Presentation on Power Amplifier Design using...

51
This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent’s line of EEsof electronic design automation (EDA) products and services, please go to: www.agilent.com/find/eesof Agilent EEsof EDA

Transcript of Presentation on Power Amplifier Design using...

Page 1: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or

inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent’s

line of EEsof electronic design automation (EDA) products and services, please go to:

www.agilent.com/fi nd/eesof

Agilent EEsof EDA

nstewart
Text Box
Presentation on Power Amplifier Design using ADS
Page 2: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Power Amplifier Design using ADS

PA Workshop

Page 1

Wilfredo Rivas-Torres

Technical Support Application Engineer

October 12, 2004

Page 3: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Outline

• Introduction

• DC and Loadline analysis

• Bias and Stability

• LoadPull

• Matching using Smith Chart Utility

• SourcePull

ADS Power Amp DesignPage 2

• SourcePull

• PA Characterization – Did we meet the specification?

• Optimize/Fine Tune the design

• Test Design with real world modulated signals

• Layout

Page 4: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Why do we need a Power Amplifier?

Power Amplifiers (PA) are in the transmitting chain of a

wireless system. They are the final amplification stage before

the signal is transmitted, and therefore must produce enough

output power to overcome channel losses between the

transmitter and the receiver.

ADS Power Amp DesignPage 3

OSC

MODBaseband PADriver

Basic Transmitter

Page 5: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

PA requirements

• The PA is typically the primary consumer of power in a transmitter. A major design requirement is how efficiently the PA can convert DC power to RF output power.

• The design engineer has to often concern himself with the Efficiency of the Power Amplifier. Notice that efficiency translates into either lower operation cost (e.g. cellular

ADS Power Amp DesignPage 4

translates into either lower operation cost (e.g. cellular basestation) or longer battery life (e.g. wireless handheld).

• PA linearity is another important requirement, the input/ output relationship must be linear to preserve the signal integrity.

• The design of PAs often involves the tradeoff of efficiency and linearity.

Page 6: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

PA Design Requirement

• RF Output Power: 50 W PEP

• Input Drive Level : 1 W

• Output Load (RL): 50 Ω

• Efficiency (η) > 50%

ADS Power Amp DesignPage 5

• Efficiency (η) > 50%

• Bias Voltage: 28 V

• Device: MRF9045M

Page 7: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

DC Curves

FET Curve Tracer

VJFSL_MRF_MET_MODEL

MRF1

MODEL=MRF9045M

V_DC

SRC1Vdc=VDS

V_DC

SRC2Vdc=VGS

VARVAR1

VGS =0 V

VDS =0 V

EqnVar

I_Probe

IDS

ADS Power Amp DesignPage 6

Set drain and gate voltagesweep limits as needed.

ParamSweep

Sweep1

Step=0.1

Stop=5.0

Start=2.5

SweepPlan="SwpPlan1"

PARAMETER SWEEP

DisplayTemplate

disptemp1

"FET_curve_tracer"

TempDisp

FSL_TECH_INCLUDE

FTI

FSL_TECH_INCLUDE

DC

DC1

Step=0.1

Stop=28*2

Start=0

SweepVar="VDS"

DC

Page 8: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

DC Curves

1

2

3

4

5

IDS.i, A

VDsat IQ

Load_Line

ADS Power Amp DesignPage 7

5 10 15 20 25 30 35 40 45 50 550 60

1

0

VDS

VDsat IQ

m3

VDsatVDS=IDS.i=0.562VGS=3.800000

0.600IQVDS=IDS.i=0.717VGS=3.800000

28.000m3VDS=IDS.i=0.004VGS=2.500000

33.400

Page 9: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Bias and Stability

MRF9045M_AMP

X2

VD

sc_mrt_MC_GRM40C0G050_J_19960828

C25

PART_NUM=GRM40C0G330J050 33pF

Port

P3

Num=3

MLIN

TL20

L=100 mil

W=63.668898 mil

Subst="MSub1"

