Pretreatment and enzymatic saccharification process of ...

9
OPEN ACCESS Citation: Lee HH, Jeon MK, Yoon MH. 2016. Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol. Korean Journal of Agricultural Science 43:641-649. DOI: https://doi.org/10.7744/kjoas.20160067 Editor: Eun Hee Soh, Korea Seed & Variety Service, Korea Received: November 30, 2016 Revised: December 26, 2016 Accepted: December 27, 2016 Copyright: ยฉ2016 Korean Journal of Agricultural Science. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License which permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Korean Journal of Agricultural Science 43(4) December 2016 641 ISSN (Print) : 2466-2402 ISSN (Online) : 2466-2410 FOOD & CHEMISTRY Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol Heon-Hak Lee, Min-Ki Jeon, Min-Ho Yoon* Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea *Corresponding author: [email protected] Abstract This study was conducted to evaluate the yield of bio-ethanol produced by separate hydrolysis and fermentation (SHF) with the pretreated rapeseed straw (RS) using crude enzyme of Cellulomonas flavigena and Saccharomyces cereviase. Crude enzyme of C. flavigena showed enzymatic activity of 14.02 U/mL for CMC 133.40 U/mL, for xylan 15.21 U/mL, for locust gum and 15.73 U/mL for rapeseed straw at pH 5.0 and 40โ„ƒ, respectively. The hemicellulose contents of RS was estimated to compromise 36.62% of glucan, 43.20% of XMG (xylan + mannan + galactan), and 2.73% of arabinan by HPLC analysis. The recovering ratio of rapeseed straw were investigated to remain only glucan 75.2% after 1% H 2 SO 4 pretreatment, glucan 45.44% and XMG 32.13% after NaOH, glucan 44.75% and XMG 5.47% after NH 4 OH, and glucan 41.29% and XMG 41.04% after hot water. Glucan in the pretreatments of RS was saccharified to glucose of 45.42 - 64.81% by crude enzyme of C. flavigena while XMG was made into to xylose + mannose + galactose of 58.46 - 78.59%. Moreover, about 52.88 - 58.06 % of bio-ethanol were obtained from four kinds of saccharified solutions by SHF using S. cerevisiae. Furthermore, NaOH pretreatment was determined to show the highest mass balance, in which 21.22 g of bio-ethanol was produced from 100 g of RS. Conclusively, the utilization of NaOH pretreatment and crude enzyme of Cellulomonas flavigena was estimated to be the best efficient saccharification process for the production of bio-ethanol with rapeseed straw by SHF. Keywords: bioethanol, Cellulomonas flavigena , enzymatic hydrolysis, pretreatment, rapeseed straw Introduction ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ™”์„์—ฐ๋ฃŒ๋ฅผ ๋Œ€์ฒดํ•  ๋ฐ”์ด์˜ค์—ฐ๋ฃŒ(Biofuel)์™€ ๋ฐ”์ด์˜ค ์ œํ’ˆ(Bio-based product)์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ชฉ์งˆ๊ณ„ ๋ฐ”์ด์˜ค๋งค์Šค๊ฐ€ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ, ๋ฐ”์ด์˜ค ๋ถ€ํƒ„์˜ฌ ๊ฐ™์€ ์—๋„ˆ์ง€์› ๋ฐ ํ”Œ๋ผ์Šคํ‹ฑ ๋“ฑ์˜ ํ™”ํ•™ ์›๋ฃŒ ์ƒ์‚ฐ์„ ์œ„ํ•œ ์žฌ๋ฃŒ๋กœ์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค(Kamm et al., 2007). ์ด ์ค‘ ๋ฐ”์ด์˜ค ์—ํƒ„์˜ฌ์€ ๋ฏธ๊ตญ, ๋ธŒ๋ผ์งˆ์„ ์ค‘์‹ฌ์œผ๋กœ ํœ˜๋ฐœ์œ ์™€ ํ˜ผํ•ฉ๋˜์–ด ์ด์šฉ๋จ์œผ๋กœ์จ ์„์œ ๋ฅผ ๋Œ€์ฒดํ•˜๋Š” ํšจ๊ณผ์ ์ธ ์—๋„ˆ์ง€์›์œผ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค. ๋ฐ”์ด์˜ค๋งค์Šค ์ž์›์œผ๋กœ๋ถ€ํ„ฐ ์ƒ์‚ฐ๋œ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ์€ ์ด์‚ฐํ™”ํƒ„์†Œ ์ค‘ ๋ฆฝ์ž์›์œผ๋กœ์„œ ์นœํ™˜๊ฒฝ์ ์ด๊ณ  ์žฌ์ƒ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์ œ์ ์ธ ์—๋„ˆ์ง€์›์œผ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค(Gwak et al., 2016). ๊ตญ๋‚ด์—๋Š” 2015๋…„๋ถ€ํ„ฐ ์‹ ์žฌ์ƒ ์—ฐ๋ฃŒ ํ˜ผํ•ฉ์˜๋ฌดํ™” ์ œ๋„(Renewable Fuel Standard, RFS)๊ฐ€ ์‹œ ํ–‰๋˜์—ˆ๊ณ  2017๋…„๋ถ€ํ„ฐ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ ํ˜ผํ•ฉ์ด ์˜๋ฌดํ™”๋˜๋ฉด์„œ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ ๋ณด๊ธ‰์ด ํ™•๋Œ€๋  ๊ฒƒ์œผ๋กœ

Transcript of Pretreatment and enzymatic saccharification process of ...

Page 1: Pretreatment and enzymatic saccharification process of ...

OPEN ACCESS

Citation: Lee HH, Jeon MK, Yoon MH. 2016. Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol. Korean Journal of Agricultural Science 43:641-649.

DOI: https://doi.org/10.7744/kjoas.20160067

Editor: Eun Hee Soh, Korea Seed & Variety Service, Korea

Received: November 30, 2016

Revised: December 26, 2016

Accepted: December 27, 2016

Copyright: ยฉ2016 Korean Journal of Agricultural Science.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License which permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Korean Journal of Agricultural Science 43(4) December 2016 641

ISSN (Print) : 2466-2402

ISSN (Online) : 2466-2410

FOOD & CHEMISTRY

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Heon-Hak Lee, Min-Ki Jeon, Min-Ho Yoon*

Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea

*Corresponding author: [email protected]

AbstractThis study was conducted to evaluate the yield of bio-ethanol produced by separate hydrolysis and fermentation (SHF) with the pretreated rapeseed straw (RS) using crude enzyme of Cellulomonas flavigena and Saccharomyces cereviase. Crude enzyme of C. flavigena showed enzymatic activity of 14.02 U/mL for CMC 133.40 U/mL, for xylan 15.21 U/mL, for locust gum and 15.73 U/mL for rapeseed straw at pH 5.0 and 40โ„ƒ, respectively. The hemicellulose contents of RS was estimated to compromise 36.62% of glucan, 43.20% of XMG (xylan + mannan + galactan), and 2.73% of arabinan by HPLC analysis. The recovering ratio of rapeseed straw were investigated to remain only glucan 75.2% after 1% H2SO4 pretreatment, glucan 45.44% and XMG 32.13% after NaOH, glucan 44.75% and XMG 5.47% after NH4OH, and glucan 41.29% and XMG 41.04% after hot water. Glucan in the pretreatments of RS was saccharified to glucose of 45.42 - 64.81% by crude enzyme of C. flavigena while XMG was made into to xylose + mannose + galactose of 58.46 - 78.59%. Moreover, about 52.88 - 58.06 % of bio-ethanol were obtained from four kinds of saccharified solutions by SHF using S. cerevisiae. Furthermore, NaOH pretreatment was determined to show the highest mass balance, in which 21.22 g of bio-ethanol was produced from 100 g of RS. Conclusively, the utilization of NaOH pretreatment and crude enzyme of Cellulomonas flavigena was estimated to be the best efficient saccharification process for the production of bio-ethanol with rapeseed straw by SHF.

