Process Simulation of Plasma Gasification for Landfill Waste ...1214510/...III ABSTRACT The growing...

51
IN DEGREE PROJECT MATERIALS SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS , STOCKHOLM SWEDEN 2018 Process Simulation of Plasma Gasification for Landfill Waste BOON HAU TAN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Transcript of Process Simulation of Plasma Gasification for Landfill Waste ...1214510/...III ABSTRACT The growing...

  • IN DEGREE PROJECT MATERIALS SCIENCE AND ENGINEERING,SECOND CYCLE, 30 CREDITS

    , STOCKHOLM SWEDEN 2018

    Process Simulation of Plasma Gasification for Landfill Waste

    BOON HAU TAN

    KTH ROYAL INSTITUTE OF TECHNOLOGYSCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

  • TableofContents

    ListofFigures.....................................................................................................................I

    ListofTables.....................................................................................................................II

    ABSTRACT........................................................................................................................III

    1.INTRODUCTION.............................................................................................................11.1Background.....................................................................................................................11.2Objective........................................................................................................................41.3Scope..............................................................................................................................4

    2.LITERATUREREVIEW......................................................................................................52.1Finefraction...................................................................................................................52.2AspenPlusModelling.....................................................................................................62.3PlasmaGasification......................................................................................................122.4TarCracking..................................................................................................................142.5Melting.........................................................................................................................16

    3.METHODOLOGY...........................................................................................................173.1PlasmaGasificationProcess.........................................................................................173.2PlasmaGasificationModel...........................................................................................183.2.1Feedstockproperties.............................................................................................183.2.2Drying....................................................................................................................203.2.3Pyrolysis.................................................................................................................213.2.4CharCombustionandGasification........................................................................213.2.5Melting..................................................................................................................223.2.6PlasmaTarCracking..............................................................................................22

    3.3ASPENPlusModeldescription.....................................................................................243.3.1Assumptions..........................................................................................................283.3.2BoundaryConditions.............................................................................................28

    3.4ParameterStudies........................................................................................................29

    4.RESULTSANDDISCUSSION...........................................................................................314.1VerificationandValidationofModel...........................................................................314.1.1SyngasCompositionPreandPostTarCracking....................................................32

    4.2MassandEnergyBalance.............................................................................................334.3ResultsofParameterStudies.......................................................................................354.3.1EffectofER............................................................................................................354.3.2EffectofPreheatedAirTemperature....................................................................37

    5.CONCLUSION...............................................................................................................40

    6.FUTUREWORK............................................................................................................41

    7.REFERENCE..................................................................................................................42

  • I

    ListofFiguresFigure1.Theroleofplasmagasificationinacirculareconomy.(Power,2018)......................3Figure2.PlasmagasificationmodelofEPJModel(Minutilloetal.,2009)...............................9Figure3.Atwostageplasmagasificationprocess(Materazzietal.,2016)...........................12Figure4.TarCrackingModel(Fourcaultetal.,2010)............................................................15Figure5.Comparisonofrequiredheatforincinerationandgasification(Lietal.,2007)......16Figure6.Schematicoftwostageplasmagasificationmodel.................................................17Figure7.Simplifiedschematicoftheplasmagasificationmodel..........................................20Figure8.FlowsheetofplasmagasificationprocessinAspenPlus.........................................24Figure9.Comparisonbetweensyngascompositionbeforeandaftertarcracking...............32Figure10.MassandEnergyBalancediagramforplasmagasificationsystem......................33Figure11.Sankeydiagramshowingflowofenergyforplasmagasificationsystem.............34Figure12.Piechartshowingdistributionofenergyoutput...................................................35Figure13.EffectofincreasingERonsyngascompositionatTpreheatair=873K...............36Figure14.EffectofincreasingERonLHVandCGE................................................................36Figure15.Heatofpartialcombustionrequiredfromair(ER=0.208)atdifferent

    Tpreheatair...................................................................................................................38Figure16.GraphshowinglowestpossibleERatdifferentTpreheatair...............................38Figure17.EffectofTpreheataironLHVandCGEaccordingtolowestpossibleERateach

    Tpreheatair...................................................................................................................39

  • II

    ListofTablesTable2.MaterialCompositionofRDF...................................................................................18Table3.UltimateandproximateanalysesofRDF.................................................................19Table4.AnalysesofmetalcontentsofRDF...........................................................................19Table5.Charcombustionandgasificationreactionsconsidered..........................................22Table6.Reactionsconsideredfortarcracking......................................................................23Table7.DescriptionofunitoperationblocksinASPENPlusflowsheet.................................26Table8.AspenPlusmaterialstreams....................................................................................27Table9.AspenPlusheatstreams...........................................................................................28Table9.Boundaryconditionsforplasmagasificationmodel................................................29Table10.ParametersthatwerestudiedintheASPENPlusmodel........................................30Table11.ComparisonofcompositionbetweenAspenPlusModelandSimilarSetup..........31Table12.MassbalanceofAspenPlusmodel........................................................................34Table13.EnergybalanceofAspenPlusmodel......................................................................34

  • III

    ABSTRACT

    ThegrowingamountoflandfillwastewithintheEUcouldposeaprobleminthefutureshould

    therenotbeanyeffectivetreatmentmethods.Thisstudyaimstoinvestigatetheperformance

    oflandfillwasteinaplasmagasificationprocessbysimulatingtheprocessinASPENPlus.The

    investigationisfocusedontheenergyrecoverypotentialofRDFbasedoncompositionand

    heatingvalueofsyngas,andcoldgasefficiency(CGE).Theplasmagasificationsystemconsists

    ofashaftgasifierandaseparatetarcrackingreactorwherehightemperatureplasmaisused

    forconversionoftarcompoundsconsideredinthemodel,whicharetolueneandnaphthalene.

    Inaddition,themodelisdividedintofivesections,namelydrying,pyrolysis,chargasification,

    meltingandtarcracking.Massandenergybalanceofthesystemwasperformedtobetter

    understand the system.The results show that theplasmagasification systemwasable to

    produce a syngaswith a LHVof 4.66MJ/Nm3while improving syngas yieldby attaining a

    highercontentofhydrogen.Thus,theplasmatarcrackingoftarcompoundscanachievea

    cleansyngasandimprovesyngasyield.ParameterstudyoneffectofERshowthatsyngashas

    higherheatingvalueandCGEatlowerER.Ontheotherhand,preheatedaircanhelprecover

    energyfromthesystemwhileloweringtheERrequiredforthechargasificationprocessto

    meettheheatdemandfrompartialcombustion.Thefindingsimpliedthatlandfillwastehas

    energypotentialbyusingasuitabletreatmentprocesssuchasplasmagasification.

    Keywords:landfillwaste,RDF,plasmagasification,syngas

  • 1

    1.INTRODUCTION1.1Background

    Landfillhasbeentraditionallythesolutionforallthewastesproducedpriortoinventionof

    modernandadvancedtreatmentmethods.Theconsequenceistheexistenceofanestimated

    150,000to500,000landfillsiteswithinEuropethatwillhaverepercussionsforyearstocome

    (Hoglandetal.,2010).Throughoutthedecades,wastemanagementhasprogressgradually

    towardsamoresustainablepathwithfocusonreductioninconsumption,recycleofwaste

    products,andwastevalorization.Stateof theart technology is requiredtoreduce landfill

    wastewhichcanopenupotheropportunities.

    Pertaining to landfilling, ithasbeen included in ‘Roadmap toaResourceEfficientEurope’

    documentedbyEuropeanUnion(EU)thatlandfillingshouldbethefinaloptionandgradually

    be ruled out as a solution as part of their aim by 2020 tomanagewaste resources in a

    sustainablemanner(Commission,2011).Thishasledtotwoinnovativeconceptsknownas

    EnhancedWasteManagement(EWM)andEnhancedLandfillMining(ELFM)thatattemptto

    address issues surrounding landfill waste. EWM emphasizes on reduction in usage and

    recycling,which rulesout landfillingas the finaldestinationbut as abuffer storage tobe

    processedafter.Ontheotherhand,ELMisanapproachforwastevalorization,wherewaste

    frombotholdandnewlandfillsareusedassourceofmaterialsandfuelforenergyrecovery

    process (Bosmanset al., 2013). Such conceptswill beable tounlockpotential in thevast

    amountofwastethathavebeenburiedandlefttoonceagainbepreciousresourcesthatcan

    beutilize forvariousapplications.Furthermore,notonlyextravagantcostsofremediation

    canbe avoided, the landused for landfilling can attain a higher valueby commercialized

    explorationandactivities.Aprojected0,1-1trillioneurointhenext5decadeswillberequired

    as remediation costs for the EU-28 while the Flemish Public Waste Agency, OVAM was

    reportedtohavespent80millioneurotoremediatejust5problematiclandfills,byexcavating

    landfilledmaterial,transportingandre-landfillinginamodernsanitarylandfill(Jonesetal.,

    2013).Thereishoweverinsufficientandlessefficientusageofbudgettoperformsuchascale

    ofprojectformajorityofstatesinEU(Vautmans,2015).

  • 2

    Solidwastebasedenergyrecoveryviaincinerationhasbeenacommonmethodusedtotreat

    municipalsolidwastebutalsoassourceofelectricityandheat.Wasteincinerationcombust

    solidwastetypicallyintheformasrefusedderivedfuel(RDF)toobtainamoresustainable

    operation aswell as to achieve a higher calorific value thus a higher electrical efficiency.

    Conversionofmunicipal solidwaste (MSW) intoRDF involvespossiblemechanical and/or

    manualhandling toobtainmorehomogeneouspropertieswhichenhances calorific value.

    However, process and treatment varies according to landfill sites because of variation in

    wastepropertiesandcompositions.Thedownsideofincinerationbeingacompleteoxidative

    combustionprocessistheneedforexpensivefluegastreatmentequipmentduetopresence

    of SOx andNOx, disposal problemswith fly ash andbottomash thatmay causepotential

    hazard in leachingofheavymetals should itbe reused.Advanced thermal treatment that

    turns bottom ash into environmentally friendly products is available but consumes a

    significantamountofenergythatreducesenergyrecoveryefficiency.