MLIN

TL21

L=100 mil

W=63.668898 mil

Subst="MSub1"

sc_mrt_MC_GRM40C0G050_D_19960828

C20

PART_NUM=GRM40C0G100D050 10pF

sc_spr_293D_A025_X9_19960828

C19

PART_NUM=293D474X9025A2 0.47uFMLIN

TL1

L=2194.444882 mil

W=63.670079 mil

Subst="MSub1"

sc_mrt_MC_GRM40C0G050_J_19960828

C8

PART_NUM=GRM40C0G330J050 33pF

sr_avx_CR_10_K_19960828

R13

PART_NUM=CR10-150K 15 Ohm

Port

P2

Num=2

ADS Power Amp DesignPage 8

VG VJ

sr_avx_CR_10_K_19960828

R12

PART_NUM=CR10-680K 68 Ohm

MSUB

MSub1

Rough=0 mil

TanD=0.002

T=2.8 mil

Hu=3.9e+034 mil

Cond=5.8E+08

Mur=1

Er=4.2

H=33.6 mil

MSub

FSL_MRF_MET_MODEL

MRF1

CTH=-1

RTH=-1

TSNK=25

MODEL=MRF9045M

sc_mrt_MC_GRM40C0G050_J_19960828

C17

PART_NUM=GRM40C0G330J050 33pF

MLIN

TL23

L=100 mil

W=63.668898 mil

Subst="MSub1"

MLIN

TL22

L=100 mil

W=63.668898 mil

Subst="MSub1"

sc_mrt_MC_GRM40C0G050_D_19960828

C23

PART_NUM=GRM40C0G100D050 10pF

sc_spr_293D_A025_X9_19960828

C24

PART_NUM=293D474X9025A2 0.47uF

Port

P4

Num=4

sc_mrt_MC_GRM40C0G050_J_19960828

C7

PART_NUM=GRM40C0G330J050 33pF

sc_mrt_MC_GRM40C0G050_J_19960828

C3

PART_NUM=GRM40C0G330J050 33pF

sl_tok_LL2012-F_J_19960828

L2

PART_NUM=LL2012-F82NJ 82 nH

Port

P1

Num=1

Page 10: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Stability Analysis

VDD

VGG

MRF9045M_AMP

X1

S-PARAMETERS FSL_TECH_INCLUDE

P_1Tone

PORT1

Freq=fss

P=polar(dbmtow (-60),0)

Z=50 Ohm

Num=1

Term

R3

Z=50 Ohm

Num=2

ADS Power Amp DesignPage 9

VGGVDD

S_Param

SP2

Step=1.0 MHz

Stop=3000 MHz

Start=1 MHzI_Probe

IDD

I_Probe

IGG

V_DC

SRC2

Vdc=VGS

V_DC

SRC1

Vdc=VDS

VAR

VAR3

VGS =3.8 V

VDS =28 V

EqnVar

FSL_TECH_INCLUDE

FTI

MuPrime

MuPrime1

MuPrime1=mu_prime(S)

MuPrime

Mu

Mu1

Mu1=mu(S)

Mu

StabMeas

StabMeas1

StabMeas1=stab_meas(S)

StabMeas

StabFact

StabFact1

StabFact1=stab_fact(S)

StabFact

Page 11: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Stability Analysis

1E2

1E3

1E4

3E4

StabFact1

ADS Power Amp DesignPage 10

0.5 1.0 1.5 2.0 2.50.0 3.0

1E1

1E2

1

freq, GHz

StabFact1

Page 12: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Impedance Matching

• The need for matching circuits is because amplifiers, in order to perform in a certain way(e.g. maximize output power), must be presented with a certain impedance at both the load and the source ports.

• For example in order to deliver maximum power to the load RL the transistor must have termination Zs and ZL.

ADS Power Amp DesignPage 11

transistor must have termination Zs and ZL.

• The input matching network is designed to transform the generator impedance Rs to the optimum source impedance Zs.

• The output matching network transform the load termination RL

(50 Ω) to the optimum load impedance ZL.

• A LoadPull measurement will help the designer determine the optimum load impedance ZL.

Page 13: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

LoadPull Setup

v load

Vs_high

ParamSw eep

Sw eep2

PARAMETER SWEEP

HarmonicBalance

HB1

Order[1]=15

Freq[1]=RFfreq

HARMONIC BALANCE

P_1ToneMRF9045M_AMP

I_Probe

Iload

I_Probe

Is_high

S1P_Eqn

V_DC

SRC1

Vdc=Vhigh

ADS Power Amp DesignPage 12

Vs_low

Set these values:

Set Load and Source impedances atharmonic frequencies

VAR

Sw eepEquations

Z0=50

pts=100

s11_center =-0.6 +j*0.1

s11_rho =0.75

EqnVar

FSL_TECH_INCLUDE

FTI

FSL_TECH_INCLUDE

VAR

STIMULUS

Vlow =3.8

Vhigh=28.0

RFfreq=760 MHz

Pavs=30 _dBm

EqnVar

VAR

VAR2

Z_s_5 =Z0 + j*0

Z_s_4 = Z0 + j*0

Z_s_3 = Z0 + j*0

Z_s_2 = Z0 + j*0

Z_s_fund =1.0 + j*0

Z_l_5 = Z0 + j*0Z_l_4 = Z0 + j*0

Z_l_3 = Z0 + j*0

Z_l_2 =Z0 + j*0

EqnVar

P_1Tone

PORT1

Freq=RFfreq

P=dbmtow (Pavs)

