Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

24
1 Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley [email protected] , 322 HMMB, 510-642-4391 Summer Lectures on Semiconductor Physics for Engineers Contents: 1. Semiconductor basis (2 lectures, 6/2, 6/4) General trends, k-space, band structure, density of states and Fermi distribution kp theory, defects and effective mass approximation Quantum confinement and nanostructures 2. Electrostatics (2 lectures, 6/8, 6/11) Maxwell equations and Poisson’s equation Band bending and carrier equilibration 3. Electrodynamics (2 lectures, 6/16, 6/18) Drude’s model and classical dielectric theory Boltzmann transport theory 4. Thermal effects (2 lectures, 6/23, 6/25) Phonons and thermal physics Thermoelectrics 5. Optical effects (1 lecture, 6/30) Light-semiconductor interactions Device physics of light emitting diodes and solar cells Prerequisites: calculus, vectors, ordinary and partial differential equations, linear algebra, electromagnetism, optics basics, solid state physics basics, quantum mechanics basics Time and location: Tuesday and Thursdays 5:00-6:30PM, June 2009. Rm350, HMMB. Website: http://www.mse.berkeley.edu/~jwu/courses/semi.html

description

Summer Lectures on Semiconductor Physics for Engineers. Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley [email protected] , 322 HMMB, 510-642-4391. Contents: Semiconductor basis (2 lectures, 6/2, 6/4) - PowerPoint PPT Presentation

Transcript of Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

Page 1: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

1

Prof. Junqiao Wu

Department of Materials Science and Engineering, U.C. Berkeley

[email protected], 322 HMMB, 510-642-4391

Summer Lectures on

Semiconductor Physics for Engineers

Contents: 1. Semiconductor basis (2 lectures, 6/2, 6/4)

General trends, k-space, band structure, density of states and Fermi distributionkp theory, defects and effective mass approximationQuantum confinement and nanostructures

2. Electrostatics (2 lectures, 6/8, 6/11)Maxwell equations and Poisson’s equationBand bending and carrier equilibration

3. Electrodynamics (2 lectures, 6/16, 6/18)Drude’s model and classical dielectric theoryBoltzmann transport theory

4. Thermal effects (2 lectures, 6/23, 6/25)Phonons and thermal physicsThermoelectrics

5. Optical effects (1 lecture, 6/30)Light-semiconductor interactionsDevice physics of light emitting diodes and solar cells

Prerequisites:calculus, vectors, ordinary and partial differential equations, linear algebra, electromagnetism, optics basics, solid state physics basics, quantum mechanics basics

Time and location:Tuesday and Thursdays 5:00-6:30PM, June 2009. Rm350, HMMB.

Website: http://www.mse.berkeley.edu/~jwu/courses/semi.html

Page 2: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

2

s2p2

cation and anion

Most common semiconductors: group IV (Si), III-V (GaAs), II-VI (CdSe), and their alloys

Insulators: group I-VII (NaCl)

Page 3: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

3

General trends in semiconductors

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50

ele

ctro

ne

ga

tivity

(e

V)

atomic number

Gordy, et. al.J. Chem. Phys.24(2), 439(1956)

O

SSe

N

B

C

P Te

Sb

As

Zn

Mg

Be

Si

GaAlSn

Ge

InCd

covalent

ionic

Page 4: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

4

bandgap

Conduction bands

Valence bands

simple cubic face-center cubic zincblende

Brillouin zone(for fcc structure)

Page 5: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

5You won’t regret visitinghttp://www.ioffe.ru/SVA/

Page 6: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

6

n-doped

p-doped

Fer

mi

Si

Page 7: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

7

Defects in semiconductors

Page 8: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

8

Page 9: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

9

Band offsets

Page 10: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

10

Schottky Contact: example of M/nS with M>S

qM

qS q

ECB

EVB

EFM

EFS

before contact

qM

qS

q

ECB

EVB

EFM EFS

after contact

qVi=q(M-S)

qViqB

-

-

WD

i

qN

VW

2

-- + +-+

-+

vacuumlevel

- -+ +

-+

-+

Page 11: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

11

Ohmic contact

Work function

Page 12: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

12

net charge distribution

S D

nanowire

oxidegate

air

Nano Lett.; 7, 2778 (2007).