Keywords: bioethanol, Cellulomonas flavigena, enzymatic hydrolysis, pretreatment, rapeseed straw

Introduction

์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ™”์„์—ฐ๋ฃŒ๋ฅผ ๋Œ€์ฒดํ•  ๋ฐ”์ด์˜ค์—ฐ๋ฃŒ(Biofuel)์™€ ๋ฐ”์ด์˜ค ์ œํ’ˆ(Bio-based product)์ด

์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ชฉ์งˆ๊ณ„ ๋ฐ”์ด์˜ค๋งค์Šค๊ฐ€ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ, ๋ฐ”์ด์˜ค ๋ถ€ํƒ„์˜ฌ ๊ฐ™์€ ์—๋„ˆ์ง€์› ๋ฐ

ํ”Œ๋ผ์Šคํ‹ฑ ๋“ฑ์˜ ํ™”ํ•™ ์›๋ฃŒ ์ƒ์‚ฐ์„ ์œ„ํ•œ ์žฌ๋ฃŒ๋กœ์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค(Kamm et al., 2007). ์ด ์ค‘ ๋ฐ”์ด์˜ค

์—ํƒ„์˜ฌ์€ ๋ฏธ๊ตญ, ๋ธŒ๋ผ์งˆ์„ ์ค‘์‹ฌ์œผ๋กœ ํœ˜๋ฐœ์œ ์™€ ํ˜ผํ•ฉ๋˜์–ด ์ด์šฉ๋จ์œผ๋กœ์จ ์„์œ ๋ฅผ ๋Œ€์ฒดํ•˜๋Š” ํšจ๊ณผ์ ์ธ

์—๋„ˆ์ง€์›์œผ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค. ๋ฐ”์ด์˜ค๋งค์Šค ์ž์›์œผ๋กœ๋ถ€ํ„ฐ ์ƒ์‚ฐ๋œ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ์€ ์ด์‚ฐํ™”ํƒ„์†Œ ์ค‘

๋ฆฝ์ž์›์œผ๋กœ์„œ ์นœํ™˜๊ฒฝ์ ์ด๊ณ  ์žฌ์ƒ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์ œ์ ์ธ ์—๋„ˆ์ง€์›์œผ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค(Gwak et al.,

2016). ๊ตญ๋‚ด์—๋Š” 2015๋…„๋ถ€ํ„ฐ ์‹ ์žฌ์ƒ ์—ฐ๋ฃŒ ํ˜ผํ•ฉ์˜๋ฌดํ™” ์ œ๋„(Renewable Fuel Standard, RFS)๊ฐ€ ์‹œ

ํ–‰๋˜์—ˆ๊ณ  2017๋…„๋ถ€ํ„ฐ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ ํ˜ผํ•ฉ์ด ์˜๋ฌดํ™”๋˜๋ฉด์„œ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ ๋ณด๊ธ‰์ด ํ™•๋Œ€๋  ๊ฒƒ์œผ๋กœ

Page 2: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 642

์˜ˆ์ƒ๋˜์–ด์™”๋‹ค(Lee and Koo, 2014).

๋ฐ”์ด์˜ค๋งค์Šค๋Š” ์˜ฅ์ˆ˜์ˆ˜, ์ฝฉ, ์‚ฌํƒ•์ˆ˜์ˆ˜ ๋“ฑ ๋‹นยท์ „๋ถ„์งˆ๊ณ„ 1์„ธ๋Œ€ ๋ฐ”์ด์˜ค๋งค์Šค, ๋ชฉ์งˆ๊ณ„ 2์„ธ๋Œ€ ๋ฐ”์ด์˜ค๋งค์Šค ์™€ ๋ฏธ์„ธ์กฐ๋ฅ˜์™€ ๊ฐ™

์€ 3์„ธ๋Œ€ ๋ฐ”์ด์˜ค๋งค์Šค๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค. 1์„ธ๋Œ€ ๋ฐ”์ด์˜ค๋งค์Šค๋Š” ๊ณก๋ฌผ์„ ์ด์šฉ ํ•˜๋Š” ์ ์—์„œ ์‹๋Ÿ‰์ž์› ๋ถ€์กฑ ๋ฐ ๊ณก๋ฌผ๊ฐ€ ์ƒ์Šน ๋“ฑ์œผ๋กœ

์ธํ•ด ๋ฏธ๊ตญ ๋ฐ ๋ธŒ๋ผ์งˆ์„ ์ œ์™ธํ•˜๊ณ ๋Š” ๊ฒฝ์ œ์„ฑ ๋ฐ ์‹คํšจ์„ฑ์— ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ž์—ฐ๊ณ„์— ๊ฐ€์žฅ ํ’๋ถ€ํ•˜๊ณ  ์›๋ฃŒ์˜ ์ˆ˜๊ธ‰

์„ฑ์ด ์ข‹์€ 2์„ธ๋Œ€ ๋ฐ”์ด์˜ค๋งค์Šค์ธ ๋†์—…๋ถ€์‚ฐ๋ฌผ๊ณผ ๋ชฉ์งˆ๊ณ„ ๋ฐ”์ด์˜ค๋งค์Šค๊ฐ€ ๋งŽ์€ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค(Nigam and Singh, 2011).

์œ ์ฑ„๋Œ€๋Š” ๋ฐ”์ด์˜ค ๋””์ ค์šฉ ์œ ์ฑ„์”จ(rapeseed) ์ฑ„์ทจ ํ›„, ๋‚จ์€ ๋ถ€์‚ฐ๋ฌผ๋กœ ์‚ฌ๋ฃŒ๋‚˜ ํ‡ด๋น„์ž์›์œผ๋กœ ์ฃผ๋กœ ์ด์šฉ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜

์ด์™ธ์˜ ์†Œ์žฌํ™” ๋ฐฉ์•ˆ์ด ๋ฏธ๋น„ํ•˜๊ณ  ์‹๋Ÿ‰์ž์›์—๋„ ์˜ํ–ฅ์„ ๋ผ์น˜์ง€ ์•Š์•„ ๋ฐ”์ด์˜ค ์—ํƒ„์˜ฌ ๋“ฑ ๋ฐ”์ด์˜ค ์—๋„ˆ์ง€ ์ž์›์œผ๋กœ ๊ฐ๊ด‘๋ฐ›

๊ณ  ์žˆ๋‹ค(Han et al., 2009).

๋ฏธ์ƒ๋ฌผ์„ ์ด์šฉํ•ด ๋ฐ”์ด์˜ค๋งค์Šค๋กœ๋ถ€ํ„ฐ ๋ฐ”์ด์˜ค ํ™”ํ•™ ๋ฌผ์งˆ ๋ฐ ์†Œ์žฌ๋กœ ์ƒ์‚ฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ’์‹ธ๊ณ  ํšจ์œจ์ ์ธ ๋ฐœํšจ๋‹น

(fermenatable sugar)์˜ ์ƒ์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค(Shrestha et al., 2013). ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐ”์ด์˜ค๋งค์Šค๋กœ๋ถ€ํ„ฐ ํ™”ํ•™์ œํ’ˆ ๋ฐ ๋ฐ”์ด์˜ค ์—๋„ˆ

์ง€์˜ ์ƒ์‚ฐ์„ ์œ„ํ•œ ๊ณต์ •์€ ํšจ์†Œ์™€ ๋ฏธ์ƒ๋ฌผ ๋ฐ˜์‘์˜ ์ €ํ•ด ๋ฌผ์งˆ ์„ฑ๋ถ„์„ ์ œ๊ฑฐํ•˜๊ณ  cellulose์™€ hemicellulose์— ๋Œ€ํ•œ ํšจ์†Œ์˜

ํšจ์œจ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ „์ฒ˜๋ฆฌ ๊ณต์ •(pretreatment), cellulose์™€ hemicellulose์˜ ํšจ์†Œ๊ฐ€์ˆ˜๋ถ„ํ•ด๋ฅผ ํ†ตํ•ด ๋ฐœํšจ ๊ฐ€๋Šฅํ•œ ๋‹น

๋ฅ˜๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ํšจ์†Œ ๋‹นํ™” ๊ณต์ •(enzymatic saccharification), ๊ทธ๋ฆฌ๊ณ  ์ƒ์„ฑ๋œ ๋‹น์„ ํšจ๋ชจ ๋˜๋Š” ๋ฐ•ํ…Œ๋ฆฌ์•„ ๋“ฑ์„ ์ด์šฉํ•˜์—ฌ ๋ฐ”

์ด์˜ค์—ํƒ€๋†€๋กœ ์ „ํ™˜์‹œํ‚ค๋Š” ๋ฏธ์ƒ๋ฌผ ๋ฐœํšจ๊ณต์ •(microbial fermentation)์œผ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค(Mosier et al., 2005).

๋ชฉ์งˆ๊ณ„ ๋ฐ”์ด์˜ค๋งค์Šค๋กœ๋ถ€ํ„ฐ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐ”์ด์˜ค ์ œํ’ˆ(bio-based product)๋“ค์€ ์ง€๊ธˆ๊นŒ์ง€ ๋‚ฎ์€ ํšจ์œจ๊ณผ ๋†’์€

์ƒ์‚ฐ์›๊ฐ€์˜ ๋ฌธ์ œ์  ๋•Œ๋ฌธ์— ์ƒ์šฉํ™”์— ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค. ๋ฏธ๊ตญ NREL (National Renewable Energy Laboratory)์˜ ๋ณด

๊ณ ์„œ์— ์˜ํ•˜๋ฉด ์˜ฅ์ˆ˜์ˆ˜๋Œ€๋กœ๋ถ€ํ„ฐ ์—ํƒ„์˜ฌ ์ƒ์‚ฐ์„ ํ•˜๋Š” ๊ณต์ •์€ ๋‹นํ™”์— ํ•„์š”ํ•œ ์ „์ฒ˜๋ฆฌ ๋น„์šฉ๊ณผ ๋†’์€ ํšจ์†Œ ๋น„์šฉ์ด ํ•ด๊ฒฐํ•ด

์•ผ ํ•  ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•ญ๋ชฉ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค(Humbird et al., 2011).