Z=Z_s

Num=1

I_Probe

Is_low

V_DC

SRC2

Vdc=Vlow

MRF9045M_AMP

X2

S1P_Eqn

S1

S[1,1]=LoadTuner

Z[1]=Z0

Examples

Search

Page 14: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

LoadPull Contours

m2indep(m2)=Pdel_contours_p=0.914 / 171.170level=44.195857, number=1impedance = 2.265 + j3.852

6

Pdel_contours_p

PAE_contours_p

ADS Power Amp DesignPage 13

m1indep(m1)=PAE_contours_p=0.914 / 171.180level=47.552308, number=1impedance = 2.265 + j3.848

6

indep(Pdel_contours_p) (0.000 to 46.000)

Pdel_contours_p

indep(PAE_contours_p) (0.000 to 18.000)

PAE_contours_p

Page 15: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Matching using Smith Chart Utility

ADS Power Amp DesignPage 14

Page 16: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Matching using Smith Chart Utility

ADS Power Amp DesignPage 15

Page 17: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Output Match

Port

P2

Num=2

Port

P1

Num=1

C

C3

C=27.689016 pF

C

C2

C=2.307137 pF

TLIN

TL3

F=760 MHz

E=25.92

Z=22.85 Ohm

TLIN

TL2

F=760 MHz

E=32.25

Z=50 Ohm

TLIN

TL1

F=760 MHz

E=8.891

Z=50 Ohm

C

C1

C=12.975203 pF

ADS Power Amp DesignPage 16

DA_SmithChartMatch1_output_match_design

DA_SmithChartMatch1

Z0=50 Ohm

Zl=(2.300-j*3.800) Ohm

Zs=50 Ohm

F=760 MHz

Page 18: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

SourcePull ContoursPAE_contours_p

Pdel_contours_p

m2indep(m2)=Pdel_contours_p=0.960 / 174.023level=46.038749, number=1impedance = 1.016 + j2.609

4

ADS Power Amp DesignPage 17

indep(PAE_contours_p) (0.000 to 77.000)

PAE_contours_p

indep(Pdel_contours_p) (0.000 to 66.000)

Pdel_contours_p

m1indep(m1)=PAE_contours_p=-0.952 + j0.100level=58.130703, number=1impedance = 1.096 + j2.618

4

Page 19: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Matching Circuits

PortP1

Num=1

MLIN

TL7

L=596.716535 mil

W=199.971654 mil

Subst="MSub1"

MLIN

TL8

L=786.342520 mil

W=63.670079 mil

Subst="MSub1"

MLIN

TL9

L=216.786614 mil

W=63.670079 mil

Subst="MSub1"

sc_mrt_MC_GRM40C0G050_D_19960828

C28PART_NUM=GRM40C0G090D050 9pF

Port

P2Num=2

sc_mrt_MC_GRM40C0G050_J_19960828

C22PART_NUM=GRM40C0G150J050 15pF

sc_mrt_MC_GRM40C0G050_C_19960828

C21PART_NUM=GRM40C0G020C050 2pF

Output Match

ADS Power Amp DesignPage 18

sc_mrt_MC_GRM40C0G050_J_19960828

C26

PART_NUM=GRM40C0G220J050 22pF

sc_mrt_MC_GRM40C0G050_C_19960828

C25

PART_NUM=GRM40C0G020C050 2pF

MLIN

TL18

L=802.433071 mil

W=63.670079 mil

Subst="MSub1"

MLIN

TL17

L=414.385827 mil

W=199.971654 mil

Subst="MSub1"

Port

P2

Num=2

MLIN

TL16

L=205.546063 mil

W=63.670079 mil

Subst="MSub1"

Port

P1

Num=1

sc_mrt_MC_GRM40C0G050_D_19960828

C24

PART_NUM=GRM40C0G090D050 9pF

Input Match

Page 20: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Complete Design Power Sweep

Vin

Vloadinput_match output_match

V_DC

SRC1

Vdc=VDS

I_Probe

Iload

I_Probe

Iin

ADS Power Amp DesignPage 19

Vloadinput_match

X5 MRF9045M_AMP

X4

output_match

X3

Iload

R

R1

R=50 OhmVAR

VAR1

Pin=30

VGS =3.8 V

VDS =28 V

EqnVarVAR

VAR2

fo=760.0 MHz

EqnVar

FSL_TECH_INCLUDE

FTI

FSL_TECH_INCLUDEHarmonicBalance

HB1

Step=1

Stop=40

Start=-30

SweepVar="Pin"

