Preliminary mission study: orbital transfer from Titan to Saturn

51
Politecnico di Milano Dipartimento di scienze e tecnologie aerospaziali Orbital mechanics end course project Preliminary Titan - Saturn interplanetary transfer Authors: Marco Ciarambino Simone Colciago

description

A preliminary feasibility and costs study about an orbital transfer between Titan and Saturn.

Transcript of Preliminary mission study: orbital transfer from Titan to Saturn

  • Politecnico di Milano

    Dipartimento di scienze e tecnologieaerospaziali

    Orbital mechanics end course project

    Preliminary Titan - Saturn interplanetary transfer

    Authors:Marco CiarambinoSimone Colciago

  • Contents

    1 Overview of the problem 3

    2 Orbital transfer 42.1 Initial orbit and departure hyperbola . . . . . . . . . . . . . . . . 42.2 Plane change maneuver . . . . . . . . . . . . . . . . . . . . . . . 52.3 Pericentre anomaly change . . . . . . . . . . . . . . . . . . . . . . 62.4 Hohmann maneuver . . . . . . . . . . . . . . . . . . . . . . . . . 72.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    3 Perturbation analysis 103.1 Final orbit period . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    3.1.1 Solar wind pressure . . . . . . . . . . . . . . . . . . . . . 103.1.2 Influence of other bodies . . . . . . . . . . . . . . . . . . . 143.1.3 Non uniformity of Saturn mass distribution . . . . . . . . 173.1.4 All perturbations . . . . . . . . . . . . . . . . . . . . . . . 20

    3.2 Earth revolution orbit period . . . . . . . . . . . . . . . . . . . . 233.2.1 Solar wind pressure . . . . . . . . . . . . . . . . . . . . . 233.2.2 Influence of other bodies . . . . . . . . . . . . . . . . . . . 263.2.3 Non uniformity of Saturn mass distribution . . . . . . . . 293.2.4 All perturbations . . . . . . . . . . . . . . . . . . . . . . . 32

    3.3 Saturn revolution orbit period . . . . . . . . . . . . . . . . . . . . 363.3.1 Solar wind pressure . . . . . . . . . . . . . . . . . . . . . 363.3.2 Influence of other bodies . . . . . . . . . . . . . . . . . . . 393.3.3 Non uniformity of Saturn mass distribution . . . . . . . . 423.3.4 All perturbations . . . . . . . . . . . . . . . . . . . . . . . 45

    4 Considerations about numerical and general issues encountered 48

    5 Block diagram 49

    1

  • Abstract

    In the following report it will be presented an orbital transfer fromTitan to Saturn, taking into account some forms of perturbations to thecanonical restricted two body problem.The first section deals with the computation of the main parameters ofthe journey, approaching the problem through a pure analytical form theXVIII century-developed restricted two body problems. Through thistheory it has been possible to compute the ideal behaviour of the space-craft from parking orbit around Titan, to the final path around Saturn,that was given as a mission parameter.Secondly perturbation analysis around the final orbit has been performed.In particular solar wind pressure, non uniform mass of Saturn and thegravitational influence of other celestial objects have been taken into ac-count, in order to achieve better accuracy in the spacecraft motion.

    2

  • 1 Overview of the problem

    At the beginning of the simulation, spacecraft is parked in a circular orbitaround Titan with pericentre height of 150 km, while the rest of parametersfor the initial orbit were left free to choose. The keplerian parameters of Titan,orbiting around Saturn on a very low eccentric orbit, depend on the day chosenas first instant for simulation: May 3, 2013.