Cellulomonas ์†์€ Bergey et al. (1923)์— ์˜ํ•ด ์ฒ˜์Œ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ 27์ข…์ด ๋ฐœ๊ฒฌ๋˜์—ˆ์œผ๋ฉฐ, ์ฃผ๋กœ cellulose๊ฐ€ ํ’

๋ถ€ํ•œ ํ† ์–‘, ๋‚˜๋ฌด ๋“ฑ์—์„œ ๋ถ„๋ฆฌ๋˜์—ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ Cellulomonas ์† ๊ท ์ฃผ๋Š” ๊ทธ๋žŒ ์–‘์„ฑ ๊ฐ„๊ท ์ด๋ฉฐ, ๋†’์€ GC ํ•จ๋Ÿ‰(69 - 76

mol%)์„ ๊ฐ€์ง€๊ณ , ๋ฌดํฌ์žํ˜•์„ฑ๊ท ์ด๋‹ค(Abt et al., 2010). Cellulomonas ์†์€ cellulose์™€ hemicellulose์˜ ๋ถ„ํ•ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ,

์ด์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ cellulosic ํƒ„์†Œ์›์—์„œ ์ƒ์œก์ด ๊ฐ€๋Šฅํ•˜๋‹ค(Beg et al., 2001; Pรฉrez-Avalos et al., 1996; Rajoka, 2004).

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ์ฑ„๋Œ€๋ฅผ ํ™œ์šฉํ•œ ๊ฐ€์žฅ ํšจ์œจ์ ์ธ ์—ํƒ„์˜ฌ ๊ณ ์ˆ˜์œจ ๊ณต์ •์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ์„ฌ์œ ์†Œ๋ถ„ํ•ด์„ธ๊ท 

Cellulomonas flavigena ์กฐํšจ์†Œ์•ก์„ ์ด์šฉํ•˜์—ฌ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์œ ์ฑ„๋Œ€์˜ ๊ตฌ์„ฑ์„ฑ๋ถ„ ๋ณ€ํ™”์™€ ๋‹นํ™”ํšจ์œจ์„ ๋ถ„์„ํ•˜๊ณ , ๋˜

ํ•œ C. flavigena ์กฐํšจ์†Œ์•ก๊ณผ ํšจ๋ชจ Saccharomyces cereviase์— ์˜ํ•œ ๋ถ„๋ฆฌ๋‹นํ™”๋ฐœํšจ๋ฒ•(separate hydrolysis and fermentation,

SHF)์— ์˜ํ•ด ์ƒ์„ฑ๋œ ์—ํƒ„์˜ฌ ์ˆ˜์œจ์„ ๋ถ„์„ํ•˜์˜€๋‹ค.

Materials and Methods

์‹คํ—˜์žฌ๋ฃŒ

๋ณธ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋œ ๋ฐ”์ด์˜ค๋งค์Šค ์œ ์ฑ„๋Œ€(์žŽ ํฌํ•จ; ์ดํ•˜ ์œ ์ฑ„๋Œ€๋กœ ์ง€์นญ)๋Š” ๋Œ€์ „๊ด‘์—ญ์‹œ ์ค‘์ดŒ๋™์—์„œ ์ˆ˜์ง‘ํ•˜์˜€์œผ๋ฉฐ, ๊ฑด์กฐ

ํ›„ ๋ฏน์„œ๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์‡„ํ•˜์˜€๋‹ค. ๋ถ„์‡„ํ•œ ์œ ์ฑ„๋Œ€๋Š” 10 - 40 mesh ํฌ๊ธฐ์˜ ์ฒด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ ๋‹นํ•œ ํฌ๊ธฐ์˜ ๋ฐ”์ด์˜ค๋งค์Šค

๋ฅผ ์„ ๋ณ„ํ•˜์˜€๋‹ค.

์ „์ฒ˜๋ฆฌ ๋ฐ ํšจ์†Œํ™œ์„ฑ์— ์‚ฌ์šฉ๋œ ์‹œ์•ฝ์€ Sigma-aldrich (St. Louis, MO, USA)์™€ Junsei chemical (Tokyo, Japan)์‚ฌ์˜

์ œํ’ˆ์„ ์ด์šฉํ•˜์˜€๋‹ค.

์ƒ์œก๊ณก์„ 

๋ฐฐ์–‘๊ธฐ๊ฐ„์— ๋”ฐ๋ฅธ ์ƒ๊ท ์ˆ˜์™€ ํšจ์†Œํ™œ์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ Cellulomonas flavigena๋ฅผ Dubos broth์— ๋ฐฐ์–‘ํ•˜์—ฌ 12์‹œ

๊ฐ„ ๋งˆ๋‹ค ๋ถ„๊ด‘๊ด‘๋„๊ณ„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ OD (absorbance) 600 nm์—์„œ ๋ฐฐ์–‘์•ก์˜ ํƒ๋„๋ฅผ ์ธก์ •ํ•จ์œผ๋กœ์จ ์ƒ์œก ์ •๋„๋ฅผ ํ™•์ธํ•˜์˜€

Page 3: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 643

๋‹ค. Dubos broth๋Š” ์ฆ๋ฅ˜์ˆ˜ 1 L์— Dubos salt (1 g NaNO3, 1 g K2HPO4ยท7H2O, 0.5 g MgSO4ยท7H2O, 0.5 g NaCl, 0.01 g

FeSO4ยท7H2O), 0.02 g yeast extract์™€ 10 g ํƒ„์†Œ์›์„ ์ฒจ๊ฐ€ ํ›„ acutoclave๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉธ๊ท ํ•˜์˜€๋‹ค(Dubos, 1928). ํƒ„์†Œ์›

์€ CMC (carboxylmethyl cellulose), xylan, locust gum (galacto-mannan), ์œ ์ฑ„๋Œ€(โ‰ค 40mesh)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ฐ

์‹œ๊ฐ„ ๋ณ„ ๋ฐฐ์–‘์—ฌ์•ก ์ค‘์˜ ํšจ์†Œํ™œ์„ฑ์„ ์ธก์ •ํ•˜์˜€๋‹ค.

๋‹จ๋ฐฑ์งˆ ์ •๋Ÿ‰

C. flavigena ์กฐํšจ์†Œ์•ก์˜ ๋‹จ๋ฐฑ์งˆ์„ ์ •๋Ÿ‰ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, Bradford๋ฒ•(Bradford and Marion, 1976)์„ ์ด์šฉํ•˜์˜€๋‹ค. ์ฆ‰,

๋ฐฐ์–‘์ƒ๋“ฑ์•ก 0.5 mL์— bradford ์‹œ์•ฝ 1 mL์„ ์ฒจ๊ฐ€ํ•œ ํ›„, ์ƒ์˜จ์—์„œ 5๋ถ„๊ฐ„ ์ •์น˜ํ•˜์˜€๋‹ค. ์ด ํ›„ UV spectrometer

(Thermo sci. USA)๋ฅผ ์ด์šฉํ•˜์—ฌ 595 nm์—์„œ ํก๊ด‘๋„๋ฅผ ์ธก์ •ํ•˜์—ฌ ๋‹จ๋ฐฑ์งˆ์„ ์ •๋Ÿ‰ํ•˜์˜€๋‹ค. ๋‹จ๋ฐฑ์งˆ ์ •๋Ÿ‰์˜ ํ‘œ์ค€๋ฌผ์งˆ๋กœ

๋Š” BSA (Bovin Serum Albumin)์„ ์ด์šฉํ•˜์˜€๋‹ค.

