PREFACE APPENDIX A.4O: Advanced Metallurgical Assessment … · 2015. 10. 13. · A.4c Feasibility...

328
CASINO PROJECT | Supplementary Information Report | Mar 2015 VOLUME A.II: PROJECT INTRODUCTION & OVERVIEW Introduction First Nations and Community Consultation A.4 Project Description A.3 Project Location A.1A Concordance Table to the Executive Committee’s Request for Supplementary Information A.2A Traditional Knowledge Bibliography A.1 A.2 A.5 Effects Assessment Methodology A.4A Tailings Management Facility Construction Material Alternatives A.4B Information on Alternative Access Road Alignments A.4C Feasibility Design of the Heap Leach Facility A.4D Report on the Feasibility Design of the Tailings Management Facility A.4F Waste Storage Area and Stockpiles Feasibility Design A.4E Results of Additional Lab Testing of Leach Ore A.4G Updated Hydrometeorology Report A.4H Cold Climate Passive Treatment Systems Literature Review A.4I Open Pit Geotechnical Design A.4L Revised Tailings Management Facility Seepage Assessment A.4M Processing Flow Sheets A.4N Scoping Level Assessment of Casino Property A.4O Advanced Metallurgical Assessment of the Casino Copper Gold Project A.4P Production of Environmental Tailings Samples for the Casino Deposit A.4Q Mine Site Borrow Materials Assessment Report A.4R Report on Laboratory Geotechnical Testing of Tailings Materials A.4J Laboratory Evaluation of the SO 2 /Air and Peroxide Process A.4K Metal Uptake in Northern Constructed Wetlands VOLUME A.II: PROJECT INTRODUCTION & OVERVIEW APPENDIX A.4O: Advanced Metallurgical Assessment of the Casino Copper Gold Project

Transcript of PREFACE APPENDIX A.4O: Advanced Metallurgical Assessment … · 2015. 10. 13. · A.4c Feasibility...

  • CASINO PROJECT | Supplementary Information Report | Mar 2015

    Volume A.ii: Project introduction & oVerView

    Volume A.iii: BioPhysicAl VAlued comPonents

    Volume A.V: AdditionAl yesAA reQuirements

    Volume A.iV: socio-economic VAlued comPonents

    Introduction Employment and Income

    Employability

    Community Vitality

    Community Infrastructure and Services

    Economic Development and Business Sector

    Cultural Continuity

    Land Use and Tenure

    First Nations and Community Consultation

    A.4 Project Description

    A.3 Project Location

    A.5 Effects Assessment Methodology

    A.1A Concordance Table to the Executive Committee’s Request for Supplementary Information

