un aminoácido y el grupo carboxilo (–COOH) de otro aminoácido. Los péptidos y las proteínas están formados por la unión de aminoácidos mediante enlaces peptídicos. El enlace peptídico implica la pérdida de una molécula de agua y la formación de un enlace covalente CO-NH. Es, en realidad, un enlace amida sustituido.Podemos seguir añadiendo aminoácidos al péptido, pero siempre en el extremo COOH terminal.Para nombrar el péptido se empieza por el NH2 terminal por acuerdo. Si el primer aminoácido de nuestro péptido fuera alanina y el segundo serina tendríamos el péptido alanil-serina.

Características estructurales del enlace

Un tripéptido

Podríamos pensar que una proteína puede adoptar miles de conformaciones debidas al giro libre en torno a los enlaces sencillos. Sin embargo, en su estado natural sólo adoptan una única conformación tridimensional que llamamos conformación nativa; que es directamente responsable de la actividad de la proteína.Esto hizo pensar que no podía haber giro libre en todos los enlaces; y efectivamente, mediante difracción de rayos X se vio que el enlace peptídico era más corto que un enlace sencillo normal, porque tiene un cierto carácter (60%) de enlace doble, ya que se estabiliza por resonancia.

Page 8: PROTEÍNAS

Por esa razón no hay giro libre en torno a este enlace. Esta estabilización obliga a que los 4 átomos que forman en enlace peptídico más los dos carbonos que se encuentran en posición a (marcado con a en la ilustración) con respecto a dicho enlace, se encuentren en un plano paralelo a ello:

Esta ordenación planar rígida es el resultado de la estabilización por resonancia del enlace peptídico. Por ello, el armazón está constituido por la serie de planos sucesivos separados por grupos metileno sustituidos. Esto impone restricciones importantes al número posible de conformaciones que puede adoptar una proteína.El O carbonílico y el hidrógeno amídico se encuentran en posición trans (uno a cada lado del plano); sin embargo, el resto de los enlaces (N-Ca y Ca-C) son enlaces sencillos verdaderos, con lo que podría haber giro. Pero no todos los giros son posibles.

Pero la parte esencial de las proteínas son los aminoácidos. ¿Qué son los aminoácidos?

Para entender mejor las proteínas hay que saber que son los aminoácidos.

Los aminoácidos son los monómeros de las proteínas. Dos aminoácidos se combinan en una reacción de condensacion que libera agua formando un enlace peptídico. Estos dos restos aminoacidicos forman un dipéptido. Si se une un tercer aminoácido se forma un tripéptido y así, sucesivamente para formar un polipéptido.Los aminoácidos están formados por un carbono unido a un grupo carboxilo, un grupo amino, un hidrógeno y una cadena R de composición variable, que determina las propiedades de los diferentes aminoácidos; existen cientos de cadenas R por lo que se conocen cientos de aminoácidos diferentes. En los aminoácidos naturales, el grupo amino y el grupo carboxil se unen al mismo carbono que recibe el nombre de alfa asimétrico.La unión de varios aminoácidos da lugar a cadenas llamadas polipéptidos o simplemente péptidos. Se hablará de proteína cuando la cadena polipeptídica supere los 50 aminoácidos o el peso molecular total supere los 5.000 uma. Existen unos 20 aminoácidos distintos componiendo las proteínas. La unión química entre aminoácidos en las proteínas se produce mediante un enlace peptídico. Ésta reacción ocurre de manera natural en los ribosomas, tanto del retículo endoplasmático como del citosol.

Estructura general de un aminoácido

Page 9: PROTEÍNAS

La estructura general de un aminoácido se establece por la presencia de un carbono central alfa unido a: un grupo carboxilo, un grupo amino, un hidrogeno y la cadena lateral, tal como se muestra a continuación:

donde "R" representa la cadena lateral, específica para cada aminoácido. Técnicamente hablando, se les denomina alfa-aminoácidos, debido a que el grupo amino (–NH2) se encuentra a un atomo de distancia del grupo carboxilo (–COOH). Como dichos grupos funcionales poseen H en sus estructuras químicas, son grupos susceptibles a los cambios de pH, por eso, en el pH de la célula, prácticamente ningún aminoácido se encuentra de esa forma, sino que se encuentra ionizado.Los aminoácidos a pH bajo (ácido) se encuentran mayoritariamente en su forma catiónica (con carga positiva), y a pH alto (básico) se encuentran en su forma aniónica (con carga negativa). Sin embargo, existe un pH especifico para cada aminoácido, donde la carga positiva y la carga negativa se encuentran en equilibrio, y el conjunto de la molécula es eléctricamente neutro.