ํšจ์†Œํ™œ์„ฑ

C. flavigena์˜ ์„ฌ์œ ์†Œ ๋ถ„ํ•ดํšจ์†Œํ™œ์„ฑ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ CMC, xylan, locust gum (galacto-mannan), ์œ ์ฑ„๋Œ€๋ฅผ ํƒ„

์†Œ์›์œผ๋กœ ํ•˜๋Š” Dubos broth๋ฅผ ์ œ์กฐํ•˜์—ฌ C. flavigena๋ฅผ ๋ฐฐ์–‘ํ•˜์˜€๋‹ค. ๋ฐฐ์–‘์•ก์„ 4ยฐC, 10,000 ร— g์—์„œ 20 min ์›์‹ฌ๋ถ„๋ฆฌ

ํ•œ ํ›„ ํšŒ์ˆ˜ํ•œ ์ƒ๋“ฑ์•ก์„ ์กฐํšจ์†Œ์•ก์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ฐฐ์–‘ 12์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์œผ๋กœ ์กฐํšจ์†Œ์•ก์„ 0.1 % CMC, xylan, locust

gum, ์œ ์ฑ„๋Œ€๋ฅผ ๊ธฐ์งˆ๋กœ ํ•˜๋Š” ๊ธฐ์งˆ ์šฉ์•ก๊ณผ 40โ„ƒ์—์„œ 30 min ๋ฐ˜์‘์‹œ์ผœ ๋ฐ˜์‘ ํ›„ ์ƒ์„ฑ๋˜๋Š” ํ™˜์›๋‹น์€ DNS๋ฒ•(Miller,

1959)์„ ์ด์šฉํ•˜์—ฌ ์ •๋Ÿ‰ํ•˜์˜€๋‹ค. ์ฆ‰, ๊ธฐ์งˆ์šฉ์•ก 0.5 mL๋ฅผ water bate์—์„œ ๋ฏธ๋ฆฌ ์˜ˆ์—ดํ•œ ํ›„, ์กฐํšจ์†Œ ์•ก 0.25 mL๋ฅผ ์ฒจ๊ฐ€ํ•˜

์—ฌ 30๋ถ„๊ฐ„ ๋ฐ˜์‘์‹œ์ผฐ๋‹ค. ๋ฐ˜์‘์‹œํ‚จ ์šฉ์•ก์€ DNS์‹œ์•ฝ 3 mL์„ ๋„ฃ์€ ํ›„ 5๋ถ„๊ฐ„ ๋“์—ฌ์ฃผ์–ด ๋ฐ˜์‘์„ ์ •์ง€ ์‹œํ‚ค๊ณ , ํ™˜์›๋‹น์„

๋ฐœ์ƒ‰์‹œ์ผฐ๋‹ค. ์ด ํ›„ UV spectrometer (Thermo, USA)๋ฅผ ์ด์šฉํ•˜์—ฌ 520 nm์—์„œ ํ™˜์›๋‹น์„ ์ •๋Ÿ‰ํ•˜์˜€๋‹ค. ์‚ฌ์šฉํ•œ ๊ธฐ์งˆ์šฉ

์•ก์€ pH ๋ณ„๋กœ glycine-HCl buffer (pH 3.0), sodium acetate buffer (pH 5.0), sodium phosphate buffer (pH 7.0),

glycine-NaOH buffer (pH 9.0)์— ๊ฐ ๊ฐ์˜ ๊ธฐ์งˆ์„ ์ฒจ๊ฐ€ํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋ฐ˜์‘ ์˜จ๋„๋Š” 40ยฐC๋กœ ์„ค์ •ํ•˜์˜€๋‹ค.

์œ ์ฑ„๋Œ€์˜ ์ „์ฒ˜๋ฆฌ

์œ ์ฑ„๋Œ€์˜ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์‚ฐ(1% H2SO4), ์—ผ๊ธฐ(2% NaOH), 15% ์•”๋ชจ๋‹ˆ์•„์ˆ˜ ์นจ์ง€, ์—ด์ˆ˜(autoclave) ์ฒ˜๋ฆฌ๋ฅผ ํ•˜์˜€๋‹ค.

์‚ฐ ์ „์ฒ˜๋ฆฌ๋Š” 1% H2SO4 100 mL์— ์œ ์ฑ„๋Œ€๋ฅผ 10:1 ๋น„์œจ๋กœ ํ•˜์—ฌ 1์‹œ๊ฐ„ ์นจ์ง€ ํ›„ autoclave (Sanyo, Japan)์„ ์ด์šฉํ•˜

์—ฌ ์ „์ฒ˜๋ฆฌํ•˜์˜€๋‹ค. ์—ผ๊ธฐ์ฒ˜๋ฆฌ๋Š” 2% NaOH์— ์œ ์ฑ„๋Œ€๋ฅผ 6:1 ๋น„์œจ๋กœ ํ•˜์—ฌ 85ยฐC์—์„œ 1์‹œ๊ฐ„ ์นจ์ง€ํ•˜์˜€๋‹ค. ์•”๋ชจ๋‹ˆ์•„์ˆ˜ ์นจ

์ง€๋Š” 15% ์•”๋ชจ๋‹ˆ์•„์ˆ˜์— ์œ ์ฑ„๋Œ€๋ฅผ 6:1 ๋น„์œจ๋กœ ํ•˜์—ฌ 60ยฐC์—์„œ 6์‹œ๊ฐ„ ์นจ์ง€ํ•˜์˜€๋‹ค. ์—ด์ˆ˜์ฒ˜๋ฆฌ๋Š” ์ฆ๋ฅ˜์ˆ˜ 100 mL์— ์œ 

์ฑ„๋Œ€๋ฅผ 10:1 ๋น„์œจ๋กœ ํ•˜์—ฌ autoclave๋ฅผ ์ด์šฉํ•˜์—ฌ 121ยฐC์—์„œ 15๋ถ„๊ฐ„ ๋ฐ˜์‘ํ•˜์˜€๋‹ค.

์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์— ์œ ์ฑ„๋Œ€ ๊ณ ํ˜•๋ฌผ์˜ ์„ฑ๋ถ„ ๋ณ€ํ™”๋Š” ๋ฏธ๊ตญ NREL์—์„œ ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค(Sluiter et al., 2008).

์‹œํ—˜๊ด€์— ๊ณ ์ฒด ์ƒ˜ํ”Œ 0.3 g๊ณผ 72% (w/w) H2SO4 3 mL๋ฅผ ํ˜ผํ•ฉํ•œ ๋’ค 30ยฐC์—์„œ 2์‹œ๊ฐ„๋™์•ˆ 1์ฐจ ์‚ฐ ๊ฐ€์ˆ˜๋ถ„ํ•ด๋ฅผ ํ•˜์˜€๋‹ค.

์ดํ›„ ์ฆ๋ฅ˜์ˆ˜ 84 mL์„ ๋„ฃ์–ด 4.0% H2SO4 ๋กœ ํฌ์„ํ•œ ํ›„ autoclave๋ฅผ ์ด์šฉํ•˜์—ฌ 121ยฐC์—์„œ 1์‹œ๊ฐ„ ๋™์•ˆ 2์ฐจ ๊ฐ€์ˆ˜๋ถ„ํ•ด๋ฅผ

ํ•˜์˜€๋‹ค. ๊ฐ€์ˆ˜ ๋ถ„ํ•ด๋œ ์•ก์ฒด๋ฅผ 10 mL๋ฅผ CaCO3๋ฅผ ์ด์šฉํ•˜์—ฌ pH 7๋กœ ์ค‘ํ™”์‹œ์ผœ HPLC๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค.

ํšจ์†Œ๋‹นํ™”

๋‹นํ™”์‹คํ—˜์€ C. flavigena๋ฅผ ์œ ์ฑ„๋Œ€๋ฅผ ํƒ„์†Œ์›์œผ๋กœ ํ•˜๋Š” Dubos broth์—์„œ 48์‹œ๊ฐ„ ๋ฐฐ์–‘ ํ›„ ์›์‹ฌ๋ถ„๋ฆฌํ•˜์—ฌ ๊ทธ ์ƒ์ฆ์•ก

์„ ์ด์šฉํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ „์ฒ˜๋ฆฌ๋œ ์œ ์ฑ„๋Œ€๋ฅผ ๊ธฐ์งˆ๋†๋„ 10 %๋กœ 0.4 M sodium acetate buffer (pH 5.0)์— ํ˜ผํ•ฉํ•œ ํ›„ C.

flavigena์˜ ์กฐํšจ์†Œ์•ก๋ฅผ 1:1๋กœ ์ฒจ๊ฐ€ํ•˜์—ฌ 40ยฐC์˜ shaking incubator์—์„œ 180 rpm์˜ ์†๋„๋กœ ๊ต๋ฐ˜์„ ์‹œํ‚ค๋ฉฐ ๋‹นํ™”๋ฅผ ์ง„

ํ–‰ํ•˜์˜€๋‹ค. ํšจ์†Œ๋‹นํ™” ์ฒ˜๋ฆฌํšจ์œจ(Es, %)์€ ์‹ (1)๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

Page 4: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 644

์—ฌ๊ธฐ์„œ ฮ”Sts๋Š” ํšจ์†Œ ๊ฐ€์ˆ˜๋ถ„ํ•ด์‹œ ์ƒ์„ฑ๋˜๋Š” ๋‹น์˜ ๋†๋„(g/L)์ด๋ฉฐ, TC๋Š” ๋‹นํ™” ์ „ ์œ ์ฑ„๋Œ€์˜ ๋‹น์„ฑ๋ถ„ ํ•จ๋Ÿ‰์ด๋‹ค. ๋‹นํ™”์•ก

์€ autoclave๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ฉธ๊ท  ํ›„ ์—ํƒ„์˜ฌ ๋ฐœํšจ์— ์‚ฌ์šฉํ•˜์˜€๋‹ค.