    Destination characteristics were given by data:

    pericentre height [km] 260000apocentre height [km] 440000inclination [ ] 20.27ascending node anomaly [ ] 15pericentre anomaly [ ] 15

    Table 1: Final orbit parameters

    Graphically, the problem is summarised by the following picture:

    1

    0.5

    0

    0.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    Titans orbitCurrent positionFinal orbit

    Figure 1: Overview of the problem

    3

  • 2 Orbital transfer

    2.1 Initial orbit and departure hyperbola

    In order to escape from Titans gravitational attraction and to directly putthe spacecraft onto an orbit such that it is equal to Titans one but with finalinclination and ascending node anomaly, velocity at limits of Titans sphere ofinfluence V must be equal to the first variation of velocity V1 = 1.8793 km/s.Once known velocity at limits of Titans sphere of influence and pericentreheight, it is possible to define geometric features of the departure hyperbola:

    pericentre height [km] 150eccentricity [] 2.0723semimajor axis [km] -2542.1079deviation angle, 2 [ ] 57.70 [ ] 118.85

    Table 2: Departure hyperbola characteristics

    In order to reach proper velocity at the boundaries of Titans sphere ofinfluence and consequently to enter in the correct orbit, a tangential V =1.33421 km/s must be performed at the hyperbola pericentre, equal to the dif-ference between velocity on the circular parking orbit and velocity at pericentreof hyperbola.

    Figure 2: Departure hyperbola

    4

  • 2.2 Plane change maneuver

    The final requested orbit has no intersections with initial Titans orbit. Thepurpose of the first manuever is to put the spacecraft onto an orbit geometricallyequal to Titans orbit (same eccentricity and semi-major axis) with ascendingnode anomaly and inclination of the final requested orbit. Thus it is necessaryto start the maneuver in the point of intersection between Titans orbit and theplane containing the final orbit. There are two possible intersections: for sakeof convenience in terms of time it has been selected the point of maneuver closerto the ascending node and Titans current position (May 3, 2013).

    Solving the spherical triangle it is possible to compute , the angle betweenvelocities before and after the maneuver equal to 19.97, and , the anglebetween the point of maneuver and the ascending node of the first orbit, equalto 13.25.

    The time between Titans current position and point of maneuver is

    t1 = 3 days 20 hours 32minutes 0.6 seconds

    while the total cost of maneuver is equal to

    V1 = 1.8793km

    s.

    1

    0.5

    0

    0.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    4

    2

    0

    2

    4

    x 105

    Titan orbitcurrent positionfinal orbitAscending nodepoint of maneuverorbit after maneuver

    Figure 3: Plane change maneuver

    5

  • 2.3 Pericentre anomaly change

    The second manuever changes pericentre anomaly keeping all geometrical prop-erties unaltered. This maneuver can be done in the two points of intersectionbetween the current orbit the spacecraft is located on and the orbit with thefinal requested pericentre anomaly; as before, for sake of convenience in terms oftime, the selected point is the one closer to the current position of the satellite.The waiting period in order to perform the maneuver of pericentre anomalychange is

    t2 = 4 days 11 hours 39minutes 0.8 seconds

    and total cost of maneuver is equal to

    V2 = 0.3185km

    s.

    1

    0.5

    0

    0.5

    1

    x 106

    10.8

    0.60.4

    0.20

    0.20.4

    0.60.8

    1

    x 106

    4

    2

    0

    2

    4

    x 105

    orbit after plane changepericenterorbit after change of pericenter anomalypericenterpoint of maneuver

    Figure 4: Change of pericenter anomaly

    6

  • 2.4 Hohmann maneuver

    The orbit the probe is moving on has ascending node anomaly, inclination andpericentre anomaly of the final requested orbit. Now it is necessary to obtainthe desired shape and this operation is done exploiting a Hohmann transferbetween the apocentre of the current orbit and the pericentre of the final one.This maneuver is the most efficient one and the decision to perform it fromapocentre to pericentre and not in the reversed order is justified from the factthat the aim of this maneuver is a reduction of orbit shape (in fact final orbitis smaller than the current one).The Hohmann manuever is a bi-tangent elliptic maneuver represented by twodifferent V , both negative because of velocity decreasing, done respectively atapocentre of current orbit and pericentre of final orbit.The time between the previous maneuver point and the apocentre is

    t3 = 4 days 10 hours 3minutes 0.7 seconds

    whereas the cost (negative because it is a braking maneuver) is

    V3 = 1.9132 kms

    The time required to reach the pericentre of the final orbit is equal to thesemi-period of Hohmann transfer orbit,

    t4 = 4 days 3 hours 13minutes 0.6 seconds

    whereas the cost (negative because it causes a reduction of velocity) is

    V4 = 1.7224 kms

    7

  • 1

    0.5

    0

    0.5

    1

    x 106

    10.8

    0.60.4

    0.20

    0.20.4

    0.60.8

    1

    x 106

    4

    2

    0

    2

    4

    x 105

    final orbitpericenterpoint of previous maneuverpoint of Hohmann maneuverHohmann transfer