Los aminoácidos se clasifican habitualmente según las propiedades de su cadena lateral: Neutros polares , polares o hidrófilos : Serina (Ser,S), Treonina (Thr,T), Cisteína

(Cys,C), Asparagina (Asn,N), Glutamina (Gln,Q) y Tirosina (Tyr,Y).

Neutros no polares , apolares o hidrófobos: Glicina (Gly,G), Alanina (Ala,A), Valina (Val,V), Leucina (Leu,L), Isoleucina (Ile,I), Metionina (Met,M), Prolina (Pro,P), Fenilalanina (Phe,F) y Triptófano (Trp,W).

Con carga negativa, o ácidos: Ácido aspártico (Asp,D) y Ácido glutámico (Glu,E).

Con carga positiva, o básicos: Lisina (Lys,K), Arginina (Arg,R) e Histidina (His,H).

Aromáticos: Fenilalanina (Phe,F), Tirosina (Tyr,Y) y Triptofano (Trp,W) (ya incluidos en los grupos neutros polares y neutros no polares).

Propiedades de los aminoácidos

Page 10: PROTEÍNAS

Ácido-básicas.

Comportamiento de cualquier aminoácido cuando se ioniza. Cualquier aminoácido puede comportarse como ácido y como base, se denominan sustancias anfóteras. Cuando una molécula presenta carga neta cero está en su punto isoeléctrico. Si un aminoácido tiene un punto isoeléctrico de 6,1 a este valor de pH su carga neta será cero Los aminoácidos y las proteínas se comportan como sustancias tampón.

Ópticas.

Todos los aminoácidos excepto la glicina, tienen el carbono alfa asimétrico lo que les confiere actividad óptica; esto es, que desvían el plano de polarización cuando un rayo de luz polarizada se refracta en la molécula. Si el plano es a la derecha, se denominarán dextrógiras y las que lo desvían a la izquierda se denominan levógiras. Además, cada aminoácido puede presentar configuración D o L dependiendo de la posición del grupo amino en el plano. Esta última configuración D o L es independiente de las formas dextrógira o levógira. Según el isómero, desviará el rayo de luz polarizada hacia la izquierda (levógiro) o hacia la derecha (dextrógiro) el mismo número de grados que su esteroisómero. El hecho de que sea dextrógiro no quiere decir que tenga configuración D. La configuración D o L depende de la posición del grupo amino (L si está a la izquierda según la representación de Fisher)

Químicas.

Las que afectan al grupo carboxilo (descarboxilación). Las que afectan al grupo amino (desaminación). Las que afectan al grupo R.

Reacciones de los aminoácidos

En los aminoácidos hay tres reacciones principales que se inician cuando un aminoácido se une con el piridoxal-P formando una base de Schiff o aldimina. De ahí en adelante la transformación depende de las enzimas, las cuales tienen en común el uso de la coenzima piridoxal-fosfato. Las reacciones que se desencadenan pueden ser:

1. la transaminación (transaminasa): Necesita la participación de un α-cetoácido. 2. la descarboxilación

El interés sintético de esta reacción es suprimir el grupo carboxilo (–COOH) del producto tras haber sido útil en un intermedio de la síntesis. Esto puede ser más o menos fácil, más o menos temperatura para lograrlo, en función del grupo R unido al carboxilo. En el caso de β-cetoácidos se consigue relativamente fácil a través de un estado de transición cíclico:

Page 11: PROTEÍNAS

Un ejemplo de esto se puede encontrar en la síntesis malónica.3. la racemización: Es la conversión de un compuesto L en D, o viceversa. Aunque en

las proteínas de un ser vivo los aminoácidos están presentes únicamente en la forma estructural levógira (L), en las bacterias podemos encontrar D-aminoácidos.