๋‹นํ™”์•ก ์—ํƒ„์˜ฌ ๋ฐœํšจ

์—ํƒ„์˜ฌ ๋ฐœํšจ๋Š” glucose์™€ xylose ๋ชจ๋‘ ๋ฐœํšจ๊ฐ€๋Šฅํ•œ Saccharomyces cerevisiae๋ฅผ ์—ํƒ„์˜ฌ ๋ฐœํšจ์— ์ด์šฉํ•˜์˜€๋‹ค. S.

cerevisiae๋Š” potato dextrose broth (PDB)์— 24 ์‹œ๊ฐ„ ๋ฐฐ์–‘ํ•˜์—ฌ ํ™œ์„ฑํ™” ์‹œํ‚จ ํ›„ ์›์‹ฌ๋ถ„๋ฆฌํ•˜์—ฌ ๋ฐฐ์ง€๋ฅผ ์ œ๊ฑฐํ•˜์˜€๊ณ  ์ด

๋ฅผ ๋ฉธ๊ท ๋œ ๋‹นํ™”์•ก์— ์ ‘์ข…ํ•˜์˜€๋‹ค. ๋‹นํ™”์•ก๊ณผ ํ˜ผํ•ฉํ•œ ๋’ค 30ยฐC, 180 rpm์˜ ์กฐ๊ฑด์œผ๋กœ ๋ฐœํšจ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ฐœํšจ๋Š” 120์‹œ

๊ฐ„ ๋™์•ˆ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, 12์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์œผ๋กœ ์‹œ๋ฃŒ๋ฅผ ์ฑ„์ทจํ•˜์—ฌ HPLC๋ถ„์„์„ ํ†ตํ•ด ์—ํƒ„์˜ฌ๊ณผ ์œ ๋ฆฌ๋‹น์„ ์ •๋Ÿ‰๋ถ„์„ ํ•˜์˜€๋‹ค.

๋ถ„๋ฆฌ ๋‹นํ™” ๋ฐœํšจ๋กœ ์ƒ์‚ฐ๋œ ์—ํƒ„์˜ฌ์˜ ์ˆ˜์œจ (YEtoH, g/g)์€ ๋‹ค์Œ ์‹ (2)๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

์—ฌ๊ธฐ์„œ [EtOH]max๋Š” ์—ํƒ„์˜ฌ ๋ฐœํšจ๋กœ ์ธํ•ด ์ƒ์„ฑ๋˜๋Š” ์ตœ์ข… ์—ํƒ„์˜ฌ์˜ ๋†๋„ (g/L)์ด๋ฉฐ, [Sugar]ini๋Š” ์—ํƒ„์˜ฌ ๋ฐœํšจ ์ดˆ๊ธฐ

์œ ๋ฆฌ๋‹น์˜ ๋†๋„(g/L)์ด๋‹ค.

Fig. 1. Effect of carbon sources on cell growth (A) and protein production (B) of Cellulomonas flavigena.

Fig. 2. Effect of carbon source and pH 3.0 (A), pH 5.0 (B), pH 7.0 (C), pH 9.0 (D) on enzyme activity of Cellulomonas flavigena.

Page 5: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 645

HPLC ๋ถ„์„

๋ณธ ์—ฐ๊ตฌ์—์„œ ์—ํƒ„์˜ฌ๊ณผ ์œ ๋ฆฌ๋‹น์˜ ๋ถ„์„์€ ๋ชจ๋‘ HPLC๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ชจ๋“  ์‹œ๋ฃŒ๋Š” 0.45 ฮผm syringe filter๋ฅผ ์ด

์šฉํ•ด ์—ฌ๊ณผ ํ›„, HPLC๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. HPLC๋Š” Shimazhu HPLC system (Shimazu, Japan)์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ปฌ๋Ÿผ์€

Shodex sugar SH1011 (8.0 ร— 300 mm, 6 ฮผm) column (Showa Denko, Japan)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์šฉ๋งค๋Š” 0.005N H2SO4๋ฅผ ๋ถ„๋‹น

0.6 mL๋กœ ํ˜๋ ค์ฃผ์—ˆ์œผ๋ฉฐ, ์ปฌ๋Ÿผ์˜ ์˜จ๋„๋Š” 50ยฐC๋กœ ์œ ์ง€ํ•˜์˜€๋‹ค. ๊ฒ€์ถœ์€ RI detector (Shimazu, Japan)๋ฅผ ์ด์šฉํ•˜์—ฌ ํ™•์ธํ•˜์˜€๋‹ค.

Auto sampler (Shimazu, Japan)๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹œ๋ฃŒ 25 ฮผL์„ ์ฃผ์ž…ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค.

๋ชจ๋“  ํ‘œ์ค€๋ฌผ์งˆ์€ Sigma์‚ฌ์™€ Junsei์‚ฌ์—์„œ ๊ตฌ์ž…ํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํ‘œ์ค€๋ฌผ์งˆ์€ 1.25, 2.5, 5, 10, 20 g/L ์˜ ๋†๋„๋กœ ์ œ์กฐ ํ›„,

calibration curve๋ฅผ ์ž‘์„ฑํ•˜์˜€๊ณ , ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ๋ฌผ์งˆ์„ ์ •๋Ÿ‰ํ•˜์˜€๋‹ค.

Results and Discussion

์ƒ์œก๊ณก์„ 

๋ฐฐ์–‘๊ธฐ๊ฐ„์— ๋”ฐ๋ฅธ ์ƒ๊ท ์ˆ˜๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ C. flavigena๋ฅผ ํƒ„์†Œ์› 0.1%๊ฐ€ ํ•จ์œ ๋œ Dubos broth์— ๋ฐฐ์–‘ํ•˜์—ฌ 12์‹œ๊ฐ„

๋งˆ๋‹ค ๋ฐฐ์–‘์•ก์„ 600 nm์—์„œ ํก๊ด‘๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. CMC, locust gum์„ ํƒ„์†Œ์›์œผ๋กœ ๊ฐ€์ง€๋Š” ๋ฐฐ์ง€์—์„œ๋Š” ๋ฐฐ์–‘ 48 ์‹œ๊ฐ„ ํ›„

์— ์ •์ฒด๊ธฐ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๋‘ ๋ฐฐ์ง€ ๋ชจ๋‘ OD600์€ 0.4 - 0.5 ์‚ฌ์ด๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Xylan์„ ํƒ„์†Œ์›์œผ๋กœ ๊ฐ€์ง€๋Š” ๋ฐฐ์ง€์—์„œ๋Š”

CMC, locust gum๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ฐฐ์–‘ 48์‹œ๊ฐ„ ํ›„์— ์ •์ฒด๊ธฐ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด ๋•Œ OD600 ๊ฐ’์€ 1.2 - 1.4๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋‹จ์ผ

ํƒ„์†Œ์›์„ ๊ฐ€์ง€๋Š” ๋ฐฐ์ง€์™€ ๋‹ฌ๋ฆฌ ์œ ์ฑ„๋Œ€๋ฅผ ํƒ„์†Œ์›์œผ๋กœ ํ•˜๋Š” ๋ฐฐ์ง€์—์„œ๋Š” ๋ฐฐ์–‘ ํ›„ 120์‹œ๊ฐ„๊นŒ์ง€ ์ •์ฒด๊ธฐ๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค.

๋ฐฐ์–‘ 48์‹œ๊ฐ„ ํ›„์—๋Š” OD600 ๊ฐ’์ด 0.5๋กœ CMC, locust gum์„ ํƒ„์†Œ์›์œผ๋กœ ํ•˜๋Š” ๋ฐฐ์ง€๋ณด๋‹ค ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๋ฐฐ์–‘ 84์‹œ๊ฐ„ ํ›„

์—๋Š” 1.5๋กœ xylan์„ ํƒ„์†Œ์›์œผ๋กœ ๊ฐ€์ง€๋Š” ๋ฐฐ์ง€๋ณด๋‹ค ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค(Fig. 1). ์ด๋Š” ์œ ์ฑ„๋Œ€๊ฐ€ ๋ถ„ํ•ด๋จ์— ๋”ฐ๋ผ ๋ฐฐ์–‘์•ก์˜ ํƒ๋„๋ฅผ

์ฆ๊ฐ€๋˜์—ˆ๊ฑฐ๋‚˜, ์œ ์ฑ„๋Œ€์— C. flavigena์˜ ์ƒ์žฅ์„ ๋•๋Š” ์˜์–‘์„ฑ๋ถ„์ด ํ’๋ถ€ํ•˜์—ฌ ์ •์ฒด๊ธฐ๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์€ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

๋‹จ๋ฐฑ์งˆ ์ •๋Ÿ‰

๋ฐฐ์–‘๊ธฐ๊ฐ„์— ๋”ฐ๋ฅธ ์กฐํšจ์†Œ์•ก ๋‚ด์˜ ๋‹จ๋ฐฑ์งˆ ์–‘์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด bradford์‹œ์•ฝ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹จ๋ฐฑ์งˆ์„ ์ •๋Ÿ‰ํ•˜์˜€๋‹ค. ๋‹จ๋ฐฑ์งˆ

์–‘์€ CMC < xylan < locust gum < ์œ ์ฑ„๋Œ€ ์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‹จ๋ฐฑ์งˆ๋Ÿ‰์€ 48์‹œ๊ฐ„๋™์•ˆ ์ฆ๊ฐ€ํ•œ๋’ค ์ •์ฒด๋ฅผ ๋ณด์˜€๋‹ค. ๋ฐฐ์–‘ 48

์‹œ๊ฐ„ ํ›„์— CMC๋Š” 45.83, xylan์€ 102.50, locust gum์€ 145.00, ์œ ์ฑ„๋Œ€๋Š” 429.17 mg/L์˜ ๋‹จ๋ฐฑ์งˆ๋Ÿ‰์„ ๋ณด์˜€๋‹ค(Fig. 1).