    Gasificationwhichisapartialoxidationprocessoffersanotheralternativethermochemical

    processtotreatsolidwastesbyconvertingintosynthesisgas(syngas)thathascalorificvalue

    and can be used as a fuel for various industries such as chemical industry and power

    generation.Differentgasificationagentssuchasair,oxygencanbeusedtoproducesyngasof

    higher calorific value using the latter. There has been development in using plasma

    technologywithgasificationwherethehighenergydensityfromplasmacanenhancereaction

    rate and at a higher temperature,materials can bemelted into slag. Plasma gasification

    resultsinsyngaswithprimarilycarbonmonoxideandhydrogen.Atextremehightemperature,

    tarandcharcanbebrokendownthushavingacleanersyngaswithoutexpensivegascleaning

    facilities.Meanwhile,hazardousinorganicmaterialscanbevitrifiedinthemoltenslagwithout

    leaching issues. Thus, the gasification process can play an important role in achieving a

    circulareconomyasillustratedinFigure1.

  • 3

    Figure1.Theroleofplasmagasificationinacirculareconomy.(Power,2018)

    StudieshasbeenmuchonMSW,ratherlessonlandfillwaste.Landfillwastewhichareburied

    foryearsanddecadesundergoesdecompositionwhichmakespropertiesdifficulttopredict

    anditincreaseheterogeneityofthewaste.Thedecompositionincreasessoilandfinefraction

    whichmayaffecttheenergyrecoverypotentialandalsoadditionalpre-treatmentprocessis

    required before being used as a fuel. Preliminary studies have been conducted through

    experiments,modelling,andsimulationbutstillrequirefurtherinvestigationastherearestill

    uncertaintiesinthelandfillwastebeforeinvestinginlargescaleplants.

    Therehavebeenstudiesconductedoncharacterizationoflandfillwasteusingvariousplasma

    gasificationtechnologiessuchasfixedbed,fluidizingbedandentrainedflow.However,there

    arenotmanystudiesontwostageplasmagasificationprocesscomprisingofastand-alone

    gasifierandplasmatarconverter.Presenceof tar in theproductgasmakes itdifficult for

    productgastobeusedandadditionalcostsmayberequiredtocleanupthegasforpractical

    usage.Aseparateplasmatarconverterhasbetterpotentialinachievinghighertarconversion

    rate. Tars contained in the product gas can contribute to an increase in heating value of

    productgas.Tarisoftennottakenintoaccountinsimulationofgasificationduetocomplexity

    oftarcompoundsandcrackingprocess.Hence,thisstudyintendstoinvestigatethepotential

    of landfillwaste in energy recovery in termsof compositionofproduct gas, energy value

  • 4

    consideringtarcompoundsintheprocessandtheefficiencyofthegasificationprocess.Firstly,

    someliteraturestudieswillbedonetoreviewtheproblematiccontentofthelandfillwaste.

    Next, some previous investigations onmodelling of gasification using ASPEN Plus will be

    reviewed,followedbyastudyonusageofplasmagasificationandapplicationsoftarcracking.

    Then,gasificationprocesswillbebrokendownindistinctmodelsbeforebuildingaASPEN

    Plusmodelbasedontheschematicofthegasificationprocess.Usingthemodel,massand

    energybalancewillbeperformedbeforeconductingparameterstudies.

    1.2Objective

    The objective of this study is to understand the energy and mass balance of plasma

    gasificationsystemforalandfillwastebasedontheprocessmodelling,aswellaspredictthe

    plasma gasification performance in terms of efficiency and syngas quality from its

    composition.

    1.3Scope

    ThescopeofthisprojectinvolvesdevelopingthemodelforplasmagasifierusingASPENPlus

    by breaking down into individual sections. The model will then be verified by using the

    experimentaldataobtainedfromapilotscaleplasmagasifierofsimilarconstruction.Finally,

    simulationoflandfillwastegasificationshallbeperformedtoobtaintheoptimumconditions

    for the gasification process by carrying out parameter study to investigate the effect of

    differentparametersintermsoftheefficiencyofprocessandcompositionofthesyngas.

  • 5

    2.LITERATUREREVIEW

    2.1Finefraction

    Earlier studies on energy recovery potential of landfill wastewere carried out at various

    locations.Duetonon-homogeneouspropertiesoftheexcavatedwaste,theyarerequiredto

    bepre-processedviaprocesses suchascrushing, sievingandmanual sortingbeforebeing

    utilizedasRDF.Themainconcerninlandfillwasteisthesignificantamountoffinefraction

    that ispartlydue to thedecompositionofwastewhichwouldaffect thecalorificvalueof

    syngasproducedasshowninsomestudies.

    In a study done at REMO landfill located atHouthalen-Helchteren, Belgium characterized

    eachcategoryofmaterialinthewastepostsievingprocessshowedthatthefinefraction(

  • 6

    between24-40yearsoldweremechanicallyseparateddefinedwithsizebelow20mmand

    30mmwere investigatedof itsproperties suchasBiochemicalMethanePotential (BMP),

    volatilesolidsandtotalsolids.ItwasdiscoveredthatBMPincreaseswithsizefraction.Besides,

    finefractionincreaseswithageduetogreaterdecompositionofthewaste(Monkareetal.,

    2016).(Kaartinenetal.,2013)suggesteddryingonthewastetoremovefinefractionattached

    oncalorificfraction.Inthestudy,thewastewastreatedviamanualsortingandmechanical

    treatment.However,investigatedcalorificvaluewereofdifferentsizefractions,largerthan

    20mmand70mmformanuallysortedportionandmechanicallytreatedportionrespectively,

    theobtainedcalorificvaluewasrathersimilar(20–25MJ/kg).Similarfindingsby(Hoglandet

    al.,2004)infinefractionswithcalorificvaluebetween0–1MJ/kg,whileincoarsefraction,

    itisfeasibleforenergyrecoverywithahighercalorificvalue.Thus,dryingappearstobeable

    toimprovethecalorificvalueofthewastewhilemakingprocessmoreefficientaslessenergy

    iswastedonheatingupwater.

    2.2AspenPlusModelling

    Numerousstudiesonmodellingandsimulationofgasificationprocesshasbeenperformed

    usingtheprocesssimulationsoftware,AdvancedSystemforProcessEngineering(ASPEN)Plus

    sinceitisamorecosteffectivewaytostudythecharacteristicofdifferentfeedstocksused

    comparedtoapilotplantscale.Parameterstudiescanalsobedonetoinvestigateeffectof

    differentparametersontheprocess.StudiesconductedusingAspenwerewidelyappliedfor

    differentfeedstockandtechnology.Twodifferentmethodsthatcanbeusedtosimulatethe

    modelinAspen,whichareequilibriumandkinetic.Equilibriumbasedmodelaresimulatedby

    minimization of Gibbs free energywhile kinetic basedmodel takes into account reaction

    kineticsthatoccur.Equilibriummodelcanbeusedasamodelthatprovidesabroadpicture

    ofhowaparticularfeedstockbehavesinaprocessbeforedetailedstudiesarecarriedoutby

    consideringmoreaspects.

    Previous studiesusingequilibriumbasedmodel showed reasonableoutcomeas validated

    againstexperimentaldataandotherstudies.CrucialparameterssuchasEquivalenceRatio

    (ER),gasificationtemperatureandsteamadditionareamongothersthecommonparameters

  • 7

    beinginvestigatedbecauseofthesignificantinfluenceontheenergyrecoverypotentialinthe

    producedgas.(Niuetal.,2013)simulatedgasificationofmunicipalsolidwasteinabubbling

    fluidizedbedusingtheminimizationofGibbsfreeenergymethodandinvestigatedtheeffect

    ofEquivalenceRatio(ER),gasificationtemperature,moisturecontent,steam-wasteratio,and

    percentageofoxygeninair.Itwasdiscoveredthatforahighersyngasyieldcanbeobtained

    athighergasificationtemperature,anoptimalERof0.3at800°C,higherpercentageatlower

    temperature.Pre-dryingoffeedstocktoalowermoisturetopreventextraenergytoconvert

    watertosteamwhilehighersteam-wasteratiofacilitatesforconversiontoH2.Comparably,

    a circulating fluidized bed gasifierwas simulated and the preheated air temperaturewas

    investigatedover a range25 – 825°C showedan increase in syngas heating valuedue to

    increaseinH2andCO.Furthermore, lesservolumeofair isrequiredtoachieveagasifier’s

    operatingtemperaturecanhelptoreducethesizeofreactorwhich inturn isasavingsto

    capitalcost.PreheatedairwasfoundtobeeffectiveatlowerER,wherealimitof0.35was

    recommended(Dohertyetal.,2009).Similarly,influenceofERwasalsostudiedby(Lietal.,

    2013)inasimulationwhereanoptimalpreheatedairtemperatureat600°CwithERof0.4

    wasalsofoundouttobeimportantforthegasificationprocess.Meanwhile,anincreaseofER

    ledtoadecreaseinlowerheatingvalue(LHV)ofsyngas.Plasmagasificationofthreetypesof

    biomass, coffee husks, vines pruning and forest residues for hydrogen production were

    investigated.ERwasvariedbetween0.1–0.6anditwasfoundthatoxidationreactionswas

    moreprominentduetohigheroxygencontentthusdecreasingH2yield.Atthesametime,N2

    contentrisescausedbyincreasedinamountofair.Steamusedasgasifyingagentincreased

    H2 yieldbypromotingwatergas shift and steam reformingdue to increasedwater vapor

    partialpressure(Favasetal.,2017).Gasifiertemperaturewasvariedfrom900–2000°Cand

    itwasdiscovered thatCOyield increasedbutH2andCO2was theoppositeaswater shift

    reactionsareexothermic.

    AfixedbedgasifierthatusedMSWasfeedstockandresultswerecomparedtoexperimental

    data.Themodelwasusedtostudytheeffectofair-fuelratioandgasifiertemperature.Results

    showedthatoptimumair-fuelratiowasaround0.3andathighergasifiertemperature,yield

    ofCOincreased(Begumetal.,2014).Adowndraftgasifierintegratedwithapowergeneration

    unitfordifferentbiomassfuelscomprisedofdifferentwoodswassimulatedwithamodelin

  • 8

    AspenPlususingREquilreactortocomparethegasifierefficiencies.Simulationresultswere

    comparedwithexperimentaldataandCH4hadahugevariancepossiblyduetoverysimple

    modelbuilt.Averagecalorificvalueobtainedforthebiomassfuelsisabout18MJ/kg(Keche

    etal.,2014).