    Figure 5: Hohmann maneuver

    8

  • 2.5 Results

    Maneuver Cost [km/s]

    Departure hyperbola 1.3662Plane change maneuver 1.8793Pericentre anomaly change 0.3185Hohmann transfer 3.6356Total 7.1996

    Table 3: Maneuvers costs

    1

    0.5

    0

    0.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    2

    0

    2

    4

    x 105

    Titan orbitfinal orbit1st burnoutorbit after plane change2nd burnoutorbit after change of pericentre anomaly3rd burnoutHohmann transfer4th burnout

    Figure 6: Transfer overview

    9

  • 3 Perturbation analysis

    Once that nominal orbits have been computed, we will now approach perturba-tion section, that will be performed only over final orbit path. Three kinds ofthem have been modelled:

    Solar wind pressure, that in our case has been particularly intense due tothe high exposed surface (22.10 m2);

    Influence of masses of Saturn, Titan, Jupiter, Uranus, Sun on the space-craft;

    Non uniformity of the Saturn mass distribution, where only the first har-monic of the gravitational potential has been considered.

    It has been not considered the perturbation effects due to atmospheric drag.Indeed at final orbit pericentre the spacecraft is 320267 km high on Saturn sur-face and at such a height atmospheric drag effects are completely negligible.Computation has relied on Cowells method, that is actually the direct integra-tion of Keplers equation with addiction of perturbation term. Simulation ofperturbation effects will be performed over three different periods: a final or-bit period, an Earth revolution orbit period and over a Saturn revolution orbitperiod. Proper details will be given on each section.

    3.1 Final orbit period

    Data relative of the destination orbit has been specified in Table 1. Resultingorbit period amounts to 3 days 2 hours 27 min 36 seconds.

    3.1.1 Solar wind pressure

    Solar wind perturbing acceleration term to be inserted in Keplers equation hasbeen modelled as:

    asw = psunCrAscm

    rsunsc (1)

    where:

    psun is solar pressure; Cr = 1 + takes into account optical reflectivity of the spacecraft that in

    this case = 0.7;

    Asc = 22.10 m2 is the area of each side of the spacecraft, that is modelledas cube;

    m spacecraft mass amounts to 2000 kg;

    10

  • rsunsc is position versor from Sun to spacecraft. It is the sum betweenSun-Saturn and Saturn-spacecraft versors, and because the first was inSun-centred inertial frame it has been rotated in Saturn-centred equatorialinertial frame with a Saturns tilt angle of 26.73 and a north pole rightascension equal to 40.6

    It has been neglected eclipses occurrence.In the following pages are shown keplerian orbital parameters variations in time.

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to solar wind pressure

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    0 0.5 1 1.5 2 2.5 3 3.5410263

    410264

    410265

    410266

    410267

    410268

    410269

    410270semimajor axis variation

    [km]

    days

    11

  • 0 0.5 1 1.5 2 2.5 3 3.50.219365

    0.219370

    0.219375

    0.219380

    0.219385

    0.219390

    0.219395

    0.219400eccentricity variation

    []

    days

    0 0.5 1 1.5 2 2.5 3 3.520.2699

    20.27

    20.2701

    20.2702

    20.2703

    20.2704inclination variation

    [deg]

    days

    12

  • 0 0.5 1 1.5 2 2.5 3 3.514.994

    14.995

    14.996

    14.997

    14.998

    14.999

    15

    15.001pericentre anomaly variation

    [deg]

    days

    0 0.5 1 1.5 2 2.5 3 3.514.9993

    14.9994

    14.9995

    14.9996

    14.9997

    14.9998

    14.9999

    15

    15.0001

    15.0002

    15.0003ascending node anomaly variation

    [deg]

    days

    13

  • 3.1.2 Influence of other bodies

    Other celestial bodies considered in the simulation are: Saturn, Titan, Jupiter,Uranus, Sun. They have been modelled as dot masses.