์œ ์ฑ„๋Œ€๋Š” ๋ฐฐ์–‘ 96์‹œ๊ฐ„ ์ดํ›„์— ๋‹จ๋ฐฑ์งˆ๋Ÿ‰์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ด๋Š” ์ƒ์œก๊ณก์„ ์—์„œ ๊ท ์˜ ์ƒ์žฅ์ด ์ง€์†์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๋Š”

์ด์œ ์™€ ๊ฐ™์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค.

C. flavigena์˜ ์„ฌ์œ ์†Œ๋ถ„ํ•ด ํšจ์†Œํ™œ์„ฑ

C. flavigena์˜ ์„ฌ์œ ์†Œ ๋ถ„ํ•ดํšจ์†Œํ™œ์„ฑ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ CMC, xylan, locust gum, ์œ ์ฑ„๋Œ€๋ฅผ ๊ธฐ์งˆ๋กœ ํ•˜์—ฌ ํšจ์†Œํ™œ์„ฑ

์„ ์ธก์ •ํ•˜์˜€๋‹ค. pH๋Š” 3.0, 5.0, 7.0, 9.0์œผ๋กœ ๋‚˜๋ˆ„์–ด ์ง„ํ–‰๋˜์—ˆ์œผ๋ฉฐ ๋ฐ˜์‘์˜จ๋„๋Š” 40โ„ƒ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๊ธฐ์งˆ์šฉ์•ก์œผ๋กœ๋Š” 0.1

%์˜ ๊ธฐ์งˆ์„ ํฌํ•จํ•œ lycine-HCl buffer (pH 3.0), sodium acetate buffer (pH 5.0), sodium phosphate buffer (pH 7.0),

glycine-NaOH buffer (pH 9.0)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฐ ํƒ„์†Œ์›์˜ ๋ถ„ํ•ดํ™œ์„ฑ์€ locust gum < CMC < ์œ ์ฑ„๋Œ€ < xylan ์ˆœ์œผ๋กœ ๋‚˜

ํƒ€๋‚ฌ์œผ๋ฉฐ, ๋ชจ๋‘ pH 5.0์—์„œ ๊ฐ€์žฅ ๋†’์€ ํ™œ์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. CMCaseํ™œ์„ฑ์€ ๋ฐฐ์–‘๊ธฐ๊ฐ„๋™์•ˆ ์ ์  ์ฆ๊ฐ€ํ•˜์—ฌ, ๋ฐฐ์–‘ 120์‹œ๊ฐ„

ํ›„(pH 5.0)์— 14.02 U/mL๋กœ ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Xylanase ํ™œ์„ฑ์€ ๋ฐฐ์–‘ 48์‹œ๊ฐ„ ํ›„(pH 5.0)์— 133.40 U/mL๋กœ ๊ฐ€์žฅ ๋†’๊ฒŒ

๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด ํ›„ ์ ์ฐจ ๊ฐ์†Œํ•˜์—ฌ ๋ฐฐ์–‘ 120์‹œ๊ฐ„ ํ›„์—๋Š” 127.62 U/mL๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Xylanase๋Š” ๋‹ค๋ฅธ ํšจ์†Œ๋ณด๋‹ค ํ™œ์„ฑ์ด ๋งค

์šฐ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Galacto-mannanaseํ™œ์„ฑ์€ CMCase์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ฐฐ์–‘๊ธฐ๊ฐ„ ๋™์•ˆ ์ ์  ์ฆ๊ฐ€ํ•˜์—ฌ ๋ฐฐ์–‘ 120์‹œ๊ฐ„ ํ›„

(pH 5.0)์— 15.21 U/mL๋กœ ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค(Fig. 2). ์œ ์ฑ„๋Œ€๋ฅผ ๊ธฐ์งˆ๋กœ ํ•  ๋•Œ, C. flavigena์˜ ์œ ์ฑ„๋Œ€ ๋ถ„ํ•ด ํšจ์†Œํ™œ์„ฑ์€

๋ฐฐ์–‘ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ ์  ์ฆ๊ฐ€ํ•˜์—ฌ ๋ฐฐ์–‘ 120์‹œ๊ฐ„ ํ›„์— 15.731 U/mL๋กœ ๊ฐ€์žฅ ๋†’์€ ํšจ์†Œํ™œ์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

Page 6: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 646

Fig. 3. Composition change of rapeseed straw according to pretreated methods.

A B

C D

Fig. 4. Comparison of ethanol produced by separate enzyme hydrolysis fermentation according to pretreated methods. (A) Acidic pretreatment, (B) Alkaline pretreatment, (C) Soaking in aqueous ammonia, (D) Hydrothermal pretreatment.

์œ ์ฑ„๋Œ€์˜ ์ „์ฒ˜๋ฆฌ ์ „ ยท ํ›„ ๊ตฌ์„ฑ์„ฑ๋ถ„ ๋ณ€ํ™”

์œ ์ฑ„๋Œ€๋ฅผ ์‚ฐ(1% H2SO4), ์—ผ๊ธฐ(2% NaOH), 15% ์•”๋ชจ๋‹ˆ์•„์ˆ˜ ๋ฐ ์—ด์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์ „์ฒ˜๋ฆฌํ•œ ํ›„, ์ „์ฒ˜๋ฆฌ ์ „ยทํ›„์˜ ๊ตฌ

์„ฑ์„ฑ๋ถ„์˜ ๋ณ€ํ™”๋ฅผ ์กฐ์‚ฌ ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋œ ์œ ์ฑ„๋Œ€๋Š” glucan 36.62%, XMG (xylan + mannan + galactan)

43.20% , arabinan 2.73%์œผ๋กœ ๋†’์€ hemicellulose ํ•จ๋Ÿ‰์„ ๋ณด์˜€์œผ๋‚˜, ์œ ์ฑ„๋Œ€๋ฅผ 1% H2SO4๋กœ ์ „์ฒ˜๋ฆฌ ํ›„์—๋Š” ๊ตฌ์„ฑ์„ฑ

๋ถ„์˜ ์ƒ๋Œ€์ ์ธ ๋น„์œจ์ด glucan (75.2%)์„ ์ œ์™ธํ•œ ๋Œ€๋ถ€๋ถ„์˜ ๊ตฌ์„ฑ์„ฑ๋ถ„์ด ์ œ๊ฑฐ๋˜์—ˆ๊ณ , ๊ณ ํ˜•์„ฑ๋ถ„์˜ ํšŒ์ˆ˜์œจ๋„ 43.7%๋กœ

Page 7: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 647

์ ˆ๋ฐ˜ ์ดํ•˜์˜ ํšŒ์ˆ˜์œจ์„ ๋ณด์˜€๋‹ค. 2% NaOH๋ฅผ ์‚ฌ์šฉํ•œ ์ „์ฒ˜๋ฆฌ ํ›„์—๋Š” glucan 45.44%, XMG 32.13%, arabinan 1.47%๋กœ

์ƒ๋Œ€์ ์œผ๋กœ glucan๊ณผ XMG์˜ ๋น„์œจ์ด ๋‹ค์†Œ ๊ฐ์†Œํ•˜์˜€๊ณ  ๊ณ ํ˜•์„ฑ๋ถ„์˜ ํšŒ์ˆ˜์œจ๋„ 70%๋กœ ์‚ฐ์ฒ˜๋ฆฌ ๋ณด๋‹ค ๋†’์€ ํšŒ์ˆ˜์œจ์„ ๋ณด

์˜€๋‹ค. 15% ์•”๋ชจ๋‹ˆ์•„์ˆ˜ ์ฒ˜๋ฆฌ ํ›„์—๋Š” glucan 44.75%, XMG 35.47%, arabinan 1.02%๋กœ NaOH ์ „์ฒ˜๋ฆฌ ๋ณด๋‹ค ์ƒ๋Œ€์ ์œผ

๋กœ glucan๊ณผ arabinan์˜ ๋น„์œจ์€ ๋‹ค์†Œ ๊ฐ์†Œํ•˜์˜€๊ณ , XMG์˜ ๋น„์œจ์€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ํšŒ์ˆ˜์œจ ๋˜ํ•œ 68.9%๋กœ NaOH ์ „์ฒ˜๋ฆฌ