    Apartfromair,steamisalsousedasagasifyingagentalongwithairtoachieveaproductgas

    withhigheryieldofhydrogen.PerformanceforgasificationofMSW,foodwasteandpoultry

    wastewerecomparedtoexperimentaldata.Parameterstudiesleadtofindingsthatshowed

    highertemperaturefavorsCOandH2productionandsteamadditionatanoptimumrange

    0.15–0.3 for steam-to-biomass ratiocanenhanceH2yield (Ramzanetal.,2011).Another

    modelbasedonminimizingGibbsfreeenergywasdesignedtopredictsyngascomposition

    usingsteamgasificationofdifferentbiomassforFischer-Tropschsynthesis.Itwasobserved

    that increase in gasification temperature from 750 – 950 °C increases yield of CO but

    decreasestheyieldofCO2andCH4(Palaetal.,2017).Endothermicreactionsarefavorableas

    temperatureincreasesdrivingchemicalreactiontotherightside.Meanwhile,steamaddition

    benefitedH2andCO2yield.

    Therearealsostudiesthatintegratesthegasificationprocesswithotherprocessessuchas

    powergeneration.PlasmagasificationofMSWandplasticsolidwasteatdifferentblending

    ratiowassimulatedby(MazzoniandJanajreh,2017)foranIntegratedPlasmaGasification

    CombinedCycle(IPGCC)tostudytheeffectofvaryingoxygenratioandsteamratioinplasma

    gas.Thestudysuggestedthatathighersteamratioresultedinincreasedhydrogencontent

    insyngas,whilehigheroxygenratioleadtolowersyngasyieldcausedbyformationofH2O

    andCO2.SimilarplasmagasificationmodelusingGibbsfreeenergyequilibriumapproachwas

    used tosimulatedifferent industrialwastesuchas shredded tires,plywoodwithdifferent

    gasifyingagent,airandsteam.Electricalefficiencyfromthegasproductswasstudiedbyan

    IPGCC. Steam addition contributed to the increase in hydrogen yield(Valmundsson and

    Janajreh,2011).However,thereisalimitationinamountofsteamascoolingeffectmaytake

    placethusreducingefficiency.AmodelcalledEquipPlasmaJet(EPJ)modelasshowninFigure

    2 was developed for estimation of syngas production of a plasma gasification

  • 9

    process(Minutilloetal.,2009),which ispartofanIntegratedPlasmaGasification/FuelCell

    systemwas developed to predict the electrical efficiency. The EPJmodel determined the

    compositionofgasbyminimizingGibbsfreeenergy.Electricalefficiencyoffuelcellobtained

    wasabout33%whichhigherthanconventionalincinerationtechnologyatabout20%(Galeno

    etal.,2011).TheEPJmodelwasalsousedforanotherintegratedsystemwithaCombined

    Cycle system. Different blending of different wastes was investigated together with

    combination of different gasifying agents such as air, oxygen and steam for a plasma

    gasificationprocess.ItwasdiscoveredthatablendofequalamountofMSWandhazardous

    wastecouldachieveaplantefficiencyof24.3%byusingpureairasplasmagas(Mazzoniet

    al.,2017).

    Figure2.PlasmagasificationmodelofEPJModel(Minutilloetal.,2009).

    Kineticbasedmodelswerestudiedconsideringmoredetailedaspectsoftheprocess.There

    aresomebuiltinfunctionwithinASPENforinputofkineticparameters.Kineticscanalsobe

    included via customized FORTRAN subroutines codes to represent desired model. A

    comparison between Gibbs energy minimization model and kinetic model was done by

    (Eikelandetal.,2015)toinvestigatethecompositiondifferenceinthesyngascomposition.

  • 10

    Reactionratestosimulateactualreactionsinthegasifierweredefinedinthekineticmodel.

    Considerationofrateofformationandresidencetimearefactorsthatwillaffecttheresultin

    akineticmodel.Bothmodelsshoweddifferentoutcomesfromvaryingfactorssuchassteam

    flowrate,reactiontemperatureandresidencetime.Resultscanvarybecauseofthekinetics

    consideredasseeninanothermodelwhereafluidizedbedreactorforbiomassgasification

    wassimulatedtakingintoaccounttarformationandcrackingbyincludingtarkineticsintothe

    modelallowingvariationinfeedstockandgasifyingagentsuchasoxygenandsteam.After

    comparingthemodelwithexperimentaldata,itwasconcludedthatmodelperformancecan

    beenhancedbyconsideringtarformationandkinetics(KaushalandTyagi,2017).Comparably,

    afluidizedbedreactorusedforbiomassgasificationprocesswasalsosimulatedthatfactored

    in reaction kinetics and hydrodynamic parameters representing fluidized reactions at the

    sametimeconsideringkineticsofchargasification.Validationofmodelwasdoneagainsta

    lab scale experimental data. Both gasification temperature and steam-to-biomass ratio

    contributed toahigherproductionofhydrogen.ERwas found tobeoptimumat0.23,of

    whichhigherthanthatwoulddecreasethecarbonconversionefficiency(NikooandMahinpey,

    2008).

    A semi detailed kineticmodel was used to simulate a biomass gasification of wood in a

    bubbling fluidized bed. Empirical correlations and reaction kinetics of pyrolysis,

    hydrodynamics parameters were applied to obtain more accurate results while also

    consideringtarformationinthemodelbecauseitisoneofthecrucialparttocommercialize

    gasification(Beheshtietal.,2015).Studyshowedthermalcrackingoftarisbetteratincreasing

    ER. Gasification temperature increase led to an increase in yield of H2 and CO because

    endothermicreactionsarefavorableathighertemperature.Steamadditionalsocontributed

    tohigherhydrogenyield.

    Anothermodelonfluidizedbedgasificationofwoodwassimulatedbyincorporatingexternal

    Fortran code into Aspen Plus blocks to customize the model. Reaction kinetics and

    hydrodynamicparameterswereconsideredinthemodeltobetterrepresentreactionsinthe

    fluidizedbedgasifier.Themodelthenwasusedtoexamineeffectsofdifferentparameters

    suchasair-fuelratio,steam-fuelratioandgasifiertemperature.Increaseamountofairnot

  • 11

    only reducesyieldof combustible fraction,H2andCObutalso introducedmoreN2which

    decreasestheoverallcalorificvalueofsyngas.Steam-fuelratioincreasehelpedinproducing

    moreH2andCOfacilitatedbymoresteamreformingreactions.Carbonconversionimproved

    byincreasinggasifiertemperatureshownintemperaturerange600–1000°C(Begumetal.,

    2013).

    Break down of different reaction zones in a gasification process allows more in depth

    reactionstobeconsideredalthoughthezonesmayoverlapinanactualprocess.(Paulsetal.,

    2016)developedamodel for a gasificationofwoodybiomass in abubbling fluidizedbed

    taking intoaccounthydrodynamics,gasificationkinetics,extensivepyrolysisreactions,and

    tarformationkinetics.Amorerealisticapproachconsideringmoreempiricalcorrelationsfor

    pyrolysisandchargasificationresultedinmoreaccurateresultscomparedtooriginalmodel

    by(NikooandMahinpey,2008)intermsofH2andCOcomposition.However,CO2andCH4

    compositionpredictionwere lessaccurateduetheirsmallcomposition.Detailedmodelof

    woodgasificationwasdevelopedbybreakingdownintoreactionzonesfordrying,pyrolysis,

    secondaryreactionsandchargasificationbyincorporatingFortransub-modelsintoexisting

    modelwhileatthesametimeconsideringmorecompoundsinthereactions.Themodelalso

    includedsyngascleaningsystemforremovalofinorganicsandparticles,andwatertreatment.

    Resultsobtainedwasthesyngascomposedofmajorcompounds21%H2and42%CO,with

    calorificvalue12.5MJ/kg(Francoisetal.,2013).Anotherdetailedmodelofdualfluidizedbed

    forbiomassgasificationbyimplementingchemicalreactionsfordifferentreactionzoneswith

    external Fortran file to simulate operation of a fluidized bed reactor. The model also

    consideredtarformationbygroupinginto4differentgroupsoftar,namelybenzene,phenol,

    naphthaleneandtoluene(Abdelouahedetal.,2012).ItwasconcludedthatpredictionofCO,

    CO2andH2yieldisdependentonthekineticofthewater-gasshiftreaction,whileresultof

    methaneandtarcorrespondswellwithexperimentaldata.Hence,asmoredetailssuchastar

    compoundsandchargasificationareconsidered,thepredictionofthemodelcanbemore

    accurate.

  • 12

    2.3PlasmaGasification

    StudiesusingplasmagasificationfortreatmentoffeedstockssuchasbiomassandRDFhave

    shownthatacleanerproductcanbeproducedforvariousapplications.Thehightemperature

    from the plasma torch helps to promote tar cracking, converting light hydrocarbons into

    combustible gases. Presence of tar poses operational challenges such as erosion and

    corrosioninthegasifier.Inordertoachieveacleanersyngas,atwostagefluidizedbedwhich

    comprisedofgasifierforprimarygasificationandaseparateplasmareactorfortarcracking

    wasdesignedtoovercomesomeissuessuchastaremissionandashslagging.Asecondstage

    reactorforplasmatarcrackingshowedthatresidualtarsandcharwereabletobecrackedas

    observedintheabsenceoforganiccarbondownstreamoftheplasmareactorasshownin

    Figure 3. Aromatic system can be destabilized at high temperature by thermal activation

    influences the tar conversion (Materazzietal., 2014). Sootproduced is alsominimalwith

    moreeffectivetardecomposition.Furthermore,thesyngaspostplasmareactorwasricherin

    H2andCOthanpostgasifierashighertemperatureenhancesreactionssuchaswater-gasshift

    reaction(Materazzietal.,2016).Secondaryoxygenasthermalcrackingsourcewascompared

    anditwasfoundthatplasmacrackingcanprovidemoreindependentcontrolfortarcracking.

    Figure3.Atwostageplasmagasificationprocess(Materazzietal.,2016).

  • 13

    AtestreactorwasusedtoassessplasmagasificationofRDFconsistedofpaper,wood,plastic

    andorganicmaterialwhichwerepelletized for feeding into the system.Plasma torchcan

    preventtemperaturefluctuationsfromthetimedependentexothermicreactionsbyallowing

    independentcontrolofheatinput.Slagproducedfromthereactorwasalsotestedandwas

    determined to be suitable as secondary building materials according to Flemish

    legislation(Lemmensetal.,2007).

