Probing magnetic structure with 3D sensitivity using ......Probing magnetic structure with 3D...

17
Probing magnetic structure with 3D sensitivity using polarized SANS Kathryn Krycka, Julie Borchers, Wangchun Chen, Shannon Watson, Mark Laver, Thomas Gentile (NIST Center for Neutron Research) Ryan Booth, Charles Hogg, Sara Majetich (Carnegie Mellon University) Yumi Ijiri, Sydney Harris, Liv Dedon (Oberlin College) Jim Rhyne (LANSCE, Los Alamos National Laboratory) NCNR Summer School May 13, 2010

Transcript of Probing magnetic structure with 3D sensitivity using ......Probing magnetic structure with 3D...

  • Probing magnetic structure with 3D sensitivity using polarized SANS

    Kathryn Krycka, Julie Borchers, Wangchun

    Chen, Shannon Watson, Mark Laver, Thomas Gentile (NIST Center for Neutron Research)

    Ryan Booth, Charles Hogg, Sara Majetich

    (Carnegie Mellon University)

    Yumi

    Ijiri, Sydney Harris, Liv

    Dedon

    (Oberlin College)

    Jim Rhyne

    (LANSCE, Los Alamos National Laboratory)

    NCNR Summer School May 13, 2010

  • Outline

    Motivation for studying 9 nm Fe3O4 nanoparticles

    Benefits of polarization-analyzed SANS

    Data and modeling at high field canted magnetic shell

    Altering magnetic shell thickness by:

    Varying temperature at high field

    Varying field at very low temperature

    Removing field and interparticle correlations

    Summary of results

  • Monodisperse, 9 nm, ferrimagnetic magnetite (Fe3O4) particles1crystallize into a face-centered cubic crystallites ≈ μm. These crystallites are randomly oriented and form a powder. Magnetite in particular is biocompatible, stable, and has a moment comparable to Ni.

    Goal is to extend the polarized-analyzed SANS technique4 to probe magnetism with 3D sensitivity5 within any applied field.

    Magnetic particles are promising for data storage and biomedical applications. However, precise determination of internal spin structure and interparticle coupling is elusive.

    1. S. Sun et al., J. Am. Chem. Soc. 126, 273 (2004)

    2. P. Dutta

    et al., JAP 105, 07B510 (2009); J. Curiale

    et al., Appl. Phys. Lett. 95, 043106 (2009)

    3. L. Berger et al., Phys. Rev. B 77, 104431 (2008); J. Mazo-Zuluaga

    et al., JAP 105, 123907 (2009)

    4. T. R. Gentile et al., J. Appl. Crystallog. 33, 771 (2000); A. Wiedenmann

    et al., Physica

    B 356, 246 (2005); A.M. Gaspar et al., Biochim. Biophys. Acta. 1804, 76 (2010)

    5. K. Krycka et al., Physica

    B, 404, 2561 (2009)

    Introduction

    Theoretical models suggest surface disorder2 produces a magnetically dead (spin-glass) layer. Inclusion of surface anisotropy3 has lead to differing predictions of hedgehog, artichoke, or throttled configurations. Either approach could account for the reduced moment experimentally observed with bulk probes.

    Disordered Hedgehog Artichoke Throttled

  • Small Angle Neutron Scattering (Unpolarized)

    Q

    Applied field, H || X

    Neutrons magnetically scatter only from moments perpendicular to Q.

    H

    N2

    N2

    + M2SAT

    (ρM

    / ρN

    )2 = 4%

    lengthQ π2=

    0.02 0.04 0.06 0.08 0.10 0.12

    200

    400

    600

    800

    Rel

    ativ

    e In

    tens

    ity

    Q (Å-1)

    N2 + M2

    N2

    0.02 0.04 0.06 0.08 0.100

    1000

    2000

    3000

    4000

    Nuclear Scattering

    Rel

    ativ

    e In

    tens

    ity (A

    .U.)

    Q (Å-1)

  • Set-Up for Polarization Analysis

    FeSi supermirror is stable and can achieve polarization of ~95%.

    FeSi

    Supermirror Polarized 3He Cell

    3He cells cover divergent beam, but have reduced transmission.

    Q

    MbMbMbI ccc 2222 ±+=±∝

    Fe

    FeSi

    Si

    X X X X X X X X X X X X X X

    X X X X X X XX X X X X X X

    Polarized 3He allows spin-up neutrons of one orientation to pass while absorbing the opposite orientation.

    3He polarization can be reversed with NMR pulse.

    (↑

    and ↓)

    Electromagnetic flipper is used to reverse polarization at will.