Order[1]=15

Freq[1]=fo

HARMONIC BALANCE

P_1Tone

PORT1

Vdc=

Freq=fo

P=dbmtow(Pin)

Z=50.0 OhmNum=1

Iin

V_DCSRC2

Vdc=VGS

Page 21: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Power Compression Curve

40

60

Pdel_dBm

Output

OutputPin=Pdel_dBm=45.570

30.000

ADS Power Amp DesignPage 20

-20 -10 0 10 20 30-30 40

0

20

-20

Pin

Pdel_dBm

Page 22: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Gain Compression Curve

14

16

18

GainComp

LinearGain

GainCompind Delta=dep Delta=-1.771 delta mode ON

60.00 LinearGainPin=Gp=17.341

-30.000

ADS Power Amp DesignPage 21

-20 -10 0 10 20 30-30 40

8

10

12

14

6

Pin

Gp

Page 23: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Power Added Efficiency

30

40

50

60

PAE

m1 m1Pin=PAE=49.618

30.000

ADS Power Amp DesignPage 22

-20 -10 0 10 20 30-30 40

10

20

0

Pin

Page 24: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Getting ready to Optimize the PA

• The next step is to optimize the design to meet the requirements.

• The Designer can take the opportunity to see if other requirements, such

as layout will require any changes before proceeding to optimize.

• Example: we notice that the transistor pads are rather wide and the Tlines

leading up to it are not the same width.

• Since the Tlines are much narrower, we could add a taper so we have a

nice transition.

ADS Power Amp DesignPage 23

nice transition.

• We included a MTAPER at the input and output side

dBm(Vload[1])

41.549

MTAPER

Taper2

L=100.0 mil

W2=63.670079 mil

W1=199.971654 mil

Subst="MSub1"

Page 25: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Optimization Setup

Goal

Goal2

Weight=

Max=-40

Min=

SimInstanceName="HB1"

Expr="dBm(Vload[2])-dBm(Vload[1])"

GOAL

Goal

Goal1

Weight=

Max=

Min=47.0

SimInstanceName="HB1"

Expr="dBm(Vload[1])"

GOAL

Optim

Optim1

NormalizeGoals=no

FinalAnalysis="None"

DesiredError=0.0

MaxIters=25

OptimType=Gradient

OPTIM

ADS Power Amp DesignPage 24

RangeMax[1]=

RangeMin[1]=

RangeVar[1]=

Weight=

RangeMax[1]=

RangeMin[1]=

RangeVar[1]=

Weight=

SaveCurrentEF=no

UseAllGoals=yes

UseAllOptVars=yes

SaveAllIterations=no

SaveNominal=no

UpdateDataset=yes

SaveOptimVars=no

SaveGoals=yes

SaveSolns=yes

SetBestValues=yes

NormalizeGoals=no

Page 26: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Optimization Results

InitialEF

67.187

FinalEF

0.000

optIter Goal1 Goal2

ADS Power Amp DesignPage 25

10 47.003 -40.017

MLIN

TL39

L=2194.444882 mil opt 250 mil to 3500 mil

W=63.670079 mil

Subst="MSub1"

MLIN

T L39

L=551 .591 m il op t 250 m il to 3500 m il

W =63 .670079 m il

Subs t= "MSub1"

Before After

Page 27: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Optimization Values

TL39.L*1e5/2.54

551.591

TL15.L*1e5/2.54

247.144

TL30.L*1e5/2.54

814.900

TL7.L*1e5/2.54

320.449

TL8.L*1e5/2.54

622.341

ADS Power Amp DesignPage 26

TL10.L*1e5/2.54

244.711

TL31.L*1e5/2.54

202.643

TL32.L*1e5/2.54

184.709

TL9.L*1e5/2.54

248.635

Page 28: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

PA Results

20

40

60

Pdel_dBm

m1 m1Pin=Pdel_dBm=47.003

30.000

ADS Power Amp DesignPage 27

-20 -10 0 10 20 30-30 40

0

-20

Pin

Pdel_dBm

Page 29: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Power Added Efficiency

40

60

80

PAE

m3

m3Pin=PAE=56.736

30.000

ADS Power Amp DesignPage 28

-20 -10 0 10 20 30-30 40

20

0

Pin

Page 30: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Gain Compression Curve