    TheGasplasmaprocess, a two-stage thermal treatment system for thermal conversionof

    wastedevelopedbyAdvancedPlasmaPowerwassimulatedinASPENPlusforvariouswaste

    materialssuchaslandfillminedwaste,MSWandindustrial.Syngasexitingplasmaconverter

    showed negligible content of benzene which can be a good indicator for tar removal

    effectiveness.Calcia-alumina-silicarichslagasobtainedfromtheirgasificationprocesswent

    throughleachingteststoinvestigatesuitabilityasaggregatematerialsanditwasfoundthat

    pollutantlevelswerefarbelowhazardouslimit(Rayetal.,2012).

    Plasmagasification is seen tohave thepotential to treat solidwastebecauseofability to

    drasticallyreducewastevolumeandharmfulimpuritiesthusisbeingusedforvarioussolid

    wastefromdifferentsources.Syngasproducedfromplasmagasificationofsolidwastefor

    highpurityH2productionsinaH2recoverysystem.Dioxinslevelmeasurementswellbelow

    regulatory standards of Korea, USA and EU indicated that plasma treatmentwas able to

    decomposeorganicscontainedinwaste.Carbonconversionefficiencyof97%wasachieved

    suggestingthatplasmatreatmentcanbeefficientintreatmentofwaste(Byunetal.,2011).

    DCplasmatorchwithH2O/Arwasusedforplasmagasificationofbiomassandwasteresulted

    insyngaswithhighcontentofH2andCOandnegligibletarcontent.Sufficientresidencetime

    andoptimumtemperatureinthereactorleadtolowCO2concentrationdespiteCO2being

    used as oxidizing agent (Hlina et al., 2014). Plasma gasification application was also

    investigatedontreatmentof solidwaste fromUnitedStatesAirForceBasicExpeditionary

    Airfield Resources Base in a small reactor where major products obtained are H2 and

    CO(Vaidyanathanetal.,2007).MixtureofMSWandrawwoodarepre-treatedusingsteam

  • 14

    mechanicalheattreatment(SMHT)wereusedafeedstockforaplasmagasificationreactor.

    TheSMHTturnedMSWintorefusedderivedbiomass,andmixturewithrawwoodresultedin

    acompost-likeformwhichismoresuitableforgasification(Shieetal.,2014).Studyshowed

    thatincreaseintemperatureandadditionofsteamcontributedtotheincreaseofH2yield

    whichsubsequentlyincreasedtheenergyyieldofsyngas.

    2.4TarCracking

    BesidesthemainproductgasessuchasCOandH2,gasificationalsoresultsintarswhichcould

    jeopardizetheprocessbyproblemssuchaserosionandcorrosiononturbinesandengines

    thusmakingsyngasthatisproducedfromagasificationprocessundesirablefordirectusage.

    C10H8andC7H8werechosentorepresent tarcompounds inastudytomodel thethermal

    removaloftarsathightemperatureusingplasmatorch.Tarcrackingmodelisasshownin

    Figure 4. Themathematicalmodelwas based on a CSTRmodel that considered different

    kinetics of tar cracking process. Comparison between equilibriummodel that is basedon

    Gibbsenergyminimizationmethodandkineticmodelshowedthattarconversionwasnear

    completion forbothcases.Sensitivityanalysison influenceof incomingtemperature from

    gasifier showed that increase in gas temperature from gasifier would increase the

    temperatureofgasexitingtarreactor.Tarcompositioncanaffectthecompositionofsyngas,

    anditwasshownatdifferentoverallC10H8contentwhereathighercontentledtoarisein

    CO and H2 composition. However, it also increases the soot content in the output gas

    (Fourcaultetal.,2010).

  • 15

    Figure4.TarCrackingModel(Fourcaultetal.,2010).

    AnotherstudyontarthermalcrackingusingaCSTRmodelalsopredictedsimilaroutcomeof

    tarconversionofC10H8andC7H8taking inaccountreactionkinetics.Thestudyshownthat

    increasedinplasmatorchpowernotonlyincreasedtarconversionbutalsoincreasedtheLHV

    ofthesyngas.CharparticlesconsideredinthismodelalsocontributedhighercontentofCO

    andH2.OverFiringAiradditionalsoenhancedtarconversionbutaffectsthetemperaturedue

    torise inoxidation,decrease inLHVand increaseofsootcontent insyngas(Mariasetal.,

    2016).

    AtwostageFluidizedBedplasmagasificationprocesswasusedtostudytarevolutionusing

    RDFasfeedstock.Comparisonoftarcontentpost-FluidizedBedGasifierandpost-plasmatar

    reactor showed high conversion of tar, where in equilibrium model showed complete

    conversionwhileplasmathermalmodelshowedbetween95–99%conversionofdifferent

    tar compounds (Materazzi et al., 2014). The system showed an effective method of gas

    cleaning,higherconversionofcarbonandhigheryieldofCOandH2.

  • 16

    2.5Melting

    An investigation of fly ashmelting from incineration ofMSW using Differential Scanning

    CalorimeterandDifferentialThermographicAnalysistodeterminetheheatcapacityandheat

    ofmelting for fly ash at the same time using a thermodynamicmodel to determine the

    theoreticalrequiredheatthatisusedforcomparison.MeltingofflyashfromMSWgenerally

    occursabove1300°C.DuetothehighcontentofCaointheashsample,theexperimental

    heatofmeltingrangefrom1.4–1.8MJ/kg(Lietal.,2007).Itwasalsopredictedthatheatof

    meltingusinggasification is lowerthan incinerationprocessasshowninFigure5canvary

    accordingtooperatingconditionssuchascalorificvalueofwasteandtemperatureofgasifier.

    Figure5.Comparisonofrequiredheatforincinerationandgasification(Lietal.,2007).

    AnotherstudywasconductedontheinfluenceofadditionofbiomassashtoMSWflyashon

    themelting characteristics. Investigation showedmelting of pureMSW took place above

    1400°C but with addition of biomass ashes, themelting temperature reduced. The total

    energyrequiredtomeltashisthesensibleheatrequiredtoraisethetemperatureofashto

    themeltingtemperatureandthelatentheatoffusionforashtochangephasefromsolidto

    liquid.Themodeldevelopedtopredictthemeltingheatprojectedtheheatintherangefrom

    1.65–2.65MJ/kg(Alhadj-Mallahetal.,2015).

  • 17

    3.METHODOLOGY

    3.1PlasmaGasificationProcess

    Aplasmagasificationcomprisedofafixedbedupdraftgasifierandaplasmatarreactorwas

    developedbyScanArcPlasmaTechnologiesABinHofors,Swedenusedtotreatsolidwasteis

    showninFigure6.Solidwasteisfedfromthetopofthegasifierwhilepreheatedairorsteam

    asgasifyingagentisfedfromthebottomsideofthereactor.Theproductfromgasifierwhich

    containsvolatilegases,moistureandtargoestoaseparateplasmatarreactorwhereahigh

    temperatureplasmaisusedfortarcracking.Acleansyngasisproductattheendwhichis

    suitableforvariousapplications.Meanwhile,asimplifiedschemeofthemodelisshownin

    Figure7,whichwillbeusedfordevelopmentoftheASPENPlusmodel.

    Figure6.Schematicoftwostageplasmagasificationmodel.

  • 18

    3.2PlasmaGasificationModel

    3.2.1Feedstockproperties

    The feedstock used for the purpose of this study is excavationwaste from a landfill site

    locatedatMont-Saint-Guibert,Belgium.Thewastewasprocessedbysorting,screeningand

    millingthatresultedinapowder-likefractionthatconsistsofRDFandinertmaterials.The

    compositionoftheRDFisshowninTable1whiletheultimateandproximateanalysesare

    showninTable2.

    Table1.MaterialCompositionofRDF

    Component,wt%

    Plastics 21.46

    Wood 11.90

    Paperandcardboard 2.38

    Textilesandfibres 0.94

    Combustiblefraction 21.15

    Metals 5.49

    Inert(soil,glass,etc.) 36.69

  • 19

    Table2.UltimateandproximateanalysesofRDF

    ProximateAnalysis,wt% UltimateAnalysis,wt%(db)

    Moisturecontent(ar) 30.00 Carbon 39.94

    FixedCarbon(db) 11.60 Hydrogen 5.50

    Volatilematter(db) 48.40 Nitrogen 1.50

    Ash(db) 40.00 Oxygen 11.00

    Chlorine 1.77

    Sulphur 0.29

    LHVofrawRDF(MJ/kg) 11.848

    Table3.AnalysesofmetalcontentsofRDF

    Metalscontent(mg/kg)

    Silica(Si) 160000 Lead(Pb) 441

    Aluminium(Al) 17700 Boron(B) 13.1

    Calcium(Ca) 29800 Cadmium(Cd) 5.24

    Iron(Fe) 21600 Cobalt(Co) 9.68

    Potassium(K) 4950 Copper(Cu) 187

    Magnesium(Mg) 2470 Chromium(Cr) 124

    Manganese(Mn) 271 Mercury(Hg) 1.53

    Sodium(Na) 2910 Molybdenum(Mo) 3.04

    Phosphorus(P) 831 Nickel(Ni) 28.8

    Titanium(Ti) 2090 Vanadium(V) 27.2

    Arsenic(As) 5.66 Zinc(Zn) 1200

    Barium(Ba) 378

  • 20

    Figure7.Simplifiedschematicoftheplasmagasificationmodel.

    3.2.2Drying

    Landfillwastecontainsasignificantamountofwater.Thefunctionofdryingsub-modelisto

    reducethemoisturethatiscontainedinthewetfeedstockwherethetemperatureisbetween

    100–150°C.Theprocessofmoistureremovaloccursbytheexchangingheatwiththesyngas

    that is flowing upwards from the lower section of the gasifier. Heat is used to heat up,

    evaporateandsuperheatsteam,andalsotoheatupthefeedstockasshownin(3).Themass

    balanceofthedryingblockisshowninequation(2)

    𝑚+,,-./012 = 𝑚456 + 𝑚809./:;,(2)

    𝑄 = 𝑚+,,-./012 ∙ 1 − 𝑋809./:;, ∙ 𝐶B ∙ 𝑇0:/ − 𝑇9D + 𝑚+,,-./012 ∙ 𝑋809./:;, ∙ (ℎ./,G8,IJKL − ℎ./,G8,IMN)(3)

  • 21

    3.2.3Pyrolysis

    Pyrolysisalsoknownasde-volatilizationoccursbyheatingwithoutpresenceofoxygenthat

    leadstodecompositionintotwomaincomponents,namelyvolatilematterandchar.Volatile

    matter considered as shown in (4) consists of mainly gases such as𝐻Q, 𝐶𝑂, 𝐶𝑂Q, 𝐶𝐻S , tar

    (𝐶TU𝐻V,𝐶W𝐻V,𝐶X𝐻X),whilecharisprimarilyfixedcarbonandash,wherecompositioncanbe

    obtained from proximate and ultimate analysis of landfill waste. Process of pyrolysis is

    sustainedbyheatfluxfromthegasificationatthelowerpartofgasifier.Thesub-modelfor

    pyrolysiscanbewritteninaone-stepglobalreaction(4).

