Prestressed Concrete 3

41
Preliminary Design for Flexure Prestressed Concrete Design (SAB 4323) 1 Preliminary Design for Flexure Assoc. Prof. BaderulHishamAhmad http://www.tekniksipil.org

Transcript of Prestressed Concrete 3

Page 1: Prestressed Concrete 3

Preliminary Design for Flexure

Prestressed Concrete Design

(SAB 4323)

1

Preliminary Design for Flexure

Assoc. Prof. Baderul Hisham Ahmad

http://www.tekniksipil.org

Page 2: Prestressed Concrete 3

Analysis or Design?

Analysis

• Check if the specified design criteria at every

section along the member are satisfied

• Beam’s description and characteristics given

(loading, span, cross sectional dimensions,

2

(loading, span, cross sectional dimensions,

material properties etc)

Design :

• Reverse process of analysis

• Involves finding of member size required and

details of prestressing force and tendon profile

2

http://www.tekniksipil.org

Page 3: Prestressed Concrete 3

Basic Inequalities

3

Basic Inequalities

http://www.tekniksipil.org

Page 4: Prestressed Concrete 3

Inequalities At Transfer

• Consider at mid span of a simply supported beam

y1 k

aPi/A - aPie/z1 + Mi/z1 > = ftt

4

4

cgs

cgcH

y1

y2

A

Aps

kt

kb hp

hc

e

+

aPi/A + aPie/z2 - Mi/z2 < = fct

http://www.tekniksipil.org

Page 5: Prestressed Concrete 3

• Consider at mid span of a simply supported beam

< = fcs

y1

bPi/A - bPie/z1 + Ms/z1

Inequalities At Service

5

> = ftsbPi/A + bPie/z2 - Ms/z2

cgs

cgcH

y1

y2

A

Aps

kt

kb hp

hc

e

http://www.tekniksipil.org

Page 6: Prestressed Concrete 3

Writing down all the inequalities:

αPi/A - αP

ie/z

1+ M

i/z

1> = f

tt………………(1)

αPi/A + αP

ie/z

2- M

i/z

2< = f

ct……………...(2)

βPi/A - βP

ie/z

1+ M

s/z

1< = f

cs………………(3)

Inequalities At Service

6

βPi/A - βP

ie/z

1+ M

s/z

1< = f

cs………………(3)

βPi/A + βP

ie/z

2- M

s/z

2> = f

ts………………(4)

By combining inequalities (1) & (3) and (2) & (4)

z1

> = (αMs

– βMi) / (α f

cs– β f

tt)………………..(5)

z2

> = (αMs

– βMi) / (β f

ct– α f

ts)………………..(6)

Beware of +ve and –ve values!Derive (5) & (6)!

http://www.tekniksipil.org

Page 7: Prestressed Concrete 3

Section Selection

• From (5) & (6), a suitable section can be selected

• Both z1

and z2

depend on Miand M

s

• Miand M

scan be determined if the member self

weight is known

7

weight is known

• However, the self weight can only be determined

if the section size (hence z1

and z2) is known

• In general, the solution can be obtained using

trial and error method or using standard section

http://www.tekniksipil.org

Page 8: Prestressed Concrete 3

Span & LoadingSpan & Loading

Choose a sectionChoose

a section

Section Adequacy Flowchart

8

Calculate Ws,Mi & MsCalculate Z1 & Z2

from 5 & 6

Calculate Ws,Mi & MsCalculate Z1 & Z2

from 5 & 6

Z req <= Zprov

Z req <= Zprov

No

Section AdequateSection Adequate

Yes

8

http://www.tekniksipil.org

Page 9: Prestressed Concrete 3

Examples of Standard Section

9

9

http://www.tekniksipil.org

Page 10: Prestressed Concrete 3

Examples of Standard Section

10

10

http://www.tekniksipil.org

Page 11: Prestressed Concrete 3

Examples of Standard Section

11

11

http://www.tekniksipil.org

Page 12: Prestressed Concrete 3

Example 3-1

A 20m span simply supported beam for a bridge

construction is to be designed using class 1 post-tensioned

prestressed concrete. The beam is subjected to a

characteristic live load of 20kN/m in addition to its own

self weight. The initial prestressing force is 2000kN with

12

self weight. The initial prestressing force is 2000kN with

an eccentricity of 500mm. The short and long term losses

of prestress are estimated to be 10% and 20% respectively.