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to the most influencing nearby bodies

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    0 0.5 1 1.5 2 2.5 3 3.5410267.2

    410267.4

    410267.6

    410267.8

    410268.0

    410268.2

    410268.4

    410268.6

    410268.8semimajor axis variation

    [km]

    days

    14

  • 0 0.5 1 1.5 2 2.5 3 3.50.219368

    0.219369

    0.219370

    0.219371

    0.219372

    0.219373

    0.219374

    0.219375

    0.219376

    0.219377

    0.219378eccentricity variation

    []

    days

    0 0.5 1 1.5 2 2.5 3 3.520.269970

    20.269975

    20.269980

    20.269985

    20.269990

    20.269995

    20.270000

    20.270005

    20.270010inclination variation

    [deg]

    days

    15

  • 0 0.5 1 1.5 2 2.5 3 3.514.99965

    14.99970

    14.99975

    14.99980

    14.99985

    14.99990

    14.99995

    15.00000

    15.00005

    15.00010pericentre anomaly variation

    [deg]

    days

    0 0.5 1 1.5 2 2.5 3 3.514.99994

    14.99995

    14.99996

    14.99997

    14.99998

    14.99999

    15.00000

    15.00001

    15.00002

    15.00003ascending node anomaly variation

    [deg]

    days

    16

  • 3.1.3 Non uniformity of Saturn mass distribution

    To model the non uniform mass of Saturn, perturbing acceleration componentson the spacecraft in body reference frame are:

    ar = 32J2Saturn

    R2Saturnr4

    [1 3sin2(i) sin2( + )]

    a = 3J2SaturnR2Saturn

    r4sin2(i) sin( + ) cos( + )

    ah = 3J2SaturnR2Saturn

    r4sin(i) cos(i) sin( + )

    being J2 = 16298x106 the first term of gravitational potential harmonics. Ob-

    viously, to be added into Keplers equation it has been necessary to rotate bodycoordinates onto the Saturn-centred equatorial inertial frame.

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to non uniform mass of Saturn

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    17

  • 0 0.5 1 1.5 2 2.5 3 3.5410267.986

    410267.988

    410267.990

    410267.992

    410267.994

    410267.996

    410267.998

    410268.000

    410268.002

    410268.004semimajor axis variation

    [km]

    days

    0 0.5 1 1.5 2 2.5 3 3.50.21936874

    0.21936875

    0.21936876

    0.21936877

    0.21936878

    0.21936879

    0.21936880

    0.21936881eccentricity variation

    []

    days

    18

  • 0 0.5 1 1.5 2 2.5 3 3.520.2699988

    20.2699990

    20.2699992

    20.2699994

    20.2699996

    20.2699998

    20.2700000

    20.2700002inclination variation

    [deg]

    days

    0 0.5 1 1.5 2 2.5 3 3.514.99999

    15.00000

    15.00000

    15.00001

    15.00001

    15.00002

    15.00002

    15.00003

    15.00003

    15.00004pericentre anomaly variation

    [deg]

    days

    19

  • 0 0.5 1 1.5 2 2.5 3 3.514.999980

    14.999982

    14.999984

    14.999986

    14.999988

    14.999990

    14.999992

    14.999994

    14.999996

    14.999998

    15.000000ascending node anomaly variation

    [deg]

    days

    3.1.4 All perturbations

    Hereby the whole set of perturbation is taken into account.