  • 0.02 0.04 0.06 0.08 0.10 0.12

    200

    400

    600

    800

    Rel

    ativ

    e In

    tens

    ity

    Q (Å-1)

    N2 + M2

    N2

    Polarized Small Angle Neutron Scattering

    Moon, Riste, and Koehler, Physical. Review 181, 920 (1969)

    )cos()cos()cos()ˆˆ(ˆˆ ,,, MQAQAMAqMQQMq φφφ −=⇒⋅−=r

    2222

    2

    ,

    222

    2

    , 2

    ZZYYk

    RiQmHZ

    j

    RiQmY

    XXXXk

    RiQmxX

    j

    RiQn

    MqMqeiqeqI

    NMqMqNeqeI

    k

    k

    j

    j

    k

    k

    j

    j

    +=±∝

    +=∝

    ∑∑

    ∑∑

    ⋅⋅↓↑↑↓

    ⋅⋅↓↓↑↑

    ρρ

    ρρ mm

    Q

    X, H

    From these eqns. we can separate N2, M2PARL

    , and M2PERP

    .

    Y

    0.02 0.04 0.06 0.08 0.10 0.12-50

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    550

    Rel

    ativ

    e In

    tens

    ity

    Q (Å-1)

    Down-Down Along Y Down-Down Along X Up-Up Along X Up-Up Along Y

    θ

    ↓↓

    N2

    + 2MN

    ↓↓

    ,↑↑

    N2

    ↑↑

    N2

    - 2MN

  • Scattering Profiles at 1.2 Tesla, 200 K

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.110

    200

    400

    600

    800

    1000

    0

    10

    20

    30

    40

    50 N2

    N2 I

    nten

    sity

    (cou

    nts

    per p

    ixel

    )

    Q (Å-1)

    M2PAR

    L Intensity (counts per pixel)

    M2PARL via SF

    M2PARL via NSF

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

    0

    1

    2

    3

    4

    5

    6

    M2PERPM

    2 PE

    RP In

    tens

    ity (c

    ount

    s pe

    r pix

    el)

    Q (Å-1)

    )(2 ↓↓↑↑ + XX IIN p

    3/)(

    25.1,,2

    2,45

    2

    ↓↑↑↓↓↑↑↓

    ↓↑↑↓

    +=

    −=

    YXPERP

    PERPPARL

    IIM

    MIM o

    222 8/)( NIIM YYPARL↓↓↓↓ −p

    XX NMMN 222 ++ XX NMMN 2

    22 −+

    2N

    22ZY MM +

    2ZM )(25.1 222 ZYX MMM ++

    ↑↓+↓↑

  • 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.110

    200

    400

    600

    800

    1000 N2

    N2 I

    nten

    sity

    (cou

    nts

    per p

    ixel

    )

    Q (Å-1)

    0.02 0.04 0.06 0.08 0.10 0.12 0.14

    1E-101E-91E-81E-71E-61E-51E-41E-30.010.1

    1

    |F|2

    (A.U

    .)

    Q (Å-1)

    Form Factor for 9.0 nm Sphere 0.02 0.04 0.06 0.08 0.10 0.12 0.14

    1E-101E-91E-81E-71E-61E-51E-41E-30.010.1

    1

    |F|2

    (A.U

    .)

    Q (Å-1)

    Form Factor for 7.0 nmCore

    Modeling Intensity by Structure Factor (|S|2) x Form Factor (|F|2)

    ρN

    =

    6.97E-6 Å-2

    ρM

    =

    1.46E-6 Å-2(513 emu / cc)

    Modeled Diameters:

    Sphere 9.0 nm

    Ferrimagnetic core 7 nm

    Canted shell 7 to 9 nm (+0.2 nm)

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

    0

    1

    2

    3

    4

    5

    6

    M2PERP

    M2 PE

    RP

    Inte

    nsity

    (cou

    nts

    per p

    ixel

    )

    Q (Å-1)

    Physical Review Letters (accepted)

    0.04 0.06 0.08 0.10 0.120.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    |S|2

    (A.U

    .)

    Q (Å-1)

    Structure Factor for N2 and M2PARL

    0.04 0.06 0.08 0.10 0.120.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    |S|2

    (A.U

    .)

    Q (Å-1)

    Structure Factor for M2PERP

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.110

    200

    400

    600

    800

    1000 N2

    N2 I

    nten

    sity

    (cou

    nts

    per p

    ixel

    )

    Q (Å-1)

    0

    10

    20

    30

    40

    50

    M2PA

    RL Intensity (counts per pixel)

    M2PARL via SF

    M2PARL via NSF

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

    0

    1

    2

    3

    4

    5

    6

    M2PERP

    M2 PE

    RP

    Inte

    nsity

    (cou

    nts

    per p

    ixel

    )

    Q (Å-1)0.02 0.04 0.06 0.08 0.10 0.12 0.14

    1E-101E-91E-81E-71E-61E-51E-41E-30.010.1

    1

    |F|2

    (A.U

    .)