3.- Funciones

Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia y/o actividad de este tipo de sustancias. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de funciones a ellas asignadas. Son proteínas casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes; muchas hormonas, reguladores de actividades celulares; la hemoglobina y otras moléculas con funciones de transporte en la sangre; los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños; los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada; la actina y la miosina, responsables finales del acortamiento del músculo durante la contracción; el colágeno, integrante de fibras altamente resistentes en tejidos de sostén.4.- Estructura

Page 12: PROTEÍNAS

Es la manera en como se organiza una proteína para adquirir cierta forma, esta comprende cuatro niveles de organización, aunque el cuarto no siempre esta presente. Presentan una disposición característica en condiciones ambientales, si se cambian estas condiciones como temperatura, pH, etc. pierde la conformación y su función, proceso el cual se denomina desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos.

Conformaciones o niveles estructurales de la disposición tridimensional: Estructura primaria. Estructura secundaria. Nivel de dominio. Estructura terciaria. Estructura cuaternaria. A partir del nivel de dominio sólo las hay globulares.

Estructura primaria

La estructura primaria es la secuencia de aa. de la proteína. Nos indica qué aas. componen la cadena polipeptídica y el orden en que dichos aas. se encuentran. La función de una proteína depende de su secuencia y de la forma que ésta adopte.

Estructura secundaria

La estructura secundaria es la disposición de la secuencia de aminoácidos en el espacio.Los aas., a medida que van siendo enlazados durante la síntesis de proteínas y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable, la estructura secundaria. Existen dos tipos de estructura secundaria:

1. la a(alfa)-hélice 2. la conformación beta

Estructura terciaria La estructura terciaria informa sobre la disposición de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular. En definitiva, es la estructura primaria la que determina cuál será la secundaria y por tanto la terciaria.. Esta conformación globular facilita la solubilidad en agua y así realizar funciones de transporte , enzimáticas , hormonales, etc.

Esta conformación globular se mantiene estable gracias a la existencia de enlaces entre los radicales R de los aminoácidos. Aparecen varios tipos de enlaces:

1. el puente disulfuro entre los radicales de aminoácidos que tiene azufre. 2. los puentes de hidrógeno 3. los puentes eléctricos 4. las interacciones hifrófobas.

Page 13: PROTEÍNAS

Estructura cuaternaria

Esta estructura informa de la unión , mediante enlaces débiles ( no covalentes) de varias cadenas polipeptídicas con estructura terciaria, para formar un complejo proteico. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero.

El número de protómeros varía desde dos como en la hexoquinasa, cuatro como en la hemoglobina, o muchos como la cápsida del virus de la poliomielitis, que consta de 60 unidades proteícas.

5.- Propiedades de las proteínas

Solubilidad: Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.

Capacidad Electrolítica: Se determina a través de la electrólisis, en la cual si las proteínas se trasladan al polo positivo es porque su radical tiene carga negativa y viceversa.

Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.

Amortiguador de pH: (conocido como efecto tampón)Actúan como amortiguadores de pH debido a su caracter anfotero, es decir, pueden comportarse como ácidos (soltando electrones(e-)) o como bases (tomando electrones).

Desnaturalización

Las proteínas pueden desnaturalizarse al perder todas sus estructuras menos la primaria. Al desnaturalizarse una proteína, esta pierde solubilidad en el agua y precipita. La desnaturalización se produce por cambios de temperatura o variaciones de pH, sales de metales pesados, radiación UV, rayos X. En algunos casos, las proteínas desnaturalizadas pueden volver a su estado original a través de un proceso llamado renaturalización.

6.- Reacciones de Reconocimiento

Reacción de Biuret

La reacción de Biuret está dada por aquellas sustancias cuyasmoléculas contienen 2 grupos carbamino (-CO.NH) ligados directamente o a travésde un solo átomo de carbono o nitrógeno. Sustancias similares que contienen enlugar del grupo carbamino, grupos CS.NH, también responden a la prueba. Estoimplica que compuestos no proteicos que contienen los grupos necesariosresponderán a la prueba. Las proteínas disuelven el hidróxido cúprico del reactivo yforman compuestos coloreados violeta o violeta-rosado que depende de la naturalezade las proteínas.Para realizar la prueba se toman 2 ml de la solución a analizar en un tubo de ensayo yse le agregan 2 ml del reactivo de Biuret, mezcle bien y si la prueba es positiva sedesarrollará un color violeta.