-6

-4

-2

0

Gp-Gp[0]

m4m4Pin=Gp-Gp[0]=-0.728

30.000

ADS Power Amp DesignPage 29

-20 -10 0 10 20 30-30 40

-8

-10

Pin

Gp-Gp[0]

Page 31: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Complex Modulated Signal

-40

-20

0

20

40

16 QAM Spectrum (dBm)

ADS Power Amp DesignPage 30

759.75 760.00 760.25759.50 760.50

-80

-60

-40

-100

Frequency (MHz)

16 QAM Spectrum (dBm)

Page 32: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

16 QAM Modulated Source

LPF_RaisedCosineTimed

L4

Delay=16/bit_rate

SquareRoot=Yes

Type=Model w ith pulse equalization

ExcessBw=0.5

CornerFreq=bit_rate/8

Loss=0.0SymbolConverter

S3

CodeOut=pam4Out

CodeIn=nrzIn

Delay=0 sec

SymbolTime=2/bit_rate

ADS Power Amp DesignPage 31

SpectrumAnalyzer

S9

WindowConstant=0.0

Window=none

Stop=DefaultTimeStop

Start=DefaultTimeStart

RLoad=DefaultRLoad

Plot=None

QAM_Mod

Q1

PhaseImbalance=0

GainImbalance=0

Phase=0

VRef=1.0 V

Pow er=Pc

FCarrier=Fc

SymbolConverter

S4

CodeOut=pam4Out

CodeIn=nrzIn

Delay=0 sec

SymbolTime=2/bit_rate

LPF_RaisedCosineTimed

L5

Delay=16/bit_rate

SquareRoot=Yes

Type=Model w ith pulse equalization

ExcessBw=0.5

CornerFreq=bit_rate/8

Loss=0.0

Data

D1

Repeat=Yes

SequencePattern=23

Type=Prbs

UserPattern=""

BitTime=1/bit_rate

TStep=Tstep

SymbolSplitter

S1

Delay=-1

SymbolTime=1/bit_rate

Page 33: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

DSP and Analog Circuits Setup

• Create a subcircuit with your analog design.

• You need to add either Circuit Envelope or Transient controller to the analog circuit.

• We use Circuit Envelope specifically with our PA since we have a Modulated Carrier.

• Circuit Envelope will also allow the use of Fast Cosim (Automatic

ADS Power Amp DesignPage 32

• Circuit Envelope will also allow the use of Fast Cosim (Automatic Verification Modeling – AVM). This will dramatically increase the simulation speed.

• In the DSP schematic we will create the Modulated Carrier, feed it to the PA and collect the signal samples and spectrum.

• The DSP schematic contains a Envelope Output Selector component used for interfacing between circuit subnetwork output and the signal processing components.

Page 34: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

TimedSink

RF_in

Stop=DefaultT imeStop

Start=DefaultT imeStartPlot=Rectangular

TimedSink

Qout

ControlSimulation=YESStop=DefaultT imeStop

Start=DefaultT imeStartPlot=Rectangular

SpectrumAnalyzer

S9

WindowConstant=0.0

Window=noneStop=DefaultT imeStopStart=DefaultT imeStart

RLoad=DefaultRLoadPlot=None

Ptolemy Cosim Schematic

PA

ADS Power Amp DesignPage 33

TimedSink

RF_out

ControlSimulation=YESStop=DefaultT imeStop

Start=DefaultT imeStartPlot=Rectangular

MRF9045M_AMP_CE2

X1

SplitterRF

S10

ControlSimulation=YESStop=DefaultT imeStop

EnvOutShort

O1OutFreq=Fc

TimedSink

Iout

ControlSimulation=YESStop=DefaultT imeStop

Start=DefaultT imeStartPlot=Rectangular

MatchedLoss

M1Loss=17.0

SplitterRF

S7

PhaseShiftRF

P1PhaseShift=360-168

QAM_Demod

Q2

PhaseImbalance=0.0GainImbalance=0.0Phase=0.0

Sensitivity=0.1*(10**((25-Pow)/20))RefFreq=Fc

QAM_src

X2Pc=Pow

SpectrumAnalyzer

S8

WindowConstant=0.0

Window=noneStop=DefaultT imeStopStart=DefaultT imeStart

RLoad=DefaultRLoadPlot=None

QAM Source

Page 35: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Fast Cosim Improvements

Simulation Time Benchmark:

Total bits: 1024 bits

AVM disabled : 410 sec

AVM enabled: 13 sec

AVM data reuse: 5.5 sec

--------------

AVM data reuse (16 Kbits): 17.5 sec

ADS Power Amp DesignPage 34

--------------

AVM data reuse (16 Kbits): 17.5 sec

Page 36: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Cosimulation Results - Spectrum

