Propagation of Corrosion in Reinforced Mortar Samples by Anodic Current Application

1
Propagation of Corrosion in Reinforced Mortar Samples by Anodic Current Application Reid Richardson Florida Atlantic University BACKGROUND EXPERIMENTAL DETAILS It is known that concrete is a porous material and can be permeated by chlorides Chloride transport process can be accelerated by applying an electric field Steel reinforcing members are then corroded once chlorides exceed the chloride threshold at the rebar surface and corrosion can propagate at a fast rate if current continues to be applied Different concrete mix composition affects the rate of chloride permeation and the time needed for surface cracks to form from corrosion products The rebar exposed area to chlorides is also a factor Concrete group Cemen t (kg) FA (kg) Water (kg) Fine agg. SSD (kg) w/c s/c MD1 14 3.36 6.6 48 0.38 2.76 MD2 18 - 6.8 50 0.38 2.76 Six mortar samples of each mix were made according to the table below with one steel reinforcing rebar in each (9.525 mm diameter) RESULTS 600 500 400 300 200 100 0 0 5 10 15 20 Ecorr(mV) Days Since Polarization MD23 Ecorr Measurements MD2301 MD2302 MD2303 600 500 400 300 200 100 0 0 2 4 6 8 Ecorr (mV) Days Since Polarization MD17 Ecorr Measurements MD1701 MD1702 MD1703 CRACK & MASS MEASUREMENTS Sample Crack Length (cm) Corrosion Length (cm) MD1301 2.5 3 MD1302 2 3 MD1303 1.75 1.5 MD2301 6.5 4.5 MD2302 2 2.25 MD2303 7.5 6.5 MD1701 10 13 MD1702 10 11 MD1703 10 10.5 MD2701 N/A N/A MD2702 2 11 MD2703 N/A N/A Sample Length (inch) Length (cm) Initial (g) After Cleaning (g) Delta Mass (g) MD1301 16.09 40.88 223.50 221.50 2.00 MD1302 16.00 40.63 212.00 210.40 1.60 MD1303 16.04 40.74 216.70 214.90 1.80 MD2301 16.02 40.70 216.80 215.20 1.60 MD2302 16.01 40.66 227.20 225.90 1.30 MD2303 16.00 40.64 230.50 228.80 1.70 1+C/Lhalf xcritcalcL C/ xcrit_L/(c/) S011 1.77 0.245 1.26 0.195 S08 1.08 0.276 1.26 0.219 MD100P 1.15 0.115 0.84 0.137 MD2P25 1.55 0.274 1.26 0.217 MD137 1.19 0.219 0.84 0.261 MD236 1.30 0.283 1.26 0.224 MD136 1.33 0.018 0.84 0.021 MD11001 1.68 0.395 0.84 0.470 MD11002 1.67 0.744 0.84 0.886 MD11003 9.00 4.252 0.84 5.062 MD21002 1.92 0.491 1.26 0.389 MD140 1.22 0.291 0.84 0.346 MD148 1.22 0.262 0.84 0.312 MD1301 2.14 1.215 0.84 1.446 MD1302 3.67 2.268 0.84 2.700 MD1303 7.40 6.122 0.84 7.290 MD2301 2.88 1.067 1.26 0.847 MD2302 3.74 1.263 1.26 1.003 MD2303 2.60 0.964 1.26 0.765 Plastic reservoirs of differing sizes (10 cm or 3 cm long) were attached to the top of each samples and were filled with a chloride solution An electric field was applied. Stainless steel mesh was placed in the reservoir and the reinforcing rebar was the working electrode. The applied potential ranged from 3 to 12 V. A smaller current was applied upon corrosion initiation (via small applied potential < 1V). Rebar Electrical potential and impedance as well as polarization resistance measurements were taken throughout the process (after 24 hr off) Once surface cracks were found, the applied current was removed and the samples were terminated for further analysis ACKNOWLEDGEMENTS CONCLUSIONS 1. After corrosion began, the electrical potential stabilized around 450mV 2. In the MD13 and MD23 samples, the minimum mass loss required for cracking was 1.3 grams 3. Mass loss required for surface cracking would increase with an increased reservoir size. But the mass loss per unit length is larger for shorter exposed rebar area. 4. MD1 concrete mix is better at preventing chloride permeation in small reservoirs and therefore sees less corrosion and smaller cracks I would like to acknowledge the technical assistance of: Professor Francisco PresuelMoreno. And to FAUBroward for Travel assistance X crit fromCORROSION PRODUCTS MD1 and MD2 Mortar Specimens, most with small L Examples of surface cracks can be seen here both before and after the reservoir was removed The L values used to calculate x crit were obtained by determining the percent surface area that experience corrosion and adjusted to a L where corrosion would cover all around the rebar. Eqs. 1,2,3 Proposed by Sagues and collaborators. C = 8 mm on MD1 specimens and 12 mm on MD2 specimens Rebars were cleaned per ASTM G01 Crack and corrosion length before cleaning the rebars Rebar segment length and mass before and after cleaning

description

Concrete corrosion research presented at a corrosion conference.