    Q (Å-1)

    Form Factor for Shell (1.0 nm thick)

    0

    10

    20

    30

    40

    50

    M2P

    ARL Intensity (counts per pixel)

    M2PARL via SF

    M2PARL via NSF

  • Altering Shell with Temperature at 1.2 Tesla

    300-320 K dip at 0.082 Å-1 comes from shell 1.5 nm thick (6 nm inner to 9 nm outer diameter)

    160 K dip at 0.075 Å-1 comes from shell 1.0 nm thick (7 nm inner to 9 nm outer diameter)

    Field cooling to 10 K (

  • Removal of field does not eliminate all magnetic scattering

  • Effect of Temperature on Interparticle Correlations

    Non Spin-Flip

    Spin-Flip

    Magnetic domains range from 1000 Å

    (~ 10 particles) at 50 K down to 100 Å

    (~ 1 particle) at 300 KH

    MX2

    = MY2

    = MZ2

    at 0.005 T

  • Eliminating field and interparticle interactions at 300 K

    0.02 0.04 0.06 0.08 0.100.1

    1

    10

    100

    Inte

    nsity

    Q (Å-1)

    300 K Remanence 9.0 nm Diameter Sphere

    • Nanoparticles show no shell features and behave as uniform, ferrimagnetic spheres randomly oriented in space. Thus, shell is magnetic in origin.

    22PARLPERP MM =

    Low-Q interparticle correlations virtually eliminated at 300 K, 0.005 T

  • Recap

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.110

    200

    400

    600

    800

    1000

    0

    10

    20

    30

    40

    50 N2

    N2 I

    nten

    sity

    (cou

    nts

    per p

    ixel

    )

    Q (Å-1)

    M2P

    ARL Intensity (counts per pixel)

    M2PARL via SF

    M2PARL via NSF

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

    0

    1

    2

    3

    4

    5

    6

    M2PERP

    M2 P

    ERP In

    tens

    ity (c

    ount

    s pe

    r pix

    el)

    Q (Å-1)

    Direct evidence of canted magnetic shell 1.0 to 1.5 nm thick under high field between 160 and 320 K

    Zero-field cooling to 10 K

    eliminates ordered shell (though a disordered shell is probable)

    When field and interparticle interactions are removed (0.005 T, 300 K) the nanoparticles exhibit no shell morphology

  • Possible origin of magnetic shell

    Discovery of canted magnetic shells exclude models involving disordered shells and those with radial symmetry at near-saturation conditions

    Shells show correlations over one to several FCC lattice units, as seen by |S|2.

    We speculate that the combination of surface anisotropy and interparticle coupling gives rise to the canted magnetic shells [J. Nogues

    et al., PRL 97, 157203 (2006); D. Kechrakos

    et al., JMMM 316, E291 (2007)]

    High-field temperature dependence (1.5 nm thick @ 300 K, 1.0 nm thick

    at 200 K, and missing or disordered at 9 K) is a mystery. Interparticle coupling changes with temperature and anisotropy may as well. There is a Verwey

    transition at 122 K and a bulk blocking temperature at 65 K.

  • Recap

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.110

    200

    400

    600

    800

    1000

    0

    10

    20

    30

    40

    50 N2

    N2 I

    nten

    sity

    (cou

    nts

    per p

    ixel

    )

    Q (Å-1)

    M2P

    ARL Intensity (counts per pixel)

    M2PARL via SF

    M2PARL via NSF

    0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

    0

    1

    2

    3

    4

    5

    6

    M2PERP

    M2 P

    ERP In

    tens

    ity (c

    ount

    s pe

    r pix

    el)

    Q (Å-1)

    Direct evidence of canted magnetic shell 1.0 to 1.5 nm thick under high field between 160 and 320 K

    Zero-field cooling to 10 K

    eliminates ordered shell (though a disordered shell is probable)

    When field and interparticle interactions are removed (0.005 T, 300 K) the nanoparticles exhibit no shell morphology

    Only with polarization analyzed SANS were we able to see details of perpendicular magnetic shells

  • THANK YOU

  • Correcting for Polarization Efficiencies

    “user-friendly”

    polarization efficiency correction software

    Probing magnetic structure with 3D sensitivity using polarized SANSSlide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17