Page 14: PROTEÍNAS

Reacción de Millon

Esta reacción se debe a la presencia de grupos hidroxifenilos(C6H5OH) en la molécula proteica. Cualquier compuesto fenólico que no estésustituido en la posición 3, 5, como la tirosina, fenol y timol, dan lugar a la reacción.De estos compuestos, solamente la tirosina o tirosina halogenada se encuentranpresentes en las proteínas, de manera que la reacción de Millón tiene lugarúnicamente con las proteínas que tienen tirosina.La prueba no es satisfactoria para soluciones que contienen sales inorgánicas en grancantidad, ya que el mercurio del reactivo de Millón es precipitado y se vuelveinactivo, razón por la que este reactivo no se usa para medir albúmina en la orina. Sila solución a examinarse es muy alcalina debe ser previamente neutralizada, ya que elálcali precipita también el mercurio en forma de óxidos amarillos.Para realizar la prueba se toman 2 ml de la solución a analizar en un tubo de ensayo yse le agregan 3 a 4 gotas del reactivo de Millón. Se mezcla y se calienta en un baño demaría por 1 a 2 minutos. Las proteínas se precipitan por acción de los ácidosminerales fuertes del reactivo, dando un precipitado blanco que se vuelvegradualmente rojo al calentar. Si no se desarrolla color añada 2 o 3 gotas más delreactivo y caliente otra vez. Se debe evitar un exceso de reactivo ya que puedeproducir un color amarillo, el cual no indica reacción positiva.

Reacción xantoproteica

Esta prueba sirve para caracterizar los aminoácidos bencénico. En esta prueba se produce la nitración del anillo bencénico presente en los aminoácidos tirosina, fenilalanina y triptofano, obteniéndose nitrocompuestos de color amarillo, que se vuelven anaranjados en medio fuertemente alcalino (formación del ácido pirámico o trinitrofenol) (Clark 1964) La adición de ácido nítrico concentrado a soluciones que contienen proteína generalmente causa la formación de un precipitado blanco que cambia a amarillo al calentarlo. El color se empieza a convertir en anaranjado cuando la solución se vuelve básica. Las proteínas insolubles cambian a amarillo y anaranjado en la superficie. Las manchas amarillas en la piel se causan por el ácido nítrico son el resultado de una reacción xantoprotéica. Esta reacción se debe a la nitración de anillos fenílicos en la tirosina, fenilalanina y triptófano para dar sustitutos nitrogenados que se colorean anaranjado con la adición de base por la formación de sales. La mayoría de proteínas dan positivo en esta reacción.

Prueba de Molisch

La prueba de Molisch es una prueba cualitativa para la presencia de carbohidratos en una muestra de composición desconocida. Para determinar la cantidad y naturaleza específica de los carbohidratos se requieren otras pruebas. Esta prueba sirve para detectar la presencia de grupos reductores presentes en la muestra. Todos los glúcidos por acción del ácido sulfúrico concentrado se deshidratan formando compuestos furfúricos (las pentosas dan furfural y las hexosas dan hidroximetilfurfural). Estos compuestos furfúricos reaccionan positivamente con el reactivo de Molish (solución alcohólica de alfa-naftol).

Page 15: PROTEÍNAS

Reacción de la Ninhidrina:

Los aminoácidos en general reaccionan con lanihidrina (hidrato de hicelohidrindeno) en presencia de calor dando dióxido decarbono, amoniáco y un aldehído que contiene un átomo de carbono menos que elcompuesto original. La reacción da lugar a la formación de un producto de color azulo púrpura, que es útil para la estimación cualitativa y cuantitativa de los aminoácidos.No obstante, el color azul no es específico para aminoácidos debido a que elamoníaco y la mayoría de los polipéptidos y proteínas desarrollan el color con laninhidrina.Para realizar la prueba se toman 2 ml de la solución a analizar en un tubo de ensayo yse le agregan 5 gotas de la solución de ninhidrina. Se calienta en un baño de maríapor 1 a 2 minutos y si la prueba es positiva se desarrollará un color azul.