-60

-40

-20

0

20

-60

-40

-20

0

20

Carrier Power

30 dBm

Carrier Power

25 dBm

ADS Power Amp DesignPage 35

759.5 760.0 760.5759.0 761.0

-80

-60

-100

freq, MHz

759.5 760.0 760.5759.0 761.0

-80

-100

freq, MHz

Page 37: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Cosimulation Results - Constellation

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Carrier Power

30 dBm

Carrier Power

25 dBm

ADS Power Amp DesignPage 36

-1.0 -0.5 0.0 0.5 1.0-1.5 1.5

-1.0

-0.5

0.0

-1.5

-1.0 -0.5 0.0 0.5 1.0-1.5 1.5

-1.0

-0.5

0.0

-1.5

Page 38: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Cosimulation Results

peakP_out

47.969

peak_avg_out

3.516

avgPout

44.453

Carrier Power

30 dBm

peakP_in

32.163

peak_avg_in

4.951

avgPin

27.212

ADS Power Amp DesignPage 37

Carrier Power

25 dBm

peakP_in

30.000

peak_avg_in

7.788

avgPin

22.212

peakP_out

44.715

peak_avg_out

4.832

avgPout

39.883

Page 39: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Cosimulation Results – CCDF

1E-2

1E-1

9E-1

1E-2

1E-1

9E-1

Carrier Power

30 dBm

Carrier Power

25 dBm

ADS Power Amp DesignPage 38

-6 -4 -2 0 2 4-8 6

1E-4

1E-3

1E-2

1E-5

dB

-6 -4 -2 0 2 4-8 6

1E-4

1E-3

1E-2

1E-5

dB

Page 40: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

EVM vs. Power Measurement

VAR

VAR3

Pow=30 _dBm

Fc=760 MHz

Tstop=num_bits/bit_rate

Tstep=1/(bit_rate*oversample)

EqnVar VAR

VAR2

num_bits=4096*4

oversample=4

bit_rate=1.0 MHz

EqnVar

EVM_WithRef

Ref

tes t EVM Ref

RES

R2

R=50 Ohm

ADS Power Amp DesignPage 39

ParamSweep

Sweep1

Step=1

Stop=30

Start=18

SimInstanceName[6]=

SimInstanceName[5]=

SimInstanceName[4]=

SimInstanceName[3]=

SimInstanceName[2]=

SimInstanceName[1]="DF1"

SweepVar="Pow"

PARAMETER SWEEP

DF

DF1

SavedEquationName[1]="Tstep"

DefaultTimeStop=Tstop

DefaultTimeStart=0

DefaultNumericStop=100

DefaultNumericStart=0

QAM_src

X2

Pc=Pow

EVM_WithRef

E2

SymbolRate=0.25 MHz

MeasType=EVM_rms

NumBursts=2

SymDelayBound=-1

SampPerSym=16

SymBurstLen=1024

StartSym=10

RES

R1

R=50 Ohm

EnvOutShort

O1

OutFreq=Fc

MRF9045M_AMP_CE2

X1

SplitterRF

S7

Page 41: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

EVM vs. Power Results

3

4

5

EVM (%)

EVM vs. Carrier Power

ADS Power Amp DesignPage 40

20 22 24 26 2818 30

1

2

0

Power (dBm)

EVM (%)

Page 42: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

ADS to VSA link

VARVarFSL_TECH_INCLUDE

FSL_TECH_INCLUDE

RES

R1

R=50 Ohm

VSA_89600_1_Sink

V1

SetFreqProp=YES

RestoreHW=NO

SetupFile="C:\Program Files\Agilent\89600 VSA\Vector\User\PA_demod.set"

SamplesPerSymbol=16

TStep=Tstep

VSATitle="Simulation output"

VSA

QAM_src

X2

Pc=Pow

EnvOutShort

O1

OutFreq=Fc

MRF9045M_AMP_CE2

X1

ADS Power Amp DesignPage 41

VAR

VAR3

Pow=30 _dBm

Fc=760 MHz

Tstop=num_bits/bit_rate

Tstep=1/(bit_rate*oversample)

EqnVar

VAR

VAR2

num_bits=1024*16

oversample=4

bit_rate=1.0 MHz

EqnVar

FSL_TECH_INCLUDE

FTI

DF

DF1

SavedEquationName[1]="Tstep"