    A.4A Tailings Management Facility Construction Material Alternatives

    A.2A Traditional Knowledge Bibliography

    A.4B Information on Alternative Access Road Alignments

    A.4c Feasibility Design of the Heap Leach Facility

    A.4d Report on the Feasibility Design of the Tailings Management Facility

    A.4F Waste Storage Area and Stockpiles Feasibility Design

    A.4e Results of Additional Lab Testing of Leach Ore

    A.4G Updated Hydrometeorology Report

    A.4h Cold Climate Passive Treatment Systems Literature Review

    A.4i Open Pit Geotechnical Design

    A.4l Revised Tailings Management Facility Seepage Assessment

    A.4m Processing Flow Sheets

    A.4n Scoping Level Assessment of Casino Property

    A.4o Advanced Metallurgical Assessment of the Casino Copper Gold Project

    A.4P Production of Environmental Tailings Samples for the Casino Deposit

    A.4Q Mine Site Borrow Materials Assessment Report

    A.4r Report on Laboratory Geotechnical Testing of Tailings Materials

    A.4j Laboratory Evaluation of the SO2/Air and Peroxide Process

    A.4K Metal Uptake in Northern Constructed Wetlands

    Effects of the Environment on the Project

    Accidents and Malfunctions

    Environmental Management

    Environmental Monitoring Plans

    Conclusions

    References

    Waste and Hazardous Materials Management Plan

    Spill Contingency Management Plan

    Sediment and Erosion Control Management Plan

    Invasive Species Management Plan

    ML/ARD Management Plan

    Liquid Natural Gas Management Plan

    Socio-Economic Management Plan

    Road Use Plan

    Economic Impacts of the Casino Mine Project

    Heritage Resources Assessment Areas

    Heritage Sites Summary

    Terrain Features

    Water Quality

    Air Quality

    Noise

    Fish and AquaticResources

    Wildlife

    Rare Plants and Vegetation Health

    Variability Water Balance Model Report

    Water Quality Predictions Report

    Potential Effects of Climate Change on the Variability Water Balance

    Updated Appendix B5 to Appendix 7A

    2008 Environmental Studies Report: Final

    Casino Mine Site Borrow Sites ML/ARD Potential

    2013-2014 Groundwater Data Report

    Emissions Inventory for Construction and Operations

    Casino Geochemical Source Term Development: Appendix B

    Extension of Numerical Groundwater Modelling to include Dip Creek Watershed

    The Effect of Acid Rock Drainage on Casino Creek

    Casino Kinetic Testwork 2014 Update for Ore, Waste Rock and Tailings

    Preliminary Risk Assessment Metal Leaching and Acid Rock Drainage

    Toxicity Testing Reports

    Appendix A2 to Casino Waste Rock and Ore Geochemical Static Test As-sessment Report: Cross-Sections

    Updated Fish Habitat Offsetting Plan

    Wildlife Mitigation and Monitoring Plan V.1.2.

    Moose Late Winter Habitat Suitability Report

    Fish Habitat Evaluation: Instream Flow and Habitat Evaluation Procedure Study

    Wildlife Baseline Report V.2

    A.1

    A.2

    A.6

    A.7

    A.13 A.20

    A.21

    A.22

    A.23

    A.24

    A.25

    A.14

    A.16

    A.17

    A.15

    A.18

    A.19

    A.7A

    A.22A

    A.22B

    A.22c

    A.22d

    A.22h

    A.22G

    A.22F

    A.22e

    A.7B

    A.7c

    A.13A

    A.18A

    A.18B

    A.7d

    A.7e

    A.7K

    A.7m

    A.8A

    A.7l

    A.7n

    A.7F

    A.7i

    A.7j

    A.7G

    A.7h

    A.8

    A.9

    A.10

    A.12

    A.11

    A.10A

    A.12A

    A.12c

    A.10B

    A.12B

    Volume A.i: PREFACE

    Volume A.ii: Project introduction & oVerView

    Volume A.iii: BioPhysicAl VAlued comPonents

    Volume A.V: AdditionAl yesAA reQuirements

    Volume A.iV: socio-economic VAlued comPonents

    Introduction Employment and Income

    Employability

    Community Vitality

    Community Infrastructure and Services

    Economic Development and Business Sector

    Cultural Continuity

    Land Use and Tenure

    First Nations and Community Consultation

    A.4 Project Description

    A.3 Project Location

    A.5 Effects Assessment Methodology

    A.1A Concordance Table to the Executive Committee’s Request for Supplementary Information