7.- Determinación de la estabilidad proteica

La estabilidad de una proteína es una medida de la energía que diferencia al estado nativo de otros estados "no nativos" o desnaturalizados. Hablaremos de estabilidad termodinámica cuando podamos hacer la diferencia de energía entre el estado nativo y el desnaturalizado, para lo cual se requiere reversibilidad en el proceso de desnaturalización. Y hablaremos de estabilidad cinética cuando, dado que la proteína desnaturaliza irreversiblemente, sólo podemos diferenciar energéticamente la proteína nativa del estado de transición (el estado limitante en el proceso de desnaturalización) que da lugar al estado final. En el caso de las proteínas reversibles, también se puede hablar de estabilidad cinética, puesto que el proceso de desnaturalización también presenta un estado limitante. Actualmente se ha demostrado que algunas proteínas reversibles pueden carecer de dicho estado limitante, si bien es un tema aún controvertido en la bibliografía científica.La determinación de la estabilidad proteica puede realizarse con diversas técnicas. La única de ellas que mide directamente los parámetros energéticos es la calorimetría (normalmente en la modalidad de calorimetría diferencial de barrido). En esta se mide la cantidad de calor que absorbe una disolución de proteína cuando es calentada, de modo que al aumentar la temperatura se produce una transición entre el estado nativo y el estado desnaturalizado que lleva asociada la absorción de una gran cantidad de calor.El resto de técnicas miden propiedades de las proteínas que son distintas en el estado nativo y en el estado desplegado. Entre ellas se podrían citar la fluorescencia de triptófanos y tirosinas, el dicroísmo circular, radio hidrodinámico, espectroscopía infrarroja, resonancia magnética nuclear,... Una vez hemos elegido la propiedad que vamos a medir para seguir la desnaturalización de la proteína, podemos distinguir dos modalidades: Aquellas que usan como agente desnaturalizante el incremento de temperatura y aquellas que hacen uso de agentes químicos (como urea, cloruro de guanidinio, tiocianato de guanidinio, alcoholes,...). Estas últimas relacionan la concentración del agente utilizado con la energía necesaria para la desnaturalización. Una de las últimas técnicas que han emergido en el estudio de las proteínas es la microscopía de fuerza atómica. Esta técnica es cualitativamente distinta de las demás, puesto que no trabaja con sistemas macroscópicos sino con moléculas individuales. Mide la estabilidad de la proteína a través del trabajo necesario para

Page 16: PROTEÍNAS

desnaturalizarla cuando se aplica una fuerza por un extremo mientras se mantiene el otro extremo fijo a una superficie.La importancia del estudio de la estabilidad proteica está en sus implicaciones biomédicas y biotecnológicas. Así, enfermedades como el Alzheimer o el Parkinson están relacionadas con la formación de amiloides (polímeros de proteínas desnaturalizadas). El tratamiento eficaz de estas enfermedades podría encontrarse en el desarrollo de fármacos que desestabilizaran las formas amiloidogénicas o bien que estabilizaran las formas nativas. Por otro lado, cada vez más proteínas van siendo utilizadas como fármacos. Resulta obvio que los fármacos deben presentar una estabilidad que les dé un alto tiempo de vida cuando están almacenados y un tiempo de vida limitado cuando están realizando su acción en el cuerpo humano.En cuanto a la importancia en las aplicaciones biotecnológicas radica en que pese a su extrema eficacia catalítica su baja estabilidad dificulta su uso (muchas proteínas de potencial interés apenas mantienen su configuración nativa y funcional por unas horas).

8.- Clasificación

Según su forma Fibrosas: presentan cadenas polipéptidas largas y una atípica estructura secundaria. Son insolubles en agua y en soluciones acuosas. Algunos ejemplos de estas son la queratina, colágeno y fibrina Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteínas y grupos hidrófilos hacia afuera, lo que produce que sean solubles en solventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas, proteínas de transporte, son ejemplo de proteínas globulares Mixtas: posee una parte fibrilar (en el centro de la proteína) y otra parte globular (en los extremos). Como por ejemplo, albúmina, queratina.

Según su composición química Simples u holoproteínas: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (fibrosas y globulares). Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas llamado grupo prostético (sólo globulares)

Fuentes de proteínas Las fuentes dietéticas de proteínas incluyen carne, huevos, granos, legumbres y productos lácteos tales como leche y queso. Las fuentes animales de proteínas poseen los 20 aminoácidos. Las fuentes vegetales son deficientes en aminoácidos y se dice que sus proteínas son incompletas. Por ejemplo, la mayoría de las legumbres típicamente carecen de cuatro aminoácidos incluyendo el aminoácido esencial metionina, mientras los granos carecen de todos, tres o cuatro aminoácidos incluyendo el aminoácido esencial lisina.