    𝑅𝐷𝐹 → 𝐺𝑎𝑠(𝐻Q, 𝐶𝑂, 𝐶𝑂Q, 𝐶𝐻S, 𝐻𝐶𝑙, 𝐻Q𝑆) + 𝑇𝑎𝑟(𝐶TU𝐻V,𝐶W𝐻V,𝐶X𝐻X) + 𝐶ℎ𝑎𝑟(4)

    Itisexpectedthatthetemperatureofupperzoneishighthustarcanexitthegasifierasvapor

    andenterthetarcrackingreactor.

    3.2.4CharCombustionandGasification

    Theprocessofdryingandpyrolysisresultincharasaproductandcharisbeingtreatedas

    fixedcarbonandash.Charwillundergogasificationandpartialcombustioninthepresence

    ofairasgasifyingagenttoform𝐶𝑂and𝐶𝑂Q.Partialcombustionisrequiredasgasification

    reactionsbeingexothermicreactionswillsupplytherequiredheatfordrying,pyrolysisand

    meltingprocess.Reactionsconsideredinairgasificationareshownintable4.Thisprocess

    willapplytheGibbsfreeenergytheorywherephaseandchemicalequilibriumisassumed

    becauseof thehigh temperature fromthechar combustion.Change inGibbs freeenergy

    definesifareactionisspontaneousorotherwise.WhentryingtodetermineGibbsfreeenergy

    atafixedtemperatureandpressure,itcanbewrittenas(5).Inordertoobtainequilibrium

    composition,Gibbsfreeenergyhastobeminimizedandfinallyachieve(6).

    𝑑𝐺.d./,8 = 𝑑𝐻.d./,8 − 𝑇𝑑𝑆.d./,8(5)

    𝑑𝐺.d./,8 = 0(6)

  • 22

    Table4.Charcombustionandgasificationreactionsconsidered.

    Reactions Type

    R1 𝐶 + 𝐶𝑂Q → 2𝐶𝑂(Boudouardreaction) Endothermic

    R2 𝐶 + 𝑂Q → 𝐶𝑂Q(Combustion) Exothermic

    R3 𝐶 + 0.5𝑂Q → 𝐶𝑂(Combustion) Exothermic

    3.2.5Melting

    Ashproduced fromchar gasification consistsof inorganic componentsof the feedstock is

    melted by the heat from partial oxidation process. The high temperature obtained from

    combustionissufficienttomelttheashintoslagthatflowsoutatthebottomofthegasifier.

    Ashcanbeassumedtoconsistsof70%𝑆𝑖𝑂Q,13%𝐶𝑎𝑂,9%𝐹𝑒Q𝑂k8%𝐴𝑙Q𝑂k,according to

    metalcontentsinTable3.Heatcapacityofashcanbecalculatedaccordingtoequation(7)

    (Zhangetal.,2013)andLatentheatof fusionofash isalsocalculated inasimilarmanner

    basedonvaluesfrom(Fontetal.,2017),(Lietal.,2007),(Patnaik,2003).

    𝑐B,G.n = 𝑥9𝑐B,9D9pT (7)

    3.2.6PlasmaTarCracking

    Tar inthefixedbedupdraftgasifier iscarriedoverfromthegasifiertotheplasmareactor

    alongwiththegasesproducedfrompyrolysisandchargasificationprocess.Inthepyrolysis

    processattemperaturerange200–500°C,tarisproducedandleavesupwardsintocooler

    regionsabovewhileexchangingheatwiththefeedstock,thusconversionoftarintogasesis

    low,thushighamountoftarispresentinthegas(ValderramaRiosetal.,2018).Inthismodel,

    3majorcompoundsof tarswhicharenaphthalene, toluene,andbenzeneareconsidered.

    Naphthalenewas selected since it is often found asmain compound in tertiary tar from

    biomassandwastegasificationand it isdifficult tocrackdue to its structureasPolycyclic

    Aromatic Hydrocarbon. For benzene, it is commonly used to represent primary tarwhile

  • 23

    Tolueneformedathightemperaturehasastablearomaticstructurefoundintars(Mariaset

    al., 2016). Due to very high temperature of plasma, it is assumed that reaction reaches

    equilibrium very fast. Products are obtained by minimizing Gibbs energy. Reactions

    consideredinthetarcrackingreactorareshowninTable5wheremodelwasalsobasedona

    fixedbedreactor.

    Table5.Reactionsconsideredfortarcracking.

    Reaction References

    R4 𝐶TU𝐻V + 4𝐻Q𝑂 → 4𝐶𝑂 + 5𝐻Q (Jess,1996)

    R5 𝐶W𝐻V + 𝐻Q → 𝐶X𝐻X + 𝐶𝐻S (Jess,1996)

    R6 𝐶X𝐻X + 5𝐻Q𝑂 → 5𝐶𝑂 + 6𝐻Q + 𝐶𝐻S (Virketal.,1974)

    R7 𝐶𝐻S + 𝐻Q𝑂 → 𝐶𝑂 + 3𝐻Q (Nozahic,2008)

    R8 𝐻Q +12𝑂Q → 𝐻Q𝑂

    (Turns,1996)

    R9 𝐶𝑂 +12𝑂Q → 𝐶𝑂Q

    (PetersenandWerther,2005)

    R10 𝐶𝑂 + 𝐻Q𝑂 → 𝐶𝑂Q + 𝐻Q (PetersenandWerther,2005)

    R11 𝐶𝑂Q + 𝐻Q → 𝐶𝑂 + 𝐻Q𝑂 (PetersenandWerther,2005)

    R12 𝐶𝐻S + 2𝑂Q → 𝐶𝑂Q + 2𝐻Q𝑂 (PetersenandWerther,2005)

    R13 𝐶𝐻S +12𝑂Q → 𝐶𝑂 + 2𝐻Q

    (Turns,1996)

    R14 𝐶X𝐻X +152𝑂Q → 6𝐶𝑂Q + 4𝐻Q𝑂

    (Turns,1996)

    R15 𝐶X𝐻X + 3𝑂Q → 6𝐶𝑂 + 3𝐻Q (PetersenandWerther,2005)

    R16 𝐶W𝐻V + 9𝑂Q → 7𝐶𝑂Q + 4𝐻Q𝑂 (Turns,1996)

  • 24

    Figure8.FlowsheetofplasmagasificationprocessinAspenPlus.

    3.3ASPENPlusModeldescription

    ThecompleteASPENPlusmodel isshowninFigure8,whiledescriptionofblocks,streams

    usedareshowninTable6,Table7,Table8respectively.Thefeedstockproperties,proximate

    andultimateanalyseswasassignedtonon-conventionalstream‘RDFF’isfedintothemodel

    andfirstmeetsthegasmixturefromthelowerpartofgasifierandincreaseintemperature

    of stream ‘RDFF2’ by exchanging heat in block ‘HEATEX1’ with stream ‘GASMIX1’ before

    moving to the block ‘DRYING’ where feedstock is converted into dry basis according to

    moisturecontentandthenthestream‘WETRDF’isseparatedintheblock‘’SEPARATE’.The

    drystream‘DRYRDF’isthenbrokendownintoelementarycomponentsintheblock‘PYRO’

    according to a calculator based on the ultimate analysis. The stream ‘DECOMPRO’which

    contains ash is separated into ‘ASH’ and stream ‘DECOMPRO2’, where block ‘PYRO2’

    simulatesde-volatilizationprocessintovolatilegasesalongwithcharandtarestimatedbased

    onreferencefrom(Zainietal.,2018)and(DiBlasi,2004).

  • 25

    Heatstreamsfordrying‘Q-DRYING’,decomposition‘Q-DECOMP’,pyrolysis‘Q-PYRO’andchar

    gasification ‘Q-CHAR’ are connected between blocks to contain the enthalpy within the

    system as source of heat for each process are dependent on the char combustion and

    gasificationprocess.Thestreams‘ASH’and‘CHAR’separatedfromtheblock‘SEPARAT’goes

    intotheGibbsblock‘CHARGAS’forcharcombustionandgasificationprocesswithgasifying

    agent‘AIR1’ofwhichitsmassflowrateiscalculatedbasedonaspecificERthatiswithinthe

    rangeoftypicalgasificationprocessandabletosupplysufficientheatfordrying,pyrolysis,

    andmeltingwhiletakingintoaccounttheheatlossfromthegasifierstream‘Q-LOSS’.

    Productofcharcombustionandgasification‘CHARPRO’containingashisseparatedinblock

    ‘SEPARAT2’wherestream‘ASH2’goingtothe‘MELTING’block.Productgasesonlystream

    ‘CHARPRO2’moves up the gasifier andmeet with stream ‘PYROCHAR’. An external heat

    streamisaddedtotheblock‘MELTING’becausethemeltingheatrequiredformeltingash

    intoslagiscalculatedmanually.

    Thestream‘GASMIX2’goesintotheGibbsblock‘TARCRACK’forplasmatarcrackingprocess

    withplasmaairheatedwithheatinput‘ELECTRIC’consideringaheatlossstream‘Q-LOSS3’

    attheblock‘PLASTORC’while‘Q-LOSS2’istheheatlossfromthetarcrackingreactorfrom

    thesensibleheatoftheoutput.Theresultingproductstream‘HOTSYN’proceedsforcooling

    processatblock‘AIREX’whereenergylossisrecoveredtopreheatairforchargasification.

    Theoutput‘HOTSYN2’thengoestotheblock‘H2OEX’toheatupwaterintosaturatedsteam

    ifitisrequired.Thefinaloutputofsyngasstreamis‘COLDSYN’.

  • 26

    Table6.DescriptionofunitoperationblocksinASPENPlusflowsheet.