DefaultTimeStop=Tstop

DefaultTimeStart=0

DefaultNumericStop=100

DefaultNumericStart=0

Page 43: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

VSA Spectrum from ADS Cosim

ADS Power Amp DesignPage 42

Page 44: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

VSA Constellation from ADS Cosim

Carrier Power

30 dBm

ADS Power Amp DesignPage 43

Page 45: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

VSA Constellation from ADS Cosim

Carrier Power

30 dBm

ADS Power Amp DesignPage 44

Page 46: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

VSA EVM from ADS Cosim

Carrier Power

30 dBm

ADS Power Amp DesignPage 45

Page 47: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

PA Layout

sc_mr t _MC_G RM40C0G 050_J_19960828

C17

PART_NUM=GRM40C0G 330J050 33pF

Por t

P2

Num=2

sr _avx_CR_10_K_19960828

R13

PART_NUM=CR10- 150K 15 O hm

MTAPER

Taper 1

L=100. 0 m il

W2=63. 670079 m il

W1=199. 971654 m il

Subst =" MSub1"

MTAPER

Taper 2

L=100. 0 m il

W2=63. 670079 m il

W1=199. 971654 m il

Subst ="MSub1"

sc_mr t _MC_GRM40C0G 050_D_19960828

C26

PART_NUM =GRM40C0G 090D050 9pF

sc_m r t _MC_G RM40C0G 050_J_19960828

C24

PART_NUM=GRM 40C0G 150J050 15pF

MLI N

TL30

L=814. 898 m il opt 250 m il t o 1000 m il

W=63. 670079 m il

Subst ="MSub1"

MLI N

TL8

L=622. 343 m il opt 100 m il t o 750 m il

W=63. 670079 m il

Subst ="M Sub1"

MLI N

TL15

L=247. 144 m il opt 50 m il t o 500 m il

W=63. 670079 m il

Subst ="MSub1"

MLI N

TL32

L=184. 709 m il opt 100 m il t o 500 m il

W=63. 670079 m il

Subst ="M Sub1"

MLI N

TL31

L=202. 643 m il opt 75 m il t o 750 m il

W=199. 971654 m il

Subst ="MSub1"

MLI N

TL7

L=320. 449 m il opt 75 m il t o 500 m il

W=199. 971654 m il

Subst ="MSub1"

MLI N

TL9

L=248. 635 m il opt 75 m il t o 500 m il

W=63. 670079 m il

Subst ="M Sub1"

MLI N

TL10

L=244. 711 m il opt 50 m il t o 500 m il

W=63. 670079 m il

Subst ="M Sub1"

MTEE_ADS

Tee1

W3=63. 668898 m il

W2=199. 971654 m il

W1=199. 971654 m il

Subst ="M Sub1"

M TEE_ADS

Tee2

W3=63. 670079 m il

W2=199. 971654 m il

W1=199. 971654 m il

Subst ="MSub1"

MLI N

TL39

L=551. 591 m il opt 250 m il t o 3500 m il

W=63. 670079 m il

Subst ="MSub1"

sc_mr t _MC_GRM40C0G 050_C_19960828

C25

PART_NUM=G RM40C0G 020C050 2pF

MLI N

TL41

L=253. 4234 m il

W=63. 6689 m il

Subst ="MSUB1"

M CURVE2

Cur ve2

Nmode=2

Radius=100. 0 m il

Angle=90

W=63. 668898 m il

Subst ="MSub1"

sc_mr t _M C_GRM40C0G 050_D_19960828

C20

PART_NUM=GRM40C0G 100D050 10pF

M LI N

TL42

L=440 m il

W=63. 668898 m il

Subst ="MSub1"

sc_spr _293D_A025_X9_19960828

C19

PART_NUM=293D474X9025A2 0. 47uF

Por t

P3

Num =3

MLI N

TL20

L=225 m il

W=63. 668898 m il

Subst ="MSub1"

MLI N

TL21

L=200 m il

W=63. 668898 m il

Subst ="M Sub1"

ADS Power Amp DesignPage 46

sc_mr t _MC_GRM 40C0G 050_J_19960828

C18

PART_NUM=GRM40C0G 220J050 22pF

MRF9045_ar t

Q 1

Por t

P1

Num=1

sc_mr t _MC_GRM40C0G 050_J_19960828

C3

PART_NUM=G RM40C0G 330J050 33pF sr _avx_CR_10_K_19960828

R12

PART_NUM =CR10- 150K 15 O hm

L=100. 0 m il

sc_mr t _MC_GRM40C0G 050_C_19960828

C28

PART_NUM =GRM40C0G 020C050 2pF

sc_mr t _MC_GRM 40C0G 050_D_19960828

C27

PART_NUM=GRM40C0G 090D050 9pF

L=814. 898 m il opt 250 m il t o 1000 m il L=247. 144 m il opt 50 m il t o 500 m il L=184. 709 m il opt 100 m il t o 500 m il L=202. 643 m il opt 75 m il t o 750 m il W3=63. 668898 m il