8

10

12

14

16

18

20

22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

npN

d

log(

conc

entr

atio

n) (

cm-3

)

V (V)

DO

S (

1021

eV

-1cm

-3)

E (eV)

0

2

4

6

8

-2 -1 0 1

VBCB

Si @ 300K

Page 13: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

13

p-n junction and depletion width

+ + + + +- - -

-----+ + +EF

-

-

+

+ ionized donor

ionized acceptor

free electron

free hole

+

- +-+-

+ -

-++ - +

--

--

---+++

++ +

-+

n-type p-type

ND NA

+

- +-+-

+ -++ - + -

--

---++

++ +

-dx

dnqDJ n

diffn diffusion current

+ + + + +- - - - -

-----+ + + + +

EFn

EFp

ED EA EgqV0

gi

DAB E

n

NNTkqV

20 ln

W DqN

VW 04

for ND=NA

drift current

dx

dEqn

EqnJ

cn

ndriftn

0

Total net current = 0 (unless externally biased)

Page 14: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

14

I

V0

forwardreverse

Biasing a diode

n p

Vf

n p

Vr

n p

pn

nn

P

P

TkqV

nL

pL

qAI

eII B

0

/0 ,1

Page 15: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

15

Hot carriers

resistivity

mobility

Page 16: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

16

Phonon spectrum1D diatomic chain

Wavevector q

2xTA

1xLA

1xLO

2xTO

Si

Page 17: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

17

Phys. Rev. 98, 940 (1955)

Bulk Si Seebeck coefficient

Page 18: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

18

Natural Si(28Si=92%29Si=5%30Si=3%)

enriched Si(28Si=99.9%)

Majumdar, Science (2004)

Thermal conductivity and thermoelectric figure of merit

Page 19: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

19

Reflected– Same energy (h) and

wavelength ()– Specular: 1’ = 1

Refracted then Absorbed– Snell’s law: n1sin1=n2sin2

– Frequency: 1 = 2 = = /2– Speed of light: n1c1 = n2c2

– Wavelength: n1 1=n2 2

– Intensity: I exp(-d)– Absorption: (h) (h-Eg)1/2

Transmitted 3 = 1

3 = 1, 3 = 1

Scattered– Rayleigh scattering, h = h1

– Raman and Brillouin scattering, h = h1 ħ

– not directional Emitted

– not directional– h Eg

incident

reflected

transmitted

scatteredabsorbed

emitted

1

21’

n1 n2

3

d

iir

ii

ir

ir

irir

ncnc

n

nn

nn

n

nR

iinnn

0

22

22

2

2

0000

22

2

,1

1

1

1

;1; EP

Optical process in semiconductors

Page 20: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

20

k

kk

kk

k

cv

cvp

cv

p

m

P

m

e

di

2

0

2

22

2

0

2 where

,0

1

ħ

ri

0

GaAs

E1E0

E2

R

0

R

ħE0 E1 E2

(E-E0)1/2 for directbandgap semiconductors

Dielectric Functions of Semiconductors

Page 21: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

21

Absorptions in SemiconductorsA

bso

rptio

n co

effi

cien

t (cm

-1)

Photon energy (eV)

Wavelength (m)

10-3 10-2 10-1 100 101

100

102

104

106

103 102 101 100 10-1

bandgap

exciton

deeper-bands

free carrier

phonons (lattice vibration)

local impurity vibration

impurity electronic

cyclotron, spin, magnon

core levels

CB

VB+

-

-

+

-

Page 22: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

22

Fundamentals of photovoltaics

1. “Red” loss

2. Thermalization loss (“blue loss”)

3. Junction loss

4. Contact loss

5. Recombination loss

6. Reflection loss

usable qV

2

345

2

illumination1

6

Page 23: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

23

Page 24: Prof. Junqiao Wu Department of Materials Science and Engineering, U.C. Berkeley

24

LED materials

InG

aN

AlG

aAs

AlG

aPA

lGaI

nPG

aAsP

GaP

N

GaN

ZnSe

,

AlN

AlG

aN

GaA

s