๋ณด๋‹ค ์กฐ๊ธˆ ๋” ์œ ์‹ค์œจ์ด ๋†’์•˜๋‹ค. ์—ด์ˆ˜์ฒ˜๋ฆฌํ•œ ์œ ์ฑ„๋Œ€๋Š” glucan 41.29%, XMG 41.04%, arabinan 2.06%์œผ๋กœ ๊ตฌ์„ฑ์„ฑ๋ถ„

์˜ ๋ณ€ํ™”๊ฐ€ ๊ฐ€์žฅ ์ ์—ˆ๊ณ , ํšŒ์ˆ˜์œจ๋„ 86.7%๋กœ ๊ฐ€์žฅ ๋†’์•„ ๋ถ„ํ•ด๊ฐ€ ์•ˆ๋œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์—ˆ๋‹ค(Fig. 3). Kang et al (2012)์€

์œ ์ฑ„๋Œ€๊ฐ€ cellulose 33.32%, hemicellulose 18.52% ๊ทธ๋ฆฌ๊ณ  Talebnia et al. (2015)์€ cellulose 38.1%, hemicellulose

20.4% ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค๊ณ  ๋ณด๊ณ ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋œ ์œ ์ฑ„๋Œ€๋Š” hemicellulose ์„ฑ๋ถ„์ธ XMG๊ฐ€ 43.20%๋กœ

Kang et al. (2012)๊ณผ Talebnia et al. (2015)์ด ๋ถ„์„ํ•œ ์œ ์ฑ„๋Œ€๋ณด๋‹ค hemicellulose ํ•จ๋Ÿ‰์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Fig. 5. Comparison of mass balance on the overall SHF process according to pretreated methods.

์—ํƒ„์˜ฌ ๋ถ„๋ฆฌ ๋‹นํ™” ๋ฐœํšจ

๊ฐ ์ „์ฒ˜๋ฆฌ๊ณผ์ •์„ ๊ฑฐ์นœ ๊ธฐ์งˆ๊ณผ C. flavigena์˜ ์กฐํšจ์†Œ์•ก์„ ์ด์šฉํ•˜์—ฌ 120์‹œ๊ฐ„ ํšจ์†Œ๋‹นํ™”๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ  ์ด ํ›„ ๋ฉธ๊ท 

๊ณผ์ •์„ ๊ฑฐ์ณ S. cerevisiae๋ฅผ ์ ‘์ข…ํ•˜์—ฌ ๋ฐ”์ด์˜ค์—ํƒ„์˜ฌ์„ ์ƒ์‚ฐํ•˜์˜€๋‹ค. ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ• ๋ณ„๋กœ ํšจ์†Œ๋‹นํ™” ๋ฐ ์—ํƒ„์˜ฌ ์ƒ์‚ฐ ๊ฒฐ

๊ณผ๋ฅผ Fig. 4์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์‚ฐ ์ „์ฒ˜๋ฆฌ ํ•œ ์œ ์ฑ„๋Œ€์˜ ๊ฒฝ์šฐ cellobiose๋Š” ์ƒ์‚ฐ๊ณผ ๋ถ„ํ•ด๋ฅผ ๋ฐ˜๋ณตํ•˜์˜€์œผ๋ฉฐ ๋‹นํ™” 120์‹œ๊ฐ„ ํ›„

glucose๋Š” 24.36 g/L์˜ ๋†๋„๋กœ ์ƒ์‚ฐ๋˜์—ˆ๋‹ค. ํšจ๋ชจ ์ ‘์ข… ํ›„ glucose๋Š” ๊ฐ์†Œํ•˜์—ฌ ๋ฐœํšจ 96์‹œ๊ฐ„ ํ›„ 0.53 g/L ์œผ๋กœ ๊ฐ์†Œํ•˜

๊ณ , ๋ฐœํšจ 48์‹œ๊ฐ„ ํ›„ ์—ํƒ„์˜ฌ์€ 14.15 g/L๊ฐ€ ์ƒ์‚ฐ๋˜์—ˆ๋‹ค. ์ด ๋•Œ ๋‹น ์ „ํ™˜์œจ์€ 64.81%, ์—ํƒ„์˜ฌ ์ˆ˜์œจ์€ 58.06% ์˜€๋‹ค. ์—ผ

๊ธฐ ์ „์ฒ˜๋ฆฌํ•œ ์œ ์ฑ„๋Œ€๋Š” ๋‹นํ™” 120์‹œ๊ฐ„ ํ›„ 14.11 g/L์˜ glucose๊ฐ€ ์ƒ์‚ฐ๋˜์—ˆ์œผ๋ฉฐ ๋‹นํ™” 84์‹œ๊ฐ„ ํ›„ 12.61 g/L์˜ xylose๊ฐ€

์ƒ์‚ฐ๋˜์—ˆ๋‹ค. ๋ฐœํšจ ์ „ ์ด ๋‹น์€ 26.73 g/L์˜€๊ณ  ๋ฐœํšจ 84์‹œ๊ฐ„ ํ›„ 0.21 g/L๋กœ ๊ฐ์†Œํ•˜๊ณ  ๋ฐœํšจ 120์‹œ๊ฐ„ ํ›„์— ์—ํƒ„์˜ฌ์€

11.46 g/L ์˜€๋‹ค. ์ด ๋•Œ glucan ์ „ํ™˜์œจ์€ 62.12% xmg (xylose + mannose + galactose) ์ „ํ™˜์œจ์€ 78.59%, ์—ํƒ„์˜ฌ ์ˆ˜์œจ

์€ 56.72% ์˜€๋‹ค. ์•”๋ชจ๋‹ˆ์•„ ์นจ์ง€ํ•œ ์œ ์ฑ„๋Œ€๋Š” ๋‹นํ™” 120์‹œ๊ฐ„ ํ›„ 18.64 g/L์˜ glucose๊ฐ€ ์ƒ์‚ฐ๋˜์—ˆ์œผ๋ฉฐ ๋‹นํ™” 84์‹œ๊ฐ„ ํ›„

14.02 g/L์˜ xylose๊ฐ€ ์ƒ์‚ฐ๋˜์—ˆ๋‹ค. ๋ฐœํšจ ์ „ ์ด ๋‹น์€ 27.71 g/L์˜€๊ณ  ๋ฐœํšจ 84์‹œ๊ฐ„ ํ›„ 0.90 g/L๋กœ ๊ฐ์†Œํ•˜๊ณ  ์ด๋•Œ ์—ํƒ„์˜ฌ

์€ 11.92 g/L์˜€๋‹ค. ์ด ๋•Œ glucan ์ „ํ™˜์œจ์€ 60.98% XMG ์ „ํ™˜์œจ์€ 79.11%, ์—ํƒ„์˜ฌ ์ˆ˜์œจ์€ 54.66% ์˜€๋‹ค. ์—ด์ˆ˜ ์ „์ฒ˜๋ฆฌ

ํ•œ ์œ ์ฑ„๋Œ€๋Š” ๋‹นํ™” 120์‹œ๊ฐ„ ํ›„ 9.38 g/L์˜ glucose๊ฐ€ ์ƒ์‚ฐ๋˜์—ˆ์œผ๋ฉฐ ๋‹นํ™” 84์‹œ๊ฐ„ ํ›„ 11.97 g/L์˜ xylose๊ฐ€ ์ƒ์‚ฐ๋˜์—ˆ

๋‹ค. ๋ฐœํšจ์ „ ์ด ๋‹น์€ 21.57 g/L์˜€๊ณ  ๋ฐœํšจ 72์‹œ๊ฐ„ ํ›„ 0.59 g/L๋กœ ๊ฐ์†Œํ•˜๊ณ  ์ด๋•Œ ์—ํƒ„์˜ฌ์€ 11.29 g/L์˜€๋‹ค. ๋˜ํ•œ glucan

Page 8: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 648

์ „ํ™˜์œจ์€ 45.42% XMG ์ „ํ™˜์œจ์€ 58.46%, ์—ํƒ„์˜ฌ ์ˆ˜์œจ์€ 52.88% ์˜€๋‹ค. Glucan ์ „ํ™˜์œจ๊ณผ ์—ํƒ„์˜ฌ ์ˆ˜์œจ์€ ์‚ฐ > ์—ผ๊ธฐ

> ์•”๋ชจ๋‹ˆ์•„์นจ์ง€ > ์—ด์ˆ˜, XMG ์ „ํ™˜์œจ์€ ์•”๋ชจ๋‹ˆ์•„์นจ์ง€ > ์—ผ๊ธฐ > ์—ด์ˆ˜ ์ˆœ์œผ๋กœ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Mass balance

์œ ์ฑ„๋Œ€๋ฅผ ์ด์šฉํ•œ ๊ฐ๊ฐ์˜ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ํšจ์†Œ๋‹นํ™” ๋ฐ ์—ํƒ„์˜ฌ๋ฐœํšจ ํšจ์œจ์˜ mass balance๋ฅผ ์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ, ์œ ์ฑ„

๋Œ€ 100 g ๋‹น ์‚ฐ ์ „์ฒ˜๋ฆฌ 12.36 g (14.15 g/L), ์—ผ๊ธฐ ์ „์ฒ˜๋ฆฌ 21.22 g (15.16 g/L), ์•”๋ชจ๋‹ˆ์•„์นจ์ง€ 20.84 g (15.12 g/L), ์—ด์ˆ˜

์ „์ฒ˜๋ฆฌ 19.58 g (11.29 g/L)์˜ ์—ํƒ„์˜ฌ ์ƒ์‚ฐ๋Ÿ‰์œผ๋กœ ์กฐ์‚ฌ๋˜์–ด NaOH ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์ด ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค(Fig. 5).