    A.4A Tailings Management Facility Construction Material Alternatives

    A.2A Traditional Knowledge Bibliography

    A.4B Information on Alternative Access Road Alignments

    A.4c Feasibility Design of the Heap Leach Facility

    A.4d Report on the Feasibility Design of the Tailings Management Facility

    A.4F Waste Storage Area and Stockpiles Feasibility Design

    A.4e Results of Additional Lab Testing of Leach Ore

    A.4G Updated Hydrometeorology Report

    A.4h Cold Climate Passive Treatment Systems Literature Review

    A.4i Open Pit Geotechnical Design

    A.4l Revised Tailings Management Facility Seepage Assessment

    A.4m Processing Flow Sheets

    A.4n Scoping Level Assessment of Casino Property

    A.4o Advanced Metallurgical Assessment of the Casino Copper Gold Project

    A.4P Production of Environmental Tailings Samples for the Casino Deposit

    A.4Q Mine Site Borrow Materials Assessment Report

    A.4r Report on Laboratory Geotechnical Testing of Tailings Materials

    A.4j Laboratory Evaluation of the SO2/Air and Peroxide Process

    A.4K Metal Uptake in Northern Constructed Wetlands

    Effects of the Environment on the Project

    Accidents and Malfunctions

    Environmental Management

    Environmental Monitoring Plans

    Conclusions

    References

    Waste and Hazardous Materials Management Plan

    Spill Contingency Management Plan

    Sediment and Erosion Control Management Plan

    Invasive Species Management Plan

    ML/ARD Management Plan

    Liquid Natural Gas Management Plan

    Socio-Economic Management Plan

    Road Use Plan

    Economic Impacts of the Casino Mine Project

    Heritage Resources Assessment Areas

    Heritage Sites Summary

    Terrain Features

    Water Quality

    Air Quality

    Noise

    Fish and AquaticResources

    Wildlife

    Rare Plants and Vegetation Health

    Variability Water Balance Model Report

    Water Quality Predictions Report

    Potential Effects of Climate Change on the Variability Water Balance

    Updated Appendix B5 to Appendix 7A

    2008 Environmental Studies Report: Final

    Casino Mine Site Borrow Sites ML/ARD Potential

    2013-2014 Groundwater Data Report

    Emissions Inventory for Construction and Operations

    Casino Geochemical Source Term Development: Appendix B

    Extension of Numerical Groundwater Modelling to include Dip Creek Watershed

    The Effect of Acid Rock Drainage on Casino Creek

    Casino Kinetic Testwork 2014 Update for Ore, Waste Rock and Tailings

    Preliminary Risk Assessment Metal Leaching and Acid Rock Drainage

    Toxicity Testing Reports

    Appendix A2 to Casino Waste Rock and Ore Geochemical Static Test As-sessment Report: Cross-Sections

    Updated Fish Habitat Offsetting Plan

    Wildlife Mitigation and Monitoring Plan V.1.2.

    Moose Late Winter Habitat Suitability Report

    Fish Habitat Evaluation: Instream Flow and Habitat Evaluation Procedure Study

    Wildlife Baseline Report V.2

    A.1

    A.2

    A.6

    A.7

    A.13 A.20

    A.21

    A.22

    A.23

    A.24

    A.25

    A.14

    A.16

    A.17

    A.15

    A.18

    A.19

    A.7A

    A.22A

    A.22B

    A.22c

    A.22d

    A.22h

    A.22G

    A.22F

    A.22e

    A.7B

    A.7c

    A.13A

    A.18A

    A.18B

    A.7d

    A.7e

    A.7K

    A.7m

    A.8A

    A.7l

    A.7n

    A.7F

    A.7i

    A.7j

    A.7G

    A.7h

    A.8

    A.9

    A.10

    A.12

    A.11

    A.10A

    A.12A

    A.12c

    A.10B

    A.12B

    Volume A.i: PREFACE

    VOLUME A.II: PROJECT INTRODUCTION & OVERVIEW

    APPENDIX A.4O: Advanced Metallurgical Assessment of the Casino Copper Gold Project

  • ADVANCED METALLURGICAL ASSESSMENT OF THE

    CASINO COPPER GOLD PROJECT

    WHITEHORSE, YUKON

    KM3512

    December 20, 2012

    Work Performed on behalf of Western Copper and Gold Corporation

  • 1

    1.0 Introduction

    Western Copper and Gold Corporation is currently conducting a feasibility

    assessment of the Casino Project, located 300 kilometres northwest of

    Whitehorse, Yukon. The deposit is described as porphyry mineralization with

    geological zones of oxide, supergene, and hypogene mineralization.

    Previous test programs have developed a flotation process to extract a bulk

    copper-molybdenum and gold concentrate. This program of study was intended to

    produce tailings samples for environmental testing and investigate the copper-

    molybdenum separation process. The program also provided an opportunity to

    evaluate the process using fresh hyrogene drill core. Many of the previous test

    programs had been conducted on core sample that had been in storage for a long

    time and could have possibly oxidized.

    This study was commissioned at the request of Dr. Paul West-Sells, President and

    CEO at Western Copper and Gold Corporation. On behalf of Western Copper

    and Gold Corporation, Mr. Jeff Austin of International Metallurgical and

    Environmental provided technical input on the design of the program. The

    objectives of this program, as described by Mr. Austin, were as follows:

    - Prepare six composites for laboratory and pilot scale testing; three

    composites representing geological sub-types of the hypogene zone were

    designated for laboratory testing. Two separate composites of hypogene

    and supergene fresh drill core sample were prepared for pilot scale testing.

    A third commissioning composite for the pilot plant was also prepared

    from old reject sample.

    - Evaluate the metallurgical performance of the hypogene composites using

    batch and locked cycle flotation tests.