Transcript of Propagation of Corrosion in Reinforced Mortar Samples by Anodic Current Application

Propagation of Corrosion in Reinforced MortarSamples by Anodic Current Application

Reid RichardsonFlorida Atlantic University

BACKGROUND

EXPERIMENTAL DETAILS

It is known that concrete is a porous material and can be permeated by chlorides•Chloride transport process can be accelerated by applying an electric field•Steel reinforcing members are then corroded once chlorides exceed the chloride threshold at the rebar surface and corrosion can propagate at a fast rate if current continues to be applied

•Different concrete mix composition affects the rate of chloride permeation and  the time needed for surface cracks to form from corrosion products•The rebar exposed area to chlorides is also a factor

Concrete group

Cement (kg)

FA(kg)

Water(kg)

Fine agg. SSD(kg)

w/c s/c

MD1 14 3.36 6.6 48 0.38 2.76MD2 18 - 6.8 50 0.38 2.76

• Six mortar samples of each mix were made according to the table below with one steel reinforcing rebar in each (9.525 mm diameter)

RESULTS

‐600

‐500

‐400

‐300

‐200

‐100

00 5 10 15 20

Ecorr(mV)

Days Since Polarization

MD2‐3 Ecorr Measurements

MD2‐3‐01MD2‐3‐02MD2‐3‐03

‐600

‐500

‐400

‐300

‐200

‐100

00 2 4 6 8

Ecorr (mV)

Days Since Polarization

MD1‐7 Ecorr Measurements

MD1‐7‐01MD1‐7‐02MD1‐7‐03

CRACK & MASS MEASUREMENTSSample Crack Length (cm) Corrosion Length 

(cm)

MD1‐3‐01 2.5 3MD1‐3‐02 2 3MD1‐3‐03 1.75 1.5MD2‐3‐01 6.5 4.5MD2‐3‐02 2 2.25MD2‐3‐03 7.5 6.5MD1‐7‐01 10 13MD1‐7‐02 10 11MD1‐7‐03 10 10.5MD2‐7‐01 N/A N/AMD2‐7‐02 2 11MD2‐7‐03 N/A N/A

Sample Length (inch)

Length (cm)

Initial (g)

After Cleaning (g)

Delta Mass (g)

MD1‐3‐01 16.09 40.88 223.50 221.50 2.00MD1‐3‐02 16.00 40.63 212.00 210.40 1.60MD1‐3‐03 16.04 40.74 216.70 214.90 1.80MD2‐3‐01 16.02 40.70 216.80 215.20 1.60MD2‐3‐02 16.01 40.66 227.20 225.90 1.30MD2‐3‐03 16.00 40.64 230.50 228.80 1.70

1+C/Lhalf xcrit‐calc‐L C/ xcrit_L/(c/)S011 1.77 0.245 1.26 0.195S08 1.08 0.276 1.26 0.219MD1‐00‐P 1.15 0.115 0.84 0.137MD2‐P25 1.55 0.274 1.26 0.217MD1‐37 1.19 0.219 0.84 0.261MD2‐36 1.30 0.283 1.26 0.224MD1‐36 1.33 0.018 0.84 0.021MD1‐10‐01 1.68 0.395 0.84 0.470MD1‐10‐02 1.67 0.744 0.84 0.886MD1‐10‐03 9.00 4.252 0.84 5.062MD2‐10‐02 1.92 0.491 1.26 0.389MD1‐40 1.22 0.291 0.84 0.346MD1‐48 1.22 0.262 0.84 0.312MD1‐3‐01 2.14 1.215 0.84 1.446MD1‐3‐02 3.67 2.268 0.84 2.700MD1‐3‐03 7.40 6.122 0.84 7.290MD2‐3‐01 2.88 1.067 1.26 0.847MD2‐3‐02 3.74 1.263 1.26 1.003MD2‐3‐03 2.60 0.964 1.26 0.765

• Plastic reservoirs of differing sizes (10 cm or 3 cm long) were attached to the top of each samples and were filled with a chloride solution

• An electric field was applied. Stainless steel mesh was placed in the reservoir and the reinforcing rebar was the working electrode. The applied potential ranged from 3 to 12 V. A smaller current was applied upon corrosion initiation (via small applied potential < 1V).

• Rebar Electrical potential and impedance as well as polarization resistance measurements were taken throughout the process (after 24 hr off)

• Once surface cracks were found, the applied current was removed and the samples were terminated for further analysis

ACKNOWLEDGEMENTS

CONCLUSIONS1. After corrosion began, the electrical potential 

stabilized around ‐450mV2. In the MD1‐3 and MD2‐3 samples, the 

minimum mass loss required for cracking was 1.3 grams

3. Mass loss required for surface cracking would increase with an increased reservoir size. But the mass loss per unit length is larger for shorter exposed rebar area.

4. MD1 concrete mix is better at preventing chloride permeation in small reservoirs and therefore sees less corrosion and smaller cracks

I would like to acknowledge the technical assistance of:Professor Francisco Presuel‐Moreno. And to FAU‐Broward for Travel assistance

Xcrit fromCORROSION PRODUCTSMD1 and MD2 Mortar Specimens, most with small L

Examples of surface cracks can be seen here both before and after the reservoir was removed

The L values used to calculate xcrit were obtained by determining the percent surface area  that experience corrosion and adjusted to a L where corrosion would cover all around the rebar. Eqs. 1,2,3 Proposed by Sagues and collaborators.

C = 8 mm on MD1 specimens and 12 mm on MD2 specimens

Rebars were cleaned per ASTM G‐01

Crack and corrosion length before cleaning the rebars

Rebar segment length and mass before and after cleaning