With fci = 30 N/mm2 and fcu = 50 N/mm2 select a suitable

section for the beam using,

1. Rectangular section

2. Standard M beams

12

http://www.tekniksipil.org

Page 13: Prestressed Concrete 3

Solution

Given:

Span = 20m; fci = 30 N/mm2 ; fcu = 50 N/mm2 and class 1

category

Pi = 2000kN and e = 500 mm

α = 0.9 , β = 0.8

13

α = 0.9 , β = 0.8

Stress Limits:

At transfer

fct

= 0.5fci = 15 N/mm2 and f

tt= 1.0 N/mm2

At service

fcs

= 0.33fcu = 16.5 N/mm2 and f

ts= 0 N/mm2

13

http://www.tekniksipil.org

Page 14: Prestressed Concrete 3

1) Rectangular Section

try: b = 300mm and h = 1300 mm

A = 390000 mm2 ; z1

= z2

= bh2/6 = 84.5 x 106 mm3

Self wt, Wsw

= 24 x 0.39 = 9.36 kN/m

Mi= 9.36 x 202/8 = 468 kNm

Total service load, Ws

= 20 + 9.36 = 29.36 kN/m

M = 29.36 x 202/8 = 1468 kNm

Design as RCSize: 200 x 25002 layers of 3T25l/d actual = 8.2l/d all = 11.9

Solution

14

Ms

= 29.36 x 202/8 = 1468 kNm

Required Section Modulus

from (5): z1

> = (0.9x1468–0.8x468)x106/(0.9x16.5–0.8(-1))

> = 60.50 x 106 mm3

z1

provided = 84.5 x 106 mm3 �Ok

from (6): z2

> = (0.9x1468–0.8x468)x106/(0.8x15.0–0.9(0))

> = 78.90 x 106 mm3

z2

provided = 84.5 x 106 mm3 �Ok

14

l/d all = 11.9

http://www.tekniksipil.org

Page 15: Prestressed Concrete 3

2) Standard Section – M beams

try: M6 beams

A = 387050 mm2 ; z1

= 75.39 x 106 mm3 ; z2

= 116.23 x 106 mm3

Self wt, Wsw

= 9.42 kN/m

Mi= 9.42 x 202/8 = 471 kNm

Total service load, Ws

= 20 + 9.43 = 29.42 kN/m

M = 29.42 x 202/8 = 1471 kNm

Solution

15

Ms

= 29.42 x 202/8 = 1471 kNm

Required Section Modulus

from (5): z1

> = (0.9x1471–0.8x471)x106/(0.9x16.5–0.8(-1))

> = 60.52 x 106 mm3

z1

provided = 75.39 x 106 mm3 �Ok

from (6): z2

> = (0.9x1471–0.8x471)x106/(0.8x15.0–0.9(0))

> = 78.93 x 106 mm3

z2

provided = 116.23 x 106 mm3 �Ok

15

http://www.tekniksipil.org

Page 16: Prestressed Concrete 3

Design of Prestress Force• Rearranging inequalities (1) to (4) will yield inequalities for the

required prestress force, for a given value of eccentricity

• Thus the new inequalities are:

Pi> = (z

1 f

tt– M

i) / α(z

1/A – e)………………….(7)

16

Pi< = (z

2 f

ct+ M

i) / α(z

2/A + e)………………….(8)

Pi< = (z

1 f

cs– M

s) / β(z

1/A – e)………………….(9)

Pi> = (z

2 f

ts+ M

s) / β(z

2/A + e)………………….(10)

• The inequalities sign in (7) & (9) will be reversed if the denominator becomes -ve