  • 2

    - Process the pilot composites using the developed flowsheet. From the

    pilot testing, obtain samples of tailings and concentrate for subsequent

    testing.

    - Conduct preliminary copper-molybdenum testing on the concentrate

    produced from the pilot campaign.

    - Assay the concentrates for minor payable and deleterious elements.

    The following technical brief summarizes the key technical points of the program.

    All of the test data generated through the execution of this program can be

    reviewed in a series of appendices attached to this brief. The appendices are

    arranged as follows:

    Appendix I - Sample Origin

    Appendix II - Flotation Test Data

    Appendix III - Particle Sizing Data

    Appendix IV - Special Assay Data

    Appendix V - Pilot Plant Data

  • 3

    2.0 Properties of the Hypogene Composites

    The chemical content of composite samples were determined by standard

    assaying techniques. The results are summarized in Table 1.

    Copper averaged about 0.17 percent for all of the composites. This grade was

    slightly lower than some of the other samples previously investigated. Weak acid

    soluble copper was low for the hypogene composites, averaging about 3 percent

    of the total copper. This level is very low, indicating the samples should respond

    well to the developed copper flotation process.

    Gold in the samples ranged between 0.18 and 0.22 g/tonne. Molybdenum in the

    sample was relatively high ranging from 0.019 to 0.071 percent by weight. The

    high relative levels of molybdenum to copper should result in high levels of

    molybdenum in the bulk copper concentrate.

    The IX and WR samples averaged about 2.3 percent by weight sulphur.

    Comparatively, the PP Composite had relatively low levels of sulphur. Although

    no mineralogical analyses were conducted, past programs would suggest that

    pyrite would account for most of the remaining sulphur in the sample.

    On this basis, anticipated pyrite levels in the IX and WR Composites would be

    high relative to the copper sulphides in the sample. Careful control of flotation

    pulp conditions will be required to optimize pyrite rejection from the concentrate.

  • 4

    PHOTOMICROGRAPH 1CASINO – BULK 1ST CLEANER TAILING V

    KM3512 Test 19

    Unsized

    Gn

    *Cp-Chalcopyrite, Py-Pyrite, Gn-Gangue

    Cp

    Py

    TABLE 1CHEMICAL COMPOSITION – LABORATORY HYPOGENE COMPOSITES

    Cu Mo Fe Au CuOx CuCN S C Ag

    PP Composite Head 1 0.13 0.031 2.97 0.22 0.004 0.008 0.74 0.46 1

    PP Composite Head 2 0.14 0.029 2.92 0.22 0.003 0.007 0.74 0.45 1

    Average 0.14 0.030 2.95 0.22 0.004 0.008 0.74 0.45 1

    IX Composite Head 1 0.17 0.069 2.42 0.21 0.006 0.011 2.10 0.31 2

    IX Composite Head 2 0.17 0.073 2.35 0.22 0.005 0.012 2.02 0.31 2

    Average 0.17 0.071 2.39 0.22 0.006 0.012 2.06 0.31 2

    WR Composite Head 1 0.19 0.018 2.53 0.20 0.004 0.013 2.49 0.16 1

    WR Composite Head 2 0.18 0.019 2.47 0.15 0.005 0.013 2.42 0.16 1

    Average 0.19 0.019 2.50 0.18 0.005 0.013 2.46 0.16 1

    SampleAssay - percent or g/tonne

    Note: Au and Ag are shown in g/tonne, all others are in percent.

  • 5

    3.0 Flotation Testing – Hypogene Composites

    3.1 Rougher Test Results

    A total of 14 rougher flotation tests were conducted in this program. The

    tests were used to establish the initial response of the composites using

    previously developed flotation conditions. Primary grind size and rougher

    pH were the two primary variables investigated. A summary of the test

    conditions and a graphical display of the results are shown in Figure 1.

    The following conclusions were reached when reviewing the test data:

    The results indicated that there was a negligible effect of primary

    grind size on copper rougher flotation response over the range of

    primary grind sizes tested; 150µm to 250µm K80.

    For the hypogene composites, copper in the feed was about 88 to

    95 percent recovered into the feed at a rougher mass recovery of

    about 8 to 10 percent. The performance of the samples appeared to

    be better than previously tested samples despite lower feed grades*.

