Prokaryotic DNA organization

41
Fig. 11.8 Prokaryotic DNA organization Circular DNA Condensed by packaging proteins (e.g. H-NS, IHF) • Supercoiled

Transcript of Prokaryotic DNA organization

Page 1: Prokaryotic DNA organization

Fig. 11.8

Prokaryotic DNA organization

• Circular DNA• Condensed by

packaging proteins(e.g. H-NS, IHF)

• Supercoiled

Page 2: Prokaryotic DNA organization

Bidirectionalreplication

• Replication starts atori (oriC in E. coli)

• Continuesbidirectionally

• Chromosome attachedto plasma membrane

Fig. 11.11

Page 3: Prokaryotic DNA organization

Rolling circle replication

Fig. 11.12

Used by plasmids and somebacteriophage

Page 4: Prokaryotic DNA organization

DNApolymerases

• 3 DNA polymerases• Synthesize 5´-3´• DNA pol III = DNA

replication• DNA pol I, II = DNA

damage repair

Page 5: Prokaryotic DNA organization

Replication fork

Fig. 11.15

Page 6: Prokaryotic DNA organization

Quinolones

Fig. 35.5

Page 7: Prokaryotic DNA organization

Fig. 35.6

Page 8: Prokaryotic DNA organization

DNA replication

Fig, 11.16

Page 9: Prokaryotic DNA organization

Fig. 11.16

Page 10: Prokaryotic DNA organization

DNA ligase

• Can ligate 5´-PO4 to 3´OH without insertionof nucleotide

Fig. 11.17

Page 11: Prokaryotic DNA organization

Creating arecombinantplasmid

Fig. 14.4

Page 12: Prokaryotic DNA organization

Steps in cloning a gene

• Isolate plasmid vector– Plasmid DNA isolation

• Isolate gene of interest– Chromosomal DNA isolation– Polymerase chain reaction

• Cut plasmid and gene of interest with samerestriction endonuclease

Page 13: Prokaryotic DNA organization

Polymerase chainreaction (PCR)

• Requires DNApolymerase that is notinactivated by hightemperatures

• Taq, Ventpolymerases isolatedfrom thermophiles

Fig,14.8

Page 14: Prokaryotic DNA organization

Restriction endonucleases

Fig. 14.2

Page 15: Prokaryotic DNA organization
Page 16: Prokaryotic DNA organization

Fig. 14.11

Page 17: Prokaryotic DNA organization

Fig. 14.11

Page 18: Prokaryotic DNA organization
Page 19: Prokaryotic DNA organization

Transcription of RNA

Fig. 11.21

mRNA

rRNA

tRNA

sRNA

Page 20: Prokaryotic DNA organization

Fig. 11.22

Prokaryotic Promoter

Page 21: Prokaryotic DNA organization

Fig. 12.2

Page 22: Prokaryotic DNA organization

Prokaryotic Terminator

Fig. 12.3

• Rho-independent=– 6 uridines follow hairpin– Requires no accessory

proteins• Rho-dependent=

– No uridines after harpin– Requires Rho to displace

RNA polymerse

Page 23: Prokaryotic DNA organization

Rifampin

• Binds to RNA polymerase• Inhibits transcription, killing cell

Page 24: Prokaryotic DNA organization

Polycistronic mRNA

Fig. 12.1

• Multiple genes on single transcript• Transcription from a single promoter• Usually genes on a polycistronic mRNA are related to a

specific function or structure• No introns in within genes

Page 25: Prokaryotic DNA organization

Coupled transcription-translation

Fig. 12.6

Page 26: Prokaryotic DNA organization

Prokaryotic Ribosome

Fig. 12.12

Page 27: Prokaryotic DNA organization

Fig. 12.12

Translational Domain• Formed by association of 30S and 50S subunits• 16S rRNA binds to and aligns mRNA

16S rRNA 3´-UUCCUU-5´mRNA 5´-AAGGAA-3´

Page 28: Prokaryotic DNA organization

tRNA structure

Fig. 12.7

Page 29: Prokaryotic DNA organization

Amino-acyl tRNA=“Charged” tRNA-cognate amino acid attachedto 3´ end

Fig. 12.10

Page 30: Prokaryotic DNA organization
Page 31: Prokaryotic DNA organization

Initiation ofProtein

Synthesis

Fig. 12.14

Page 32: Prokaryotic DNA organization

Fig. 11.19

Alignment to allow in-frame translation

Page 33: Prokaryotic DNA organization

Initiation ofProtein

Synthesis

Fig. 12.14

tRNA 3´-UAC-5´mRNA 5´-AUG-3´

Page 34: Prokaryotic DNA organization

Prokaryotic Initiator tRNA

Fig. 12.13

Page 35: Prokaryotic DNA organization

Elongation

Fig. 12.15

Page 36: Prokaryotic DNA organization

Peptide Bond Formation

Fig. 12.16

Page 37: Prokaryotic DNA organization
Page 38: Prokaryotic DNA organization

Termination

Fig. 12.17

Page 39: Prokaryotic DNA organization

Tetracyclines• Includes doxycycline, chlortetracycline• Binds to 30S subunit• Interferes with aminoacyl-tRNA binding to A site

Fig. 35.9

Page 40: Prokaryotic DNA organization

Macrolide antibiotics

Fig. 35.11

Erythromycin

• Includes clindamycin, azithromycin• Binds 23S rRNA of 50S subunit• Inhibits peptide chain elongation

Page 41: Prokaryotic DNA organization

Aminogycosideantibiotics

• Includes streptomycin, gentamicin,neomycin, tobramycin, kanamycin

• Binds to 30S subunit• Inhibits protein synthesis• Causes misreading of mRNA Fig. 35.10