MSUB

MSub1

Rough=0 m il

TanD=0. 002

T=2. 8 m il

Hu=3. 9e+034 m il

Cond=5. 8E+08

Mur =1

Er =4. 2

H=33. 6 m il

MSub

SMT_Pad

Pad2

PO =0 m il

SM_Layer ="solder _m ask"

SMO =5. 0 m il

PadLayer =" cond"

L=40. 0 m il

W=70. 0 m il

SMT_Pad

SMT_Pad

Pad1

PO =0 m il

SM_Layer ="solder _m ask"

SMO =5. 0 m il

PadLayer ="cond"

L=40. 0 m il

W=50. 0 m il

SMT_Pad

SMT_Pad

Pad3

PO =0 m il

SM_Layer ="solder _m ask"

SMO =5. 0 m il

PadLayer ="cond"

L=30. 0 m il

W=30. 0 m il

SMT_Pad

sl_t ok_LL2012-F_J_19960828

L2

PART_NUM =LL2012-F82NJ 82 nH

MLI N

TL43

L=90 m il

W=40 m il

Subst ="M SUB1"

MLI N

TL22

L=200 m il

W=63. 668898 m il

Subst =" MSub1"

MLI N

TL23

L=350 m il

W=63. 668898 m il

Subst =" MSub1"

Por t

P4

Num=4

MLI N

TL40

L=200 m il

W=63. 668898 m il

Subst ="M Sub1"

sc_spr _293D_A025_X9_19960828

C23

PART_NUM=293D474X9025A2 0. 47uF

sc_mr t _MC_GRM40C0G 050_D_19960828

C22

PART_NUM =GRM40C0G 100D050 10pF

MCURVE2

Cur ve1

Nmode=2

Radius=100. 0 m il

Angle=90

W=63. 668898 m il

Subst ="MSub1"

sc_mr t _MC_G RM40C0G 050_J_19960828

C21

PART_NUM=GRM40C0G 330J050 33pF

MLI N

TL1

L=100 m il

W=63. 668898 m il

Subst ="M SUB1"

MLI N

TL44

L=315. 0248 m il

W=63. 668898 m il

Subst ="M SUB1"

Page 48: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

PA Layout – Generated from Schematic

ADS Power Amp DesignPage 47

Page 49: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

PA Layout – Ground Fill

ADS Power Amp DesignPage 48

Page 50: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

Other Possibilities

• Run an EM Cosimulation – include layout effects in the simulation.

Optimize design if necessary.

• Run Loadpull for IP3 or ACPR. The optimum load would then be a

compromise between all the requirements.

• Use Connection Manager and real PA to validate design and compare

ADS Power Amp DesignPage 49

• Use Connection Manager and real PA to validate design and compare

vs. simulated results.

• Create a behavioral data model that can be used to protect you IP yet

give access to your design results.

If there is any topic about PA Design and ADS you wish to

discuss email me: [email protected]

Page 51: Presentation on Power Amplifier Design using ADSliterature.cdn.keysight.com/litweb/pdf/5989-9594EN.pdf · Presentation on Power Amplifier Design using ADS . ... Optimize/Fine Tune

www.agilent.com/fi nd/emailupdatesGet the latest information on the products and applications you select.

www.agilent.com/fi nd/agilentdirectQuickly choose and use your test equipment solutions with confi dence.

Agilent Email Updates

Agilent Direct

www.agilent.comFor more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:www.agilent.com/fi nd/contactus

AmericasCanada (877) 894-4414 Latin America 305 269 7500United States (800) 829-4444

Asia Pacifi cAustralia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 1 800 375 8100Taiwan 0800 047 866Thailand 1 800 226 008

Europe & Middle EastAustria 0820 87 44 11Belgium 32 (0) 2 404 93 40 Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700* *0.125 €/minuteGermany 01805 24 6333** **0.14 €/minuteIreland 1890 924 204Israel 972-3-9288-504/544Italy 39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden 0200-88 22 55Switzerland 0800 80 53 53United Kingdom 44 (0) 118 9276201Other European Countries: www.agilent.com/fi nd/contactusRevised: March 27, 2008

Product specifi cations and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008

For more information about Agilent EEsof EDA, visit:

www.agilent.com/fi nd/eesof

nstewart
Text Box
Printed in USA, October 12, 2004 5989-9594EN