Conclusion

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™”ํ•™์  ๋ฐฉ๋ฒ•์— ์˜ํ•ด ์ „ ์ฒ˜๋ฆฌ๋œ ์œ ์ฑ„๋Œ€(rapeseed straw)๋ฅผ ์„ฌ์œ ์†Œ๋ถ„ํ•ด์„ธ๊ท  Cellulomonas flavigena

์˜ ์กฐํšจ์†Œ์•ก๊ณผ Saccharomyces cereviase๋ฅผ ์ด์šฉํ•œ ๋ถ„๋ฆฌ๋‹นํ™” ๋ฐœํšจ๋ฒ•(separate hydrolysis and fermentation, SHF)์—

์˜ํ•ด ์ƒ์„ฑ๋œ ์—ํƒ„์˜ฌ ์ˆ˜์œจ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. Biomass ๊ธฐ์งˆ CMC, xylan, locust gum ์™€ ์œ ์ฑ„๋Œ€์— ๋Œ€ํ•œ C. flavigena์˜ ์กฐ

ํšจ์†Œ์•ก์˜ ๋ถ„ํ•ดํ™œ์„ฑ์€ pH5.0, 40ยฐC ์—์„œ ๊ฐ 14.02 (CMC), 137.35 (xylan), 15.21 (locust gum), 15.73 (์œ ์ฑ„๋Œ€) U/mL

์˜ ํ™œ์„ฑ์„ ๋ณด์˜€๋‹ค. ์œ ์ฑ„๋Œ€๋Š” HPLC ๋ถ„์„๊ฒฐ๊ณผ, glucan 36.62%, xylan + mannan + galactan (XMG) 43.46%, arabinan

2.6%๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ H2SO4 ์ „์ฒ˜๋ฆฌ ํ›„ glucan 75.2%, NaOH ์ „์ฒ˜๋ฆฌ ํ›„ glucan 45.44% ์™€

XMG 32.13%, NH4OH ์ „์ฒ˜๋ฆฌ ํ›„ glucan 44.75% ์™€ XMG 5.47%, ์—ด์ˆ˜ ์ „์ฒ˜๋ฆฌ ํ›„์—๋Š” glucan 41.29% ์™€ XMG

41.04%๋กœ ๊ตฌ์„ฑ๋น„์œจ์ด ๋ณ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์œ ์ฑ„๋Œ€ ์ „์ฒ˜๋ฆฌ๋ฌผ์„ C. flavigena ์กฐํšจ์†Œ์•ก์œผ๋กœ ๋‹นํ™”ํ•œ ํ›„ ๋‹นํ™”์‚ฐ

๋ฌผ์„ HPLC ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, glucan์˜ 45.42 - 64.81%๊ฐ€ glucose๋กœ ๋‹นํ™” ๋˜์—ˆ๊ณ , XMG๋Š” 58.46 - 78.59%์˜ xylose +

mannose + galactose๋กœ ๋ถ„ํ•ด๋˜๋Š” ๊ฒƒ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์ด๋“ค ์ „์ฒ˜๋ฆฌ ๋ณ„ ๋‹นํ™”์•ก์— S. cerevisiae๋ฅผ ์ ‘์ข…ํ•˜์—ฌ ๋ถ„๋ฆฌ๋‹นํ™”

๋ฐœํšจ(SHF)ํ•˜์—ฌ ์ƒ์‚ฐ๋œ ์—ํƒ„์˜ฌ ์ˆ˜์œจ์€ ์•ฝ 52.88 - 58.06 % ์ˆ˜์ค€์ธ ๊ฒƒ์œผ๋กœ ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค. ๋˜ํ•œ Mass balance๋Š” NaOH

์ „์ฒ˜๋ฆฌ ์‹œ, ์œ ์ฑ„๋Œ€ 100 g๋‹น ์—ํƒ„์˜ฌ ์ƒ์‚ฐ๋Ÿ‰์ด 21.22 g์œผ๋กœ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ• ์ค‘ ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์œ ์ฑ„๋Œ€๋ฅผ

์ด์šฉํ•œ ๋‹นํ™” ๋ฐ ์—ํƒ„์˜ฌ ๋ฐœํšจ ๊ณต์ • ์‹œ, NaOH ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•๊ณผ C. flavigena์˜ ์กฐํšจ์†Œ์•ก์„ ์ด์šฉํ•œ ๋‹นํ™”๋ฒ•์ด ๊ฐ€์žฅ ํšจ์œจ

์ ์ธ ๋ฐฉ๋ฒ•์ด์—ˆ๋‹ค.

References

Abt B, Foster B, Lapidus A, Clum A, Sun H, Pukall R, Lucas S, Del Rio TG, Nolan M, Tice H, Cheng JF, Pitluck S, Liolios K, Ivanova

N, Mavromatis K, Ovchinnikova G, Pati A, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L Chang YJ, Jeffries CD, Rohde

M, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. 2010. Complete genome

sequence of Cellulomonas flavigena type strain (134 T). Standards in Genomic Sciences 3:15-25.

Beg Q, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Applied

Microbiology and Biotechnology 56:326-338.

Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. 1923. Genus II. Flavobacterium gen. nov. Bergeyโ€™s Manual of

Determinative Bacteriology 97-117.

Bradford, Marion M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of

protein-dye binding. Analytical Biochemistry 72.1-2:248-254.

Dubos RJ. 1928. The decomposition of cellulose by aerobic bacteria. Journal of Bacteriology 15:223.

Gwak IS, Hwang JH, Lee SH. 2016. Techno-economic evaluation of an ethanol production process for biomass waste. Applied

Microbiology and Biotechnology 27:171-178. [in Korean]

Page 9: Pretreatment and enzymatic saccharification process of ...

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

Korean Journal of Agricultural Science 43(4) December 2016 649

Han JG, Oh SH, Jeong MH, Kim SS, Seo HB, Jeong KH, Jang YS, Kim IC, Lee HY. 2009. Two-step high temperature pretreatment

process for bioethanol production from rape stems. KSBB Journal 24:489-494. [in Korean]

Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Sexton D, Dudgeon D. 2011. Process design

and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic

hydrolysis of corn stover (No. NREL/TP-5100-47764). National Renewable Energy Laboratory (NREL), Golden, CO.

Kamm B. 2007. Production of platform chemicals and synthesis gas from biomass. Angewandte Chemie International Edition

46:5056-5058.

Kang K. E, Jeong GT, Sunwoo C, Park DH. 2012. Pretreatment of rapeseed straw by soaking in aqueous ammonia. Bioprocess and

Biosystems Engineering 35:77-84.

Lee AY, Koo JK. 2014. Intermediate indicators and sustainability of renewable fuel standard. Journal of the Korea Organic Resource

Recycling Association 22:20-26. [in Korean]

Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31:426-428.

Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. 2005. Features of promising technologies for

pretreatment of lignocellulosic biomass. Bioresource Technology 96:673-686.

Nigam PS, Singh A. 2011. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science

37:52-68.

Pรฉrez-Avalos O, Ponce-Noyola T, Magaรฑa-Plaza I, de la Torre M. 1996. Induction of xylanase and ฮฒ-xylosidase in Cellulomonas flavigena growing on different carbon sources. Applied Microbiology and Biotechnology 46:405-409.

Rajoka MI. 2004. Influence of various fermentation variables on exo-glucanase production in Cellulomonas flavigena. Electronic

Journal of Biotechnology 7:07-08.

Shrestha RK, Hur O, Kim TH. 2013. Pretreatment of corn stover for improved enzymatic saccharification using ammonia circulation

reactor (ACR). Korean Chemical Engineering Research 51:335-341. [in Korean]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin

in biomass. Laboratory Analytical Procedure 1617.

Talebnia F, Mighani M, Rahimnejad M, Angelidaki I. 2015. Ethanol production from steam exploded rapeseed straw and the process

simulation using artificial neural networks. Biotechnology and Bioprocess Engineering 20:139-147.