    Rougher pH appeared to have an effect on the metallurgical

    performance. Tests conducted at higher pH had better rougher

    response curves. It is assumed that the pyrite in the feed was better

    depressed at higher pH allowing more aggressive copper sulphide

    flotation.

    Molybdenum recovery to the rougher concentrate was also highly

    variable. The samples had superior performance when compared

    to the other composites. Molybdenum was about 80 percent

    recovered from the feed into the rougher concentrate at 9 percent

    rougher mass recovery. Molybdenum flotation data is graphically

    displayed in Appendix IV, Figure IV-1.

    Gold recovery data was not generated for the rougher tests.

    * Quantitative mineralogy on ground feed samples should be conducted to determine if the fragmentation properties were morefavourable for these samples.

  • FIGURE 1ROUGHER TEST METALLURGICAL RESPONSE

    Feed

    155-254µm K80

    Nominal Rougher Test Conditions

    Note: Detailed test conditions can be found in Appendix II.

    RougherTail

    Bulk Rougher Circuit

    Bulk Rougher Concentrates

    6

    Stage pHReagents g/tonne

    FO 3418A 208

    Primary Grind 9.4 –11.5 10-30 - -

    Rougher 9.5 – 11.2 - 6-7 12-14

    PP Composite

    IX Composite

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 5 10 15

    Co

    pp

    er

    Re

    co

    very

    -p

    erc

    en

    t

    Concentrate Mass Recovery - percent

    KM3512-02 WR PG178 pH11

    KM3512-04 WR PG178 pH9.5

    KM3512-06 WR PG211 pH9.5

    KM3512-07 WR PG211 pH11

    WR Composite

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 2 4 6 8 10

    Co

    pp

    er

    Re

    co

    very

    -p

    erc

    en

    t

    Concentrate Mass Recovery - percent

    KM3512-05 IX PG178 pH11

    KM3512-08 IX PG234 pH11

    KM3512-09 IX PG234 pH9.5

    KM3512-26 IX PG155 pH11

    KM3512-27 IX PG187 pH11

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 2 4 6 8 10

    Co

    pp

    er

    Re

    co

    very

    -p

    erc

    en

    t

    Concentrate Mass Recovery - percent

    KM3512-01 PP PG178 pH11

    KM3512-03 PP PG178 pH9.5

    KM3512-10 PP PG254 pH11

    KM3512-11 PP PG254 pH9.5

    KM3512-28 PP PG216 pH11

  • 7

    3.2 Cleaner Test Results

    Based on the latest flowsheet configuration testing*, batch cleaner test

    utilized regrind on the first cleaner concentrate. The flowsheet is

    presented in Figure 2 along with a graphical presentation of the

    metallurgical results. The tests also investigated a lower pH in the cleaner

    circuit in an effort to improve molybdenum recovery.

    As shown in the top graph of the figure, copper grade and recovery

    performance was negatively affected by the reduction of pH in the cleaner.

    For molybdenum, there was no clear benefit to metallurgical performance

    by operating at a lower pH. It was, therefore, recommended to perform a

    locked cycle test at pH 11 in the cleaner circuit.

    A series of tests on IX Composite were performed to optimize the

    chemical conditions for the first cleaner regrind (Test 22) and a

    comparison to rougher regrind (Test 21). Both tests indicated an

    improvement in metallurgical performance for copper and molybdenum

    over the baseline test. Test 21 also indicated a slight metallurgical

    performance gain with the rougher regrind circuit. The operating and

    capital cost will be higher for the rougher regrind flowsheet compared to

    the first cleaner regrind circuit. Further testing would be required to

    confirm these test results.

    * KM3134 “Advance Process Development for Casino Copper Gold Project”, March 2012.

  • FIGURE 2BATCH CLEANER METALLURGICAL PERFORMANCE

    Note: Detailed test conditions can be found in Appendix II.