16

http://www.tekniksipil.org

Page 17: Prestressed Concrete 3

Example 3-2

A post-tensioned prestressed concrete bridge deck is in

the form of a solid slab with a depth of 525 mm and is

simply supported over 20 m. It carries a service load of

10.3 kN/m2. If the maximum eccentricity of the

tendons at midspan is 75 mm above the soffit, find the

17

tendons at midspan is 75 mm above the soffit, find the

minimum value of the prestress force required. Use the

following information:

fct

= 20.0 N/mm2 and ftt

= 1.0 N/mm2

fcs

= 16.7 N/mm2 and fts

= 0 N/mm2

α = 0.9 , β = 0.8

17

http://www.tekniksipil.org

Page 18: Prestressed Concrete 3

Solution

z1

= z2

= 5252 x 103 / 6 = 45.94 x 106 mm3/m

A = 525 x 1000 = 5.25 x 105 mm2/m; e = 525/2 – 75 = 188 mm

Mi= 24 x 0.525 x 202 / 8 = 630 kNm/m

Ms

= 630 + (10.32 x 202 / 8) = 1145 kNm/m

18

s

Pi< = 7473.4 kN ..………………..(7)

Pi< = 6426.31 kN………………….(8)

Pi> = 4699.25 kN………………….(9)

Pi> = 5195.01 kN..……………….(10)

The minimum value of Piwhich lies within the limits is 5195.01kN

18

Inequalities sign reversed

http://www.tekniksipil.org

Page 19: Prestressed Concrete 3

Solution

19

19

http://www.tekniksipil.org

Page 20: Prestressed Concrete 3

Magnel Diagram

• First explored by Magnel, a Belgian engineer

• Plot of e versus Pi produced a hyperbolic curve

• Plot of e versus 1/Pi produced a straight line

• Therefore, we will use e versus 1/Pi

20

• Therefore, we will use e versus 1/Pi

• Sign convention:

� X-axis represents 1/Pi

� Y-axis represents e

� +ve Y-axis (e values) pointing downwards (if possible)

� +ve X-axis (1/Pi values) pointing to the right

20

http://www.tekniksipil.org

Page 21: Prestressed Concrete 3

Magnel Diagram

• Rearranging inequalities (7) to (10):

• e <= (Mi– z

1ftt)/ααααP

i+ z

1/A………….(11)

• e <= (Mi+ z

2fct

)/ααααPi- z

2/A………….(12)

• e >= (Ms

– z1fcs

)/ββββPi+ z

1/A…………(13)

m = (Mi-z1ftt)/α α α α , c = z1/A

m = (Mi-z2fct)/α α α α , c = -z2/A

m = (Ms-z1fcs)/α α α α , c = z1/A

21

s 1 cs i 1

• e >= (Ms

+ z2fts

)/ββββPi- z

2/A………….(14)

• Note that z1/A = kb and z2/A = kt i.e lower and upper

limits of the central kern respectively

21

The above inequalities can be written as:e <= mx + c or e >= mx + c where m is the gradient and c is the vertical axis intercept

m = (Ms-z2fts)/α α α α , c = -z2/A

http://www.tekniksipil.org

Page 22: Prestressed Concrete 3

Magnel Diagram

• The maximum permissible eccentricity,

emp = y2 – (hc)min............................(15)

• Where (hc)min is the minimum concrete cover to

22

• Where (hc)min is the minimum concrete cover to

c.g.s. which must conform to durability and fire

protection requirements

• Therefore, e < = emp

22

http://www.tekniksipil.org

Page 23: Prestressed Concrete 3

Cover & Eccentricity

⅀ Aps * y / ⅀ Aps

e = y2

- hc

hc = ⅀ Aps * y / ⅀ Aps

e = y2

- hc

23

23

CGC

y2

(hc)min

emp

e

hc

http://www.tekniksipil.org

Page 24: Prestressed Concrete 3

H

cgc

y1

A

kt

k h

1/Pi

ktIneq. 13

All four stress inequalities are satisfied within this region. Thus all combinations of e and 1/Pi within this region are safe