    ASPENPlusName BlockID Description

    HeatX HEATEX1 Heatexchangebetweenfeedstockandgasmixture

    fromlowerpartofgasifier

    AIREX Heatexchangebetweenairinputandhotsyngas

    H20EX Heatexchangebetweenwaterinputandhotsyngas

    Heater PLASTORC Increasesthetemperatureoftheplasmaair

    RStoic DRYING Convertsfeedstockintodrybasisaccordingto

    moisturecontent

    PYRO2 Breakdownvolatilematterintovolatilegases

    accordingtostoichiometry

    MELTING Convertsashtoslag

    RYield PYRO Convertsnon-conventionalstream‘RDFF’into

    conventionalstream

    RGibbs CHARGAS Simulateschargasificationprocessbyminimizing

    Gibbsfreeenergy

    TARCRACK SimulatestarcrackingprocessbyminimizingGibbs

    freeenergy

    Mixer MIX Combinesgasmixturefromchargasificationand

    pyrolysisprocess

    MIX1 Combinescharandash

    MIX2 Combinesmoistureandgasmixturefromlowerpart

    ofgasifier

    SSplit SEPARAT Separatescharfromgasesandtar

    SEPARAT1 Separatesashfromconventionalstream

    SEPARAT2 Separatesashfromgasesfromchargasification

    Sep2 SEPARATE Separatesmoisturefromfeedstock

  • 27

    Table7.AspenPlusmaterialstreams.

    ASPENPlusStream StreamID Description

    Material RDFF FeedstockflowRDF

    RDFF2 HeatexchangeofRDFwithgasflow

    WETRDF RDFmoisturecalculationusingstoichiometry

    DRYRDF DryRDFwithoutmoisture

    MOISTURE MoistureremovedfromRDF

    DECOMPRO RDFdecomposedintoelementsaccordingtoproximate

    andultimateanalysis

    DECOPRO2 AshisseparatedfromdecomposedRDF

    ASH Separatedashfromdecomposition

    PYROPRO Productsformfrompyrolysisaccordingtostoichiometry

    basedonexperiment

    PYROCHAR Mixtureofgasesfrompyrolysisandchargasification

    CHAR Charseparatedfromgasmixture

    CHAR2 Mixtureofashandchar

    CHARPRO Productfromchargasificationandcombustion

    CHARPRO2 Chargasproductwithashseparated

    ASH2 Ashseparatedfromchargases

    SLAG Slagfrommeltedash

    GAS+TAR Mixtureofgasesfrompyrolysisandchargasification

    GASMIX1 Mixtureofgasesandmoisture

    GASMIX2 GasmixesheatingincomingRDF

    PLASAIR Heatedcarriergasforplasmaconverter

    AIR2 Carriergasforplasmaconverter

    COLDAIR Airinputforchargasificationandcombustion

    AIR1 Preheatedairforchargasificationandcombustion

    COLDH2O Waterinputforsteamgasificationwhenrequired

    HOTSYN Productgasfromtarcracking

    HOTSYN2 Productgasafterheatexchangeforpreheatedair

    COLDSYN Productgasafterheatexchangewithwater

  • 28

    Table8.AspenPlusheatstreams.

    ASPENPlusStream StreamID Description

    Heat Q-DRYING Heatdutyformoistureremoval

    Q-DECOMP HeatdutyfordecompositionofRDF

    Q-PYRO Heatdutyforpyrolysis

    Q-CHAR Netheatdutyfromchargasification

    Q-LOSS Heatlossfromgasifier

    ELECTRIC Electricpowerforplasmaconverter

    Q-LOSS2 Heatlossfromtarcrackingreactor

    Q-LOSS3 Heatlossfromplasmaconverter

    3.3.1Assumptions

    Thefollowingareassumptionsusedforthemodel:

    • Steadystateandthereactionsreachchemicalequilibrium.

    • Syngasproducedfrompyrolysisconsistsof𝐻Q, 𝐶𝑂, 𝐶𝑂Q, 𝐶𝐻S, 𝐻Q𝑆, 𝐻𝐶𝑙,tar(𝐶TU𝐻V,

    𝐶W𝐻V)andchar(ascarbonandash)

    • 𝐴 𝐹./091 = 6.5basedonempiricalformulausingcompositionofC,H,Ofrom

    ultimateanalysis,𝐶v𝐻V𝑂 + 6.5 𝑂Q + 3.76𝑁Q → 5𝐶𝑂Q + 4𝐻Q𝑂 + 24.44𝑁Q

    • Sootproductionisnotconsidered.

    • Ashisspecifiedasnon-conventionalandnon-reactiveintheprocess.

    3.3.2BoundaryConditionsTheoperatingconditionsfortheplasmagasificationmodelisshowninTable9.

  • 29

    Table9.Boundaryconditionsforplasmagasificationmodel.

    RDFFeed(kg/hr) Flowrate(kg/hr) 1000 Pressure(bar) 1 Temperature(K) 298GasificationAir,𝑀yG.9G9; Flowrate(kg/hr) 1325.88 Pressure(bar) 1 Temperature(K) 873 EquivalenceRatio 0.208Gasifier Pressure(bar) 1 Temperature(K) 423-1773PlasmaAir,𝑀BzG.8GG9; Flowrate(kg/hr) 406.89 Pressure(bar) 1 Temperature(K) 298PlasmaTorch Power(kW) 500HeatLoss(%) ShaftGasifier 5 TarCrackingReactor 5 PlasmaConverter 30

    3.4ParameterStudies

    TwodifferentparameterswereinvestigatedusingtheASPENPlusmodel,namelyairflowrate

    andpreheatedairtemperature,whichisshowninTable10.Dimensionlessnumberisusedto

    betterrepresentthestudiedparameterofairflowrate.Amountofactualairperkilogramof

    RDFcomparedtothestoichiometricamountcanberepresentedasequivalenceratio(ER):

    𝐸𝑅 = |}~M~M/

    (|}~M~M/)LJM(1)

  • 30

    Table10.ParametersthatwerestudiedintheASPENPlusmodel.

    EffectofEREffectofPreheated

    AirTemperature

    GasificationAir,𝑀yG.9G9; (kg/h) 1300-1950 1325.88

    PlasmaAir,𝑀BzG.8GG9; (kg/h) 406.88 406.88

    PreheatedAirTemperature,𝑇B;,n,G/G9; (K) 873 373-1173

    Plasmapower,𝑃BzG.8G(kW) 500 500

    DimensionlessParameters

    ER 0.2–0.3 0.208

  • 31

    4.RESULTSANDDISCUSSION

    4.1VerificationandValidationofModel

    ThemodeldevelopedusingAspenPlusisvalidatedandverifiedagainstasimilarsetupdone

    by ScanArc Plasma Technologies AB.However, the feedstock is slightly differentwhere it

    consistsofmixtureofwastessuchasmunicipalwaste,industrialwaste,hazardouswaste,car

    tyres,computerscrapwhichmayresultindifferentcompositionsofsyngas.Thecomparison

    isshowninTable11.

    𝐿𝐻𝑉 = 𝐻𝐻𝑉 −𝑀 ∙ 𝐿(8)

    𝐻𝐻𝑉 = TU.W∙TQ.X∙TUU

    (9)

    𝐶𝐺𝐸 = N}~∙|N}~∙|zG.8G0,;

    (10)

    Table11.ComparisonofcompositionbetweenAspenPlusModelandSimilarSetup

    Model

    (Mole%)

    ScanArcData

    (Mole%)

    𝐶𝑂 18.2 20.9

    𝐶𝑂Q 5.1 6.1

    𝐻Q 18.9 15.9

    𝐻Q𝑂 12.8 13.8

    𝑁Q 44.6 43.1

    LHV(MJ/Nm3) 4.66 4.34

    CGE(%) 72.5 69.1

  • 32

    4.1.1SyngasCompositionPreandPostTarCracking

    Figure9showsthecomparisonbetweenthegascompositionbeforeandafterthetarcracking

    reactor.ThefigureshowedthatbothH2andCO2increasedfrom16.96%to18.90%and3.57%

    to5.05%respectivelywhileCOandH2Ofellfrom18.64%to18.24%and15.54%to12.80%

    correspondingly.BothCH4andtarcompoundsarecompletelyconverted.TheriseofH2 is

    attributedtotheconversionoftarcompoundsaccordingto(R4),(R6),(R7),(R15),(R16)from

    Table5.Thissuggeststhatplasmatarcrackingoflighthydrocarbonsuchastarcompoundsis

    beneficial shouldasyngasofhigherH2yield isdesiredbesidescleanersyngasthatcanbe

    utilisedwithoutmuchposttreatmentofsyngas.Bythesametoken,thedeclineinH2Ocould

    berelatedtothedecompositionoftarcompoundsbymoistureinthegasthatexistassteam,

    thus contributing to the increment of H2 during tar cracking. This is consistent with the

    findings by (Materazzi et al., 2016). On the other hand, the drop in CO and rise in CO2

    contradictswiththefindingsof(Materazzietal.,2014).Thiscouldbeassociatedbythe(R10)

    wheretheactivationenergyislowerthan(R11)accordingto(Fourcaultetal.,2010)andthe

    excessairthatissuppliedasplasmaair.

    Figure9.Comparisonbetweensyngascompositionbeforeandaftertarcracking.

    0

    5

    10

    15

    20

    H2 CO CO2 H2O CH4 TAR

    Mole%

    Pre-TarCracking Post-TarCracking

  • 33

    4.2MassandEnergyBalance

    Amassandenergybalancefortheplasmagasificationmodelwasdoneasshownin.while

    Table12showsthematerialbalanceforthesystemandTable13showstheenergybalance

    ofthesystem.Meanwhile,aSankeydiagramshowingtheflowofenergyisillustratedinFigure

    11andthedistributionofenergyoutputisshowninFigure12.Theplasmapowersuppliedas

    aninputtothesystemwasabout13%ofthetotalenergyinputandtherestcamefromthe

    RDF.Thechemicalenergyofsyngascomprisedof68.36%,thesensibleheatwas24.30%,total

    heatlossincludingheatinslagwas7.34%.Thus,thisgivesthesystemathermalefficiencyof

    about92%.

    Figure10.MassandEnergyBalancediagramforplasmagasificationsystem.

  • 34

    Table12.MassbalanceofAspenPlusmodel.

    Input kg/h Output kg/h

    RDF 1000 Syngas 2432.01

    GasificationAir 1325.88 Slag 300.76

    PlasmaAir 406.89

    Total 2732.77 Total 2732.77

    Table13.EnergybalanceofAspenPlusmodel.

    Input MJ/h Output MJ/h

    RDF 11848.00 Syngas(ChemicalEnergy) 9329.94

    PlasmaPower 1800.00 SensibleHeatofGas 3316.25

    Slag 65.77

    HeatLosses

    Gasifier 225.25

    TarCrackingReactor 170.79

    PlasmaConverter 540.00

    Total 13648.00 Total 13648.00

    Figure11.Sankeydiagramshowingflowofenergyforplasmagasificationsystem.