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to the whole perturbation set

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    20

  • 0 0.5 1 1.5 2 2.5 3 3.5410263

    410264

    410265

    410266

    410267

    410268

    410269semimajor axis variation

    [km]

    days

    0 0.5 1 1.5 2 2.5 3 3.50.219368

    0.219370

    0.219372

    0.219374

    0.219376

    0.219378

    0.219380

    0.219382

    0.219384

    0.219386

    0.219388eccentricity variation

    []

    days

    21

  • 0 0.5 1 1.5 2 2.5 3 3.520.2699

    20.27

    20.2701

    20.2702

    20.2703

    20.2704inclination variation

    [deg]

    days

    0 0.5 1 1.5 2 2.5 3 3.514.994

    14.995

    14.996

    14.997

    14.998

    14.999

    15

    15.001pericentre anomaly variation

    [deg]

    days

    22

  • 0 0.5 1 1.5 2 2.5 3 3.514.9993

    14.9994

    14.9995

    14.9996

    14.9997

    14.9998

    14.9999

    15

    15.0001

    15.0002

    15.0003ascending node anomaly variation

    [deg]

    days

    3.2 Earth revolution orbit period

    Revolution year orbit period has been approximated to Gregorian year of 365mean solar days.

    3.2.1 Solar wind pressure

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to solar wind pressure

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    23

  • 0 50 100 150 200 250 300 350 400410263

    410264

    410265

    410266

    410267

    410268

    410269

    410270semimajor axis variation

    [km]

    days

    0 50 100 150 200 250 300 350 4000.219000

    0.219500

    0.220000

    0.220500

    0.221000

    0.221500

    0.222000

    0.222500

    0.223000eccentricity variation

    []

    days

    24

  • 0 50 100 150 200 250 300 350 40020.265

    20.27

    20.275

    20.28

    20.285

    20.29

    20.295

    20.3

    20.305inclination variation

    [deg]

    days

    0 50 100 150 200 250 300 350 40014.3

    14.4

    14.5

    14.6

    14.7

    14.8

    14.9

    15pericentre anomaly variation

    [deg]

    days

    25

  • 0 50 100 150 200 250 300 350 40014.995

    15

    15.005

    15.01

    15.015

    15.02

    15.025ascending node anomaly variation

    [deg]

    days

    3.2.2 Influence of other bodies

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to the most influencing nearby bodies

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    26

  • 0 50 100 150 200 250 300 350 400410267.2

    410267.4

    410267.6

    410267.8

    410268.0

    410268.2

    410268.4

    410268.6

    410268.8semimajor axis variation

    [km]

    days

    0 50 100 150 200 250 300 350 4000.219200

    0.219400

    0.219600

    0.219800

    0.220000

    0.220200

    0.220400eccentricity variation

    []

    days

    27

  • 0 50 100 150 200 250 300 350 40020.267500

    20.268000

    20.268500

    20.269000

    20.269500

    20.270000

    20.270500

    20.271000inclination variation

    [deg]

    days

    0 50 100 150 200 250 300 350 40014.96500

    14.97000

    14.97500

    14.98000

    14.98500

    14.99000

    14.99500

    15.00000

    15.00500pericentre anomaly variation

    [deg]

    days

    28

  • 0 50 100 150 200 250 300 350 40014.99300

    14.99400

    14.99500

    14.99600

    14.99700

    14.99800

    14.99900

    15.00000

    15.00100ascending node anomaly variation

    [deg]

    days

    3.2.3 Non uniformity of Saturn mass distribution

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to non uniform mass of Saturn

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    29

  • 0 50 100 150 200 250 300 350 400410267.980

    410268.000

    410268.020

    410268.040

    410268.060

    410268.080

    410268.100

    410268.120

    410268.140

    410268.160semimajor axis variation

    [km]

    days

    0 50 100 150 200 250 300 350 4000.21936870

    0.21936880

    0.21936890

    0.21936900

    0.21936910

    0.21936920

    0.21936930

    0.21936940

    0.21936950

    0.21936960eccentricity variation

    []

    days

    30

  • 0 50 100 150 200 250 300 350 40020.2699988

    20.2699990

    20.2699992

    20.2699994

    20.2699996

    20.2699998

    20.2700000

    20.2700002inclination variation

    [deg]

    days

    0 50 100 150 200 250 300 350 40014.99950

    15.00000

    15.00050

    15.00100

    15.00150

    15.00200

    15.00250

    15.00300

    15.00350

    15.00400pericentre anomaly variation

    [deg]

    days

    31

  • 0 50 100 150 200 250 300 350 40014.997500

    14.998000

    14.998500

    14.999000

    14.999500

    15.000000ascending node anomaly variation

    [deg]

    days

    3.2.4 All perturbations

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to the whole perturbation set