Magnel Diagram

This is the maximumpermissible

prestresing force

24

H

cgs

y2

A

Aps

kb hp

hc

e

e

kb

Ineq. 14Ineq. 12

Ineq. 11

Safezone This is the minimum

permissible prestresing force

are safe

24

http://www.tekniksipil.org

Page 25: Prestressed Concrete 3

1/Pi

*kt

xpt14

x

Top face

y1

Toward minimum Pi

Magnel Diagram

25

1/Pi

e

*kb

*emp

xpt13

xpt12

xpt11

Bottom face

y2

(hc)min

Practical feasible domain

Minimum practical Pi

Minimum Pi

25

http://www.tekniksipil.org

Page 26: Prestressed Concrete 3

Example 3-3

It is required to construct a building floor using standard precast, pre-tensioned units of double T-section (Class 2) as shown on next slide. Given the following information:

fcu = 50 N/mm2; fci = 36 N/mm2

26

cu ci

Span = 10m (simply supported)

Dead load due to floor finish = 1.5 kN/m2

Live load = 3.0 kN/m2

(a) Choose a suitable double T-section

(b) Construct a Magnel diagram to determine the minimum prestressing force for the tendon.

26

http://www.tekniksipil.org

Page 27: Prestressed Concrete 3

Example 6

27

27

http://www.tekniksipil.org

Page 28: Prestressed Concrete 3

x 103 x 109

Example 3-3

Try this section

28

28

http://www.tekniksipil.org

Page 29: Prestressed Concrete 3

Solution

Try Section 250 x 2400

29

29

Wsw = 0.202 x 24 = 4.85 kN/m; Mi = 4.85 x 10 x 10 / 8 = 60.6 kNmWs = (1.5+3.0) x 2.4 + 4.85 = 15.65 kN/mMs = 15.65 x 100/8 = 195.6 kNm

http://www.tekniksipil.org

Page 30: Prestressed Concrete 3

Solution

Try Section 300 x 2400

Solution

30

30

http://www.tekniksipil.org

Page 31: Prestressed Concrete 3

Solution

31

31

http://www.tekniksipil.org

Page 32: Prestressed Concrete 3

Solution – Manual Plotting

32

32

http://www.tekniksipil.org

Page 33: Prestressed Concrete 3

Solution – Using Graph v4.3

33

33

http://www.tekniksipil.org

Page 34: Prestressed Concrete 3

Solution – Using Inequalities

34

34

http://www.tekniksipil.org

Page 35: Prestressed Concrete 3

Example 3-4

A post-tensioned precast concrete beam (shown in next

slide), simply supported over a span of 29.4m carries a

total uniformly distributed service load of 35.8 kN/m in

addition to its own self weight. The following information

is given:

– Class 1 category; fci = 45 N/mm2; fcu = 50 N/mm2

35

– Class 1 category; fci = 45 N/mm2; fcu = 50 N/mm2

– A = 723700 mm2; y2= 876 mm

– I = 255.34 x 109mm4 ; cover to tendon = 152 mm

– Take unit weight of concrete, g as 25 kN/m3

Construct a Magnel diagram and find the minimum

prestress force. Compare your results with those obtained

using the inequalities.35

http://www.tekniksipil.org

Page 36: Prestressed Concrete 3

Example 3-4

36

36

http://www.tekniksipil.org

Page 37: Prestressed Concrete 3

Solution

37

37

http://www.tekniksipil.org

Page 38: Prestressed Concrete 3

Solution

38

Magnel Diagram

38

http://www.tekniksipil.org

Page 39: Prestressed Concrete 3

-450

-350

-250

-150

-50-0.1 6E-16 0.1 0.2 0.3 0.4 0.5 0.6

e (m

m)

Magnel Diagram

Ineq 11 Ineq 12

Ineq 13 Ineq 14

emax

Solution – Using MS Excel

39

50

150

250

350

450

550

650

750

e (m

m)

1/P x 10-6 (N-1)

39

http://www.tekniksipil.org

Page 40: Prestressed Concrete 3

Solution – Using Inequalities

40

40

http://www.tekniksipil.org

Page 41: Prestressed Concrete 3

Solution Using Graph V4.3

41

41

http://www.tekniksipil.org