  • 35

    Figure12.Piechartshowingdistributionofenergyoutput.

    4.3ResultsofParameterStudies

    4.3.1EffectofER

    As defined according to equation (1), ER is the ratio of actual air-fuel ratio against the

    stoichiometricair-fuelratioforcompletecombustion.Inthisstudy,ERwasvariedfrom0.2–

    0.3, where𝑀yG.9G9; is varied from 1300 – 1950 kg/h at a fixed𝑇B;,n,G/G9; at 873K. The

    influenceofERonthecompositionofsyngasisshowninFigure13andontheLHVandCGEis

    shown in Figure14. It canbeobserved that as ER increased,CO2 content rosewhileCO

    decreased.Thisoccurreddue to increasedcombustion reactionwhereCO2was favoured.

    Similarly, for reduction of H2 content where oxidation was favoured, thus increased the

    formation of H2O. The increase of overall N2 content was attributed by the increased in

    𝑀yG.9G9;andbeinginert.ThedropinCOandH2,atthesametimedilutionofN2,causedthe

    LHVofsyngasandsubsequentlyCGEtodecline.TheLHVrangedfrom3.15–4.73MJ/Nm3

    whileCGErangedfrom53.64–72.95%.Similartrendswereshownby(Favasetal.,2017),

    (Begumetal.,2014),(Beheshtietal.,2015).

  • 36

    Figure13.EffectofincreasingERonsyngascompositionatT=873K

    Figure14.EffectofincreasingERonLHVandCGE.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.200 0.220 0.240 0.260 0.280 0.300

    Syngasco

    mpo

    sition(M

    oleFractio

    n)

    ER

    H2 CO CO2 N2 H2O

    2

    2.5

    3

    3.5

    4

    4.5

    5

    40%

    50%

    60%

    70%

    80%

    0.200 0.220 0.240 0.260 0.280 0.300

    LHV(M

    J/Nm

    3)

    CGE

    ER

    CGE LHV

  • 37

    4.3.2EffectofPreheatedAirTemperature

    Preheating air helps in increasing efficiency of gasifier by reducing energy required from

    gasification.Thus,airinputorERcanbereducedallowingloweramountofpartialcombustion

    whichmayleadtoincreasingamountofCO2.ReductioninERhelpsretainthesyngascalorific

    valuewithinCO.Thepreheatedairtemperatureusedinthemodelis873K,whileairinputis

    fixed at 1325.88 kg/h. Investigation on effect of𝑇B;,n,G/G9; on the model, the range of

    temperaturefrom373–1173Kwasstudiedatthespecifiedflowrateforchargasificationand

    combustion. Based on the boundary conditions fixed for the model, the heat of partial

    combustionrequiredforallprocesseswasdeterminedandisplottedagainstthesensibleheat

    frompreheatedairatthesaidrangeoftemperatureasshowninFigure15.Thegraphshows

    thatas𝑇B;,n,G/G9;increases,theportionofheatrequiredfrompartialcombustionofchar

    decreases,therebyloweringERfortheprocess.AsshowninFigure16,theminimumERat

    higher𝑇B;,n,G/G9;decreases.Hence,thistranslatestoincreasingLHVandCGEasshownin

    Figure17whereitshowstheminimumLHVandCGEforateach𝑇B;,n,G/G9;whichisableto

    meettheheatdemandofgasification.Thisphenomenaisfoundtobesimilarwith(Mathieu

    andDubuisson,2002)and(Dohertyetal.,2009).LHVwasfoundtobeintherangeof3.96–

    5.03MJ/Nm3whileCGEwasintherangefrom64.19–76.25%.

  • 38

    Figure15.Heatofpartialcombustionrequiredfromair(ER=0.208)atdifferentT

    Figure16.GraphshowinglowestpossibleERatdifferentT.

    0%

    20%

    40%

    60%

    80%

    100%

    0

    200

    400

    600

    800

    1000

    1200

    373 473 573 673 773 873 973 1073 1173

    HeatofP

    artia

    lCom

    bustion(M

    J/h)

    PreheatedAirTemperature(K)

    Hgasification Hpreheatedair

    0.17

    0.18

    0.19

    0.2

    0.21

    0.22

    0.23

    0.24

    0.25

    373 473 573 673 773 873 973 1073 1173

    ER

    PreheatedAirTemperature(K)

    LowestER

  • 39

    Figure17.EffectofTonLHVandCGEaccordingtolowestpossibleERateach

    T.

    60%

    62%

    64%

    66%

    68%

    70%

    72%

    74%

    76%

    78%

    3

    3.5

    4

    4.5

    5

    5.5

    273 473 673 873 1073 1273

    CGE

    LHV(M

    J/Nm

    3)

    PreheatedAirTemperature(K)

    LHV CGE

  • 40

    5.CONCLUSION

    Thereisnodoubtthatlandfillwastemayposeahugechallengeinalongrun.However,with

    advancementoftechnology,aprocesssuchasplasmagasificationcouldbethekeyintackling

    theissue.Nevertheless,continuousinvestigationoflandfillwasteisrequiredtoenhanceour

    understandingonthesubject.Hence,ASPENPlusisagoodplatformtostudytheperformance

    oflandfillwasteinaplasmagasificationprocesswhiletakingintoaccountmassandenergy

    requirements.Thestudywasabletoprovideanestimateofmaterialandenergyinputsfor

    the process. Composition of syngas obtained showed that the application of plasma tar

    crackingwas able to achieve a cleaner gaswith a higherH2 content and reasonable LHV

    despite RDF containing high amount of ash. Theoutcome also depends on the feedstock

    composition.Limitationsofthemodelsuchasfixedoperatingtemperaturesofblocklimits

    thecompositionchanges.Parameterstudyshowedthatsimilartoothersetupsofgasification,

    alowerERismorefavourableforasyngaswithhigherLHV.Ontheotherhand,preheating

    air by recovering heat from the output is advantageous from overall thermal efficiency

    perspective and also reducing the heat required from partial combustion of char. In

    conclusion, plasma gasification has potential in treating landfill waste at the same time

    contributingtowardsthecirculareconomy.

  • 41

    6.FUTUREWORK

    Intermsofinputdata,duetolackofinformationoncharandtarcontent,bothcharandtar

    contentwasbasedonliteraturestudies.However,bothcanbeaffectedbythepropertiesof

    thefeedstock.Someactualexperimentaldatawouldgiveabetterestimationforthemodel.

    From the aspect ofmodel, perhaps the char gasification and tar crackingmodels can be

    performedusing kineticsmodel insteadof equilibriummodel and compare the results to

    understandtheinfluenceofkinetics.Moreparameterscanbeinvestigatedusingthemodel,

    suchaseffectofplasmapower,effectoftarcrackingtemperature.

  • 42

    7.REFERENCEAbdelouahed,L.,Authier,O.,Mauviel,G.,Corriou,J.P.,Verdier,G.andDufour,A.(2012)

    'DetailedModelingofBiomassGasificationinDualFluidizedBedReactorsunderAspenPlus',Energy&Fuels,26(6),pp.3840-3855.

    Alhadj-Mallah,M.M.,Huang,Q.,Cai,X.,Chi,Y.andYan,J.(2015)'Vitrificationofmunicipalsolidwasteincinerationflyashusingbiomassashasadditives',EnvironTechnol,36(5-8),pp.654-60.

    Begum,S.,Rasul,M.,Akbar,D.andCork,D.(2013)'AnExperimentalandNumericalInvestigationofFluidizedBedGasificationofSolidWaste',Energies,7(12),pp.43-61.

    Begum,S.,Rasul,M.G.andAkbar,D.(2014)'ANumericalInvestigationofMunicipalSolidWasteGasificationUsingAspenPlus',ProcediaEngineering,90,pp.710-717.

    Beheshti,S.M.,Ghassemi,H.andShahsavan-Markadeh,R.(2015)'Processsimulationofbiomassgasificationinabubblingfluidizedbedreactor',EnergyConversionandManagement,94,pp.345-352.

    Bosmans,A.,Vanderreydt,I.,Geysen,D.andHelsen,L.(2013)'ThecrucialroleofWaste-to-Energytechnologiesinenhancedlandfillmining:atechnologyreview',JournalofCleanerProduction,55,pp.10-23.

    Byun,Y.,Cho,M.,Chung,J.W.,Namkung,W.,Lee,H.D.,Jang,S.D.,Kim,Y.S.,Lee,J.H.,Lee,C.R.andHwang,S.M.(2011)'Hydrogenrecoveryfromthethermalplasmagasificationofsolidwaste',JHazardMater,190(1-3),pp.317-23.

    Commission,E.2011.RoadmaptoaResourceEfficientEurope.COM(2011)571Final.Bruxelles:EUCommission.

    DiBlasi,C.(2004)'Modelingwoodgasificationinacountercurrentfixed-bedreactor',AIChEJournal,50(9),pp.2306-2319.

    Doherty,W.,Reynolds,A.andKennedy,D.(2009)'TheeffectofairpreheatinginabiomassCFBgasifierusingASPENPlussimulation',BiomassandBioenergy,33(9),pp.1158-1167.

    Eikeland,M.S.,Thapa,R.K.andHalvorsen,B.M.'AspenPlusSimulationofBiomassGasificationwithKnownReactionKinetic',ProceedingsName,149-156.

    Favas,J.,Monteiro,E.andRouboa,A.(2017)'Hydrogenproductionusingplasmagasificationwithsteaminjection',InternationalJournalofHydrogenEnergy,42(16),pp.10997-11005.

    Font,F.,Afkhami,S.andKondic,L.(2017)'Substratemeltingduringlaserheatingofnanoscalemetalfilms',InternationalJournalofHeatandMassTransfer,113,pp.237-245.

    Fourcault,A.,Marias,F.andMichon,U.(2010)'Modellingofthermalremovaloftarsinahightemperaturestagefedbyaplasmatorch',BiomassandBioenergy,34(9),pp.1363-1374.

    Francois,J.,Abdelouahed,L.,Mauviel,G.,Patisson,F.,Mirgaux,O.,Rogaume,C.,Rogaume,Y.,Feidt,M.andDufour,A.(2013)'Detailedprocessmodelingofawoodgasificationcombinedheatandpowerplant',BiomassandBioenergy,51,pp.68-82.