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    32

  • 0 50 100 150 200 250 300 350 400410263

    410264

    410265

    410266

    410267

    410268

    410269semimajor axis variation

    [km]

    days

    0 50 100 150 200 250 300 350 4000.219000

    0.219500

    0.220000

    0.220500

    0.221000

    0.221500

    0.222000

    0.222500eccentricity variation

    []

    days

    33

  • 0 50 100 150 200 250 300 350 40020.265

    20.27

    20.275

    20.28

    20.285

    20.29

    20.295

    20.3

    20.305inclination variation

    [deg]

    days

    0 50 100 150 200 250 300 350 40014.4

    14.5

    14.6

    14.7

    14.8

    14.9

    15pericentre anomaly variation

    [deg]

    days

    34

  • 0 50 100 150 200 250 300 350 40014.995

    15

    15.005

    15.01

    15.015

    15.02

    15.025

    15.03

    15.035ascending node anomaly variation

    [deg]

    days

    35

  • 3.3 Saturn revolution orbit period

    Saturn revolution orbit period has been approximated to 29.7 earth years.

    3.3.1 Solar wind pressure

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to solar wind pressure

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    0 5 10 15 20 25 30410263

    410264

    410265

    410266

    410267

    410268

    410269

    410270semimajor axis variation

    [km]

    years

    36

  • 0 5 10 15 20 25 300.200000

    0.220000

    0.240000

    0.260000

    0.280000

    0.300000

    0.320000eccentricity variation

    []

    years

    0 5 10 15 20 25 30

    20.4

    20.6

    20.8

    21

    21.2

    21.4

    21.6inclination variation

    [deg]

    years

    37

  • 0 5 10 15 20 25 302

    4

    6

    8

    10

    12

    14

    16pericentre anomaly variation

    [deg]

    years

    0 5 10 15 20 25 3014.95

    15

    15.05

    15.1

    15.15

    15.2

    15.25

    15.3

    15.35

    15.4

    15.45ascending node anomaly variation

    [deg]

    years

    38

  • 3.3.2 Influence of other bodies

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to the most influencing nearby bodies

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    0 5 10 15 20 25 30410267.0

    410267.2

    410267.4

    410267.6

    410267.8

    410268.0

    410268.2

    410268.4

    410268.6

    410268.8semimajor axis variation

    [km]

    years

    39

  • 0 5 10 15 20 25 300.215000

    0.220000

    0.225000

    0.230000

    0.235000

    0.240000

    0.245000

    0.250000eccentricity variation

    []

    years

    0 5 10 15 20 25 3020.190000

    20.200000

    20.210000

    20.220000

    20.230000

    20.240000

    20.250000

    20.260000

    20.270000

    20.280000inclination variation

    [deg]

    years

    40

  • 0 5 10 15 20 25 3014.20000

    14.30000

    14.40000

    14.50000

    14.60000

    14.70000

    14.80000

    14.90000

    15.00000

    15.10000

    15.20000pericentre anomaly variation

    [deg]

    years

    0 5 10 15 20 25 3014.75000

    14.80000

    14.85000

    14.90000

    14.95000

    15.00000

    15.05000

    15.10000ascending node anomaly variation

    [deg]

    years

    41

  • 3.3.3 Non uniformity of Saturn mass distribution

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to non uniform mass of Saturn

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    0 5 10 15 20 25 30410267.000

    410268.000

    410269.000

    410270.000

    410271.000

    410272.000

    410273.000

    410274.000semimajor axis variation

    [km]

    years

    42

  • 0 5 10 15 20 25 300.21936500

    0.21937000

    0.21937500

    0.21938000

    0.21938500

    0.21939000

    0.21939500

    0.21940000eccentricity variation

    []

    years

    0 5 10 15 20 25 3020.2699988

    20.2699990

    20.2699992

    20.2699994

    20.2699996

    20.2699998

    20.2700000

    20.2700002inclination variation

    [deg]

    years

    43

  • 0 5 10 15 20 25 3014.98000

    15.00000

    15.02000

    15.04000

    15.06000

    15.08000

    15.10000

    15.12000

    15.14000pericentre anomaly variation

    [deg]

    years

    0 5 10 15 20 25 3014.930000

    14.940000

    14.950000

    14.960000

    14.970000

    14.980000

    14.990000

    15.000000

    15.010000ascending node anomaly variation

    [deg]

    years

    44

  • 3.3.4 All perturbations

    10.5

    00.5

    1

    x 106

    1

    0.5

    0

    0.5

    1

    x 106

    101

    x 105

    [km]

    Orbit variation due to the whole perturbation set

    [km]

    [km]

    Titans orbitFinal orbitPerturbed orbit

    0 5 10 15 20 25 30410180

    410190

    410200

    410210

    410220

    410230

    410240

    410250

    410260

    410270semimajor axis variation

    [km]

    years

    45

  • 0 5 10 15 20 25 300.210000

    0.220000

    0.230000

    0.240000

    0.250000

    0.260000

    0.270000

    0.280000

    0.290000eccentricity variation

    []

    years

    0 5 10 15 20 25 30

    20.4

    20.6

    20.8

    21

    21.2

    21.4

    21.6inclination variation

    [deg]

    years

    46

  • 0 5 10 15 20 25 300

    5

    10

    15pericentre anomaly variation

    [deg]

    years

    0 5 10 15 20 25 3014.9

    15

    15.1

    15.2

    15.3

    15.4

    15.5

    15.6ascending node anomaly variation

    [deg]

    years

    47

  • 4 Considerations about numerical and generalissues encountered

    To perform integration of Keplers equation with perturbation term, it has beenopted for the Matlab R ode113 algorithm, a variable step Adams method, muchmore efficient and precise with respect to the usual Runge-Kutta method inode45. Relative and absolute tolerances has been set to 1010, while maintain-ing Matlab R s default 104 value was not enough neither to grant convergenceof the method.Computational times of course strictly depends on the used machine. In ourcase, for an Intel R Core 2 Duo dual core processor clocked at 2.4 GHz (note thatMatlab R resorts only on a single core processing capability) times requested toperform restricted two body problem orbit, velocities, times and a single caseof perturbation, or all together at the same time, are hereby listed:

    final orbit period: around 15 seconds Earth revolution orbit period: around 70 seconds Saturn revolution orbit period: around 1 hour and 45 minutes

    A minor note to users relying on a UNIX derived operative system and Matlab R:with version R2013a on both GNU/Linux Ubuntu 13.10 and Mac OS X 10.9,encoding problems for 3D plots using standard OpenGL graphic libraries raised,making Matlab Rto crash. In order to avoid this problem, one should resort tothe implemented zbuffer graphical encoding.

    48

  • 5 Block diagram

    Find the date of departure (May 7, 2013)

    Change of inclination and ascending node

    anomaly

    Departure hyperbola

    First maneuver

    First intersection (May 11, 2013)

    Second intersection

    Find intersections

    Change of pericentre anomaly

    Arrival at apocentre of orbit (May 15, 2013)

    Final orbit around Saturn (May 19, 2013)

    Perturbation analysis

    One period (3 days)

    Third bodies effects

    Non uniformity of Saturn mass distribution

    Solar wind pressure

    All perturbations considered

    Initial orbit around Titan (May 3, 2013)

    Hohmann maneuver

    Earth revolution orbit period (365 days)

    Saturn revolution orbit period (29.7 Earth years)

    Solar wind pressure Solar wind pressure

    Third bodies effects Third bodies effects

    Non uniformity of Saturn mass distribution

    Non uniformity of Saturn mass distribution

    All perturbations considered

    All perturbations considered

    49

  • References

    [1] Bate, Mueller, White (1971), Fundamentals of astrodynamics, Dover Publi-cations Inc., New York.

    [2] Curtis (2005), Orbital mechanics for engineering students, Elsevier, Oxford.

    [3] Wikipedia website.

    50