Page 17: PROTEÍNAS

Calidad proteica

Las diferentes proteínas tienen diferentes niveles de familia biológica para el cuerpo humano. Muchos aumentos han sido introducidos para medir la tasa de utilización y retención de proteínas en humanos. Éstos incluyen valor biológico, NPU (Net Protein Utilization) y PDCAAS (Protein Digestibility Corrected Amino Acids Score), la cual fue desarrollado por la FDA mejorando el PER (Protein Efficiency Ratio). Estos métodos examinan cuales proteínas son más eficientemente usadas por el organismo. En general, éstos concluyeron que las proteínas animales que contiene todos los aminoácidos esenciales (leche, huevos, carne) y la proteína de soya son las más valiosas para el organismo[1].

Deficiencia de proteínas

Deficiencia de proteínas en el tercer mundo La deficiencia de proteína es una causa importante de enfermedad y muerte en el tercer mundo. La deficiencia de proteína juega una parte en la enfermedad conocida como kwashiorkor. La guerra, la hambruna, la sobrepoblación y otros factores incrementaron la tasa de malnutrición y deficiencia de proteínas. La deficiencia de proteína puede conducir a una inteligencia reducida o retardo mental. La malnutrición proteico calórica afecta 500 millones de personas y más de 10 millones anualmente. En casos severos el número de células blancas disminuye y habilidad de los leucocitos a pelear contra la infección disminuye.

Deficiencia de proteínas en países desarrollados La deficiencia de proteínas es rara en países desarrollados pero un pequeño número de personas tiene dificultad para obtener suficiente proteína debido a la pobreza. La deficiencia de proteína también puede ocurrir en países desarrollados en personas que están haciendo dieta para perder peso, o en adultos mayores quienes pueden tener una dieta pobre. Las personas convalecientes, recuperándose de cirugía, trauma o enfermedades pueden tener déficit proteico si no incrementan su consumo para soportar el incrementan en sus necesidades. Una deficiencia también puede ocurrir si la proteína consumida por una persona está incompleta y falla en proveer todos los aminoácidos esenciales.

Exceso de consumo de proteínas

Como el organismo es incapaz de almacenar las proteínas, el exceso de proteínas es digerido y convertido en azúcares o ácidos grasos. El hígado remueve el nitrógeno de los aminoácidos, una manera de que éstos pueden ser consumidos como combustible, y el nitrógeno es incorporado en la urea, la sustancia que es excretada por los riñones. Estos órganos normalmente pueden lidiar con cualquier sobrecarga adicional pero si existe enfermedad renal, una disminución en la proteína frecuentemente será prescrita.El exceso en el consumo de proteínas también puede causar la pérdida de calcio corporal, lo cual puede conducir a pérdida de masa ósea a largo plazo. Sin embargo, varios suplementos proteicos vienen suplementados con diferentes cantidades de calcio por ración, de manera que pueden contrarrestar el efecto de la pérdida de calcio.Algunos sospechan que el consumo excesivo de proteínas está ligado a varios problemas:

Hiperreactividad del sistema inmune.

Page 18: PROTEÍNAS

Disfunción hepática debido a incremento de residuos tóxicos. Pérdida de densidad ósea, la fragilidad de los huesos es debido a que el calcio y la

glutamina son filtrados de los huesos y el tejido muscular para balancear el incremento en la ingesta de ácidos a partir de la dieta. Este efecto no esta presente si el consumo de minerales alcalinos (a partir de frutas y vegetales, los cereales son ácidos como las proteínas, las grasas son neutras) es alto.

En tales casos, el consumo de proteínas es anabólico para el hueso. Muchos investigadores piensan que un consumo excesivo de proteínas produce un incremento forzado en la excreción del calcio. Si hay consumo excesivo de proteínas, se piensa que un consumo regular de calcio seré capaz de estabilizar, o inclusive incrementar la captación de calcio por el intestino delgado, lo cual sería más beneficioso mujeres mayores.Las proteínas son frecuentemente causa de alergias y reacciones alérgicas a ciertos alimentos. Esto ocurre porque la estructura de cada forma de proteína es ligeramente diferente, algunas pueden desencadenar una respuesta a partir del sistema inmune mientras otros permanecen perfectamente seguros. Muchas personas son alérgicas a la caseína, la proteína en la leche; al gluten, la proteína en el trigo y otros granos; a la proteína particular encontrada en el maní; o aquellas encontradas en mariscos y otras comidas marinas. Es extremadamente inusual que una misma persona reaccione adversamente a más de dos tipos diferentes de proteínas, debido a la diversidad entre tipos de proteínas o aminoácidos.