    8

    Cleaner Test Conditions

    211 - 254µm K80

    BulkConcentrate

    BulkCleaner

    Tails

    RougherTails

    Feed

    Batch Cleaner Test Performance - Copper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 5 10 15 20 25 30 35

    Co

    pp

    er

    Re

    co

    very

    -p

    erc

    en

    t

    Copper Concentrate Grade - percent

    KM3512-12 WR BaseKM3512-13 IX BaseKM3512-14 PP BaseKM3512-15 WR pH10 ClnrKM3512-16 IX pH10 ClnrKM3512-17 PP pH10 ClnrKM3512-21 IX Ro R/GKM3512-22 IX Repeat

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 2 4 6 8 10

    Mo

    lyd

    en

    um

    Re

    co

    very

    -p

    erc

    en

    t

    Molybdenum Concentrate Grade - percent

    KM3512-12 WR BaseKM3512-13 IX BaseKM3512-14 PP BaseKM3512-15 WR pH10 ClnrKM3512-16 IX pH10 ClnrKM3512-17 PP pH10 ClnrKM3512-21 IX Ro R/GKM3512-22 IX Repeat

    Batch Cleaner Test Performance - Molybdenum

    Stream pHReagents g/tonne

    FO 3418A 208

    Primary Grind 10.9-11.5 10 - -

    Rougher 11.1-11.5 - 6-8 12-16

    Cleaner 1 10.0-11.0 - 0-3 0-6

    Regrind 10.0-11.1 10 - -

    Cleaner 2-3 10.0-11.4 0 - 4 3-8 6-16

    21 - 36µm K80

    Bulk 1st

    Cleaner Tail

  • 9

    3.3 Locked Cycle Test Results

    A series of locked cycle tests were conducted in this program to establish

    the estimates of metallurgical performance anticipated from a continuous

    process. Both the first cleaner regrind and rougher regrind flowsheets

    were tested in locked cycle for all three composites. Figure 3 displays the

    rougher regrind flowsheet schematic used in these samples, along with a

    summary of test results.

    The first cleaner concentrate regrind data is displayed in Appendix IV,

    Figure IV-2. Overall the first cleaner regrind cycle tests did not perform

    as well. The reagent dosages in these tests did not appear to be full

    optimized as losses of copper were high in the cleaner tailings streams.

    Overall, the metallurgical performance of the rougher regrind flowsheet

    was very good. Copper in the feed was 89.9, 87.2 and 91.9 percent

    recovered into the bulk concentrate for IX, PP and WR Composites,

    respectively. The concentrate grades range between 18 and 25 percent

    copper. The concentrate grades were lower for IX and PP samples due to

    high levels of molybdenum in the concentrate. The WR Composite was

    also lower due to higher levels of pyrite*.

    Similarly, molybdenum was 78, 79 and 89 percent recovered into the bulk

    concentrates. Molybdenum grade ranged from 7.5 to 1.5 percent. Finally,

    gold recoveries ranged from 55 percent to 67 percent to the bulk

    concentrate.

    The apparent use of recently drilled sample has resulted in arguably better

    overall metallurgical performance. Additional mineralogy on these

    ground feed samples should be performed to verify that the copper and

    molybdenum characteristics for these samples are similar to previously

    tested composites. If the characteristics are the same, this would increase

    confidence that a gain in metallurgical performance will be realized by

    treating fresh ore.

    * The sulphur grades are high on this concentrate, perhaps indicating higher levels of pyrite.

  • FIGURE 3LOCKED CYCLE TEST RESULTS

    Global Composites

    Note: a) Detailed test conditions can be found in Appendix II.b) Au and Ag are shown in g/tonne, all others are in percent.

    10

    Locked Cycle Test Results

    FeedFeed

    BulkConcentrate

    211-254µm K80

    RougherTail

    1st CleanerTail

    31-32µm K80

    Stream pHReagents g/tonne

    FO 3418A 208

    Primary Grind 11.1-11.2 10-20 - -

    Rougher 11.0-11.2 - 7 14

    Regrind 11.0-11.1 10 - -

    Cleaners 11.0 4 8-11 16-22

    Summary of Conditions

    Weight Assay - percent or g/tonne Distribution - percent

    % Cu Mo Fe S Ag Au Cu Mo Fe S Ag Au

    KM3512-23 IX Composite

    Flotation Feed 100.0 0.17 0.079 2.3 1.84 2.2 0.22 100 100 100 100 100 100

    Bulk Con 0.8 18.6 7.484 27.0 34.8 126 15.6 89.9 77.9 9.4 15.5 46.5 57.3

    Bulk 1st Clnr Tail 4.9 0.10 0.181 8.5 8.13 5.0 0.57 2.9 11.4 18.0 21.9 11.1 12.5

    Bulk Ro Tail 94.