    Galeno,G.,Minutillo,M.andPerna,A.(2011)'Fromwastetoelectricitythroughintegratedplasmagasification/fuelcell(IPGFC)system',InternationalJournalofHydrogenEnergy,36(2),pp.1692-1701.

  • 43

    Hlina,M.,Hrabovsky,M.,Kavka,T.andKonrad,M.(2014)'Productionofhighqualitysyngasfromargon/waterplasmagasificationofbiomassandwaste',WasteManag,34(1),pp.63-6.

    Hogland,W.,Hogland,M.andMarques,M.'EnhancedLandfillMining:Materialrecovery,energyutilisationandeconomicsintheEU(Directive)perspective'.InternationalAcademicSymposiumonEnhancedLandfillMining.Houthalen-Helchteren,Belgiump,233-247.

    Hogland,W.,Marques,M.andNimmermark,S.(2004)'Landfillminingandwastecharacterization:astrategyforremediationofcontaminatedareas',JournalofMaterialCyclesandWasteManagement,6(2).

    Jani,Y.,Kaczala,F.,Marchand,C.,Hogland,M.,Kriipsalu,M.,Hogland,W.andKihl,A.(2016)'CharacterisationofexcavatedfinefractionandwastecompositionfromaSwedishlandfill',WasteManagRes,34(12),pp.1292-1299.

    Jess,A.(1996)'Mechanismsandkineticsofthermalreactionsofaromatichydrocarbonsfrompyrolysisofsolidfuels',Fuel,75(12),pp.1441-1448.

    Jones,P.T.,Geysen,D.,Tielemans,Y.,VanPassel,S.,Pontikes,Y.,Blanpain,B.,Quaghebeur,M.andHoekstra,N.(2013)'EnhancedLandfillMininginviewofmultipleresourcerecovery:acriticalreview',JournalofCleanerProduction,55,pp.45-55.

    Kaartinen,T.,Sormunen,K.andRintala,J.(2013)'Casestudyonsampling,processingandcharacterizationoflandfilledmunicipalsolidwasteintheviewoflandfillmining',JournalofCleanerProduction,55,pp.56-66.

    Kaushal,P.andTyagi,R.(2017)'AdvancedsimulationofbiomassgasificationinafluidizedbedreactorusingASPENPLUS',RenewableEnergy,101,pp.629-636.

    Keche,A.J.,Gaddale,A.P.R.andTated,R.G.(2014)'SimulationofbiomassgasificationindowndraftgasifierfordifferentbiomassfuelsusingASPENPLUS',CleanTechnologiesandEnvironmentalPolicy,17(2),pp.465-473.

    Lemmens,B.,Elslander,H.,Vanderreydt,I.,Peys,K.,Diels,L.,Oosterlinck,M.andJoos,M.(2007)'Assessmentofplasmagasificationofhighcaloricwastestreams',WasteManag,27(11),pp.1562-9.

    Li,R.,Wang,L.,Yang,T.andRaninger,B.(2007)'InvestigationofMSWIflyashmeltingcharacteristicbyDSC-DTA',WasteManag,27(10),pp.1383-92.

    Li,Y.,Zou,K.,Yang,T.,Li,R.andChi,Y.(2013)'CombustiblesolidwastegasificationgascharacteristicssimulationbasedonAspenPlus',JournalofRenewableandSustainableEnergy,5(5).

    Marias,F.,Demarthon,R.,Bloas,A.andRobert-arnouil,J.P.(2016)'Modelingoftarthermalcrackinginaplasmareactor',FuelProcessingTechnology,149,pp.139-152.

    Materazzi,M.,Lettieri,P.,Mazzei,L.,Taylor,R.andChapman,C.(2014)'Tarevolutioninatwostagefluidbed–plasmagasificationprocessforwastevalorization',FuelProcessingTechnology,128,pp.146-157.

    Materazzi,M.,Lettieri,P.,Taylor,R.andChapman,C.(2016)'PerformanceanalysisofRDFgasificationinatwostagefluidizedbed-plasmaprocess',WasteManag,47(PtB),pp.256-66.

    Mathieu,P.andDubuisson,R.(2002)'Performanceanalysisofabiomassgasifier',EnergyConversionandManagement,43(9-12),pp.1291-1299.

    Mazzoni,L.,Ahmed,R.andJanajreh,I.(2017)'PlasmaGasificationofTwoWasteStreams:MunicipalSolidWasteandHazardousWastefromtheOilandGasIndustry',EnergyProcedia,105,pp.4159-4166.

  • 44

    Mazzoni,L.andJanajreh,I.(2017)'Plasmagasificationofmunicipalsolidwastewithvariablecontentofplasticsolidwasteforenhancedenergyrecovery',InternationalJournalofHydrogenEnergy,42(30),pp.19446-19457.

    Minutillo,M.,Perna,A.andDiBona,D.(2009)'Modellingandperformanceanalysisofanintegratedplasmagasificationcombinedcycle(IPGCC)powerplant',EnergyConversionandManagement,50(11),pp.2837-2842.

    Monkare,T.J.,Palmroth,M.R.andRintala,J.A.(2016)'CharacterizationoffinefractionminedfromtwoFinnishlandfills',WasteManag,47(PtA),pp.34-9.

    Nikoo,M.B.andMahinpey,N.(2008)'SimulationofbiomassgasificationinfluidizedbedreactorusingASPENPLUS',BiomassandBioenergy,32(12),pp.1245-1254.

    Niu,M.,Huang,Y.,Jin,B.andWang,X.(2013)'SimulationofSyngasProductionfromMunicipalSolidWasteGasificationinaBubblingFluidizedBedUsingAspenPlus',Industrial&EngineeringChemistryResearch,52(42),pp.14768-14775.

    Nozahic,F.(2008)Productiondegazdesynthèseparinteractionsàhautetempératuredugaz,desgoudronsetdurésiducarbonéissusdelapyrolysedebiomasses.InstitutNationalPolytechniquedeToulouse.

    Pala,L.P.R.,Wang,Q.,Kolb,G.andHessel,V.(2017)'Steamgasificationofbiomasswithsubsequentsyngasadjustmentusingshiftreactionforsyngasproduction:AnAspenPlusmodel',RenewableEnergy,101,pp.484-492.

    Patnaik,P.(2003)Handbookofinorganicchemicals.McGraw-HillNewYork.Pauls,J.H.,Mahinpey,N.andMostafavi,E.(2016)'Simulationofair-steamgasificationof

    woodybiomassinabubblingfluidizedbedusingAspenPlus:Acomprehensivemodelincludingpyrolysis,hydrodynamicsandtarproduction',BiomassandBioenergy,95,pp.157-166.

    Petersen,I.andWerther,J.(2005)'Experimentalinvestigationandmodelingofgasificationofsewagesludgeinthecirculatingfluidizedbed',ChemicalEngineeringandProcessing:ProcessIntensification,44(7),pp.717-736.

    Power,A.P.(2018)GasplasmaProcessOverview.Swindon,UnitedKingdom.Availableat:http://advancedplasmapower.com/solutions/process-overview/(Accessed:31May2018.

    Quaghebeur,M.,Laenen,B.,Geysen,D.,Nielsen,P.,Pontikes,Y.,VanGerven,T.andSpooren,J.(2013)'Characterizationoflandfilledmaterials:screeningoftheenhancedlandfillminingpotential',JournalofCleanerProduction,55,pp.72-83.

    Ramzan,N.,Ashraf,A.,Naveed,S.andMalik,A.(2011)'SimulationofhybridbiomassgasificationusingAspenplus:Acomparativeperformanceanalysisforfood,municipalsolidandpoultrywaste',BiomassandBioenergy,35(9),pp.3962-3969.

    Ray,R.,Taylor,R.andChapman,C.(2012)'Thedeploymentofanadvancedgasificationtechnologyinthetreatmentofhouseholdandotherwastestreams',ProcessSafetyandEnvironmentalProtection,90(3),pp.213-220.

    Shie,J.-L.,Chen,L.-X.,Lin,K.-L.andChang,C.-Y.(2014)'Plasmatrongasificationofbiomasslignocellulosicwastematerialsderivedfrommunicipalsolidwaste',Energy,66,pp.82-89.

    Turns,S.R.(1996)Anintroductiontocombustion:Conceptsandapplications.NewYork:McGraw-Hill.

    Vaidyanathan,A.,Mulholland,J.,Ryu,J.,Smith,M.S.andCirceo,L.J.,Jr.(2007)'Characterizationoffuelgasproductsfromthetreatmentofsolidwastestreamswithaplasmaarctorch',JEnvironManage,82(1),pp.77-82.

  • 45

    ValderramaRios,M.L.,González,A.M.,Lora,E.E.S.andAlmazándelOlmo,O.A.(2018)'Reductionoftargeneratedduringbiomassgasification:Areview',BiomassandBioenergy,108,pp.345-370.

    Valmundsson,A.S.andJanajreh,I.'PlasmaGasificationProcessModelingandEnergyRecoveryFromSolidWaste',ASME20115thInternationalConferenceonEnergySustainability,PartsA,B,andC,361-368.

    Vautmans,H.(2015)UnlockingtheresourcepotentialinEurope’s150,000+landfills:MEPonOctober12,2015Availableat:http://eptoday.com/unlocking-the-resource-potential-in-europes-150000-landfills/(Accessed:26March2018.

    Virk,P.,Chambers,L.andWoebcke,H.(1974)'Thermalhydrogasificationofaromaticcompounds':ACSPublications.

    Wanka,S.,Munnich,K.andFricke,K.(2017)'LandfillMining-WetmechanicaltreatmentoffineMSWwithawetjigger',WasteManag,59,pp.316-323.

    Wolfsberger,T.,Aldrian,A.,Sarc,R.,Hermann,R.,Hollen,D.,Budischowsky,A.,Zoscher,A.,Ragossnig,A.andPomberger,R.(2015)'Landfillmining:ResourcepotentialofAustrianlandfills--Evaluationandqualityassessmentofrecoveredmunicipalsolidwastebychemicalanalyses',WasteManagRes,33(11),pp.962-74.

    Zaini,I.N.,Weihong,Y.andJönsson,P.G.'PyrolysisofSolidRecoveredFuelfromLandfilledWaste:GasandOilProductComposition',4thInternationalSymposiumOnEnhancedLandfillMining,Mechelen.

    Zhang,Q.,Wu,Y.,Dor,L.,Yang,W.andBlasiak,W.(2013)'AthermodynamicanalysisofsolidwastegasificationinthePlasmaGasificationMeltingprocess',AppliedEnergy,112,pp.405-413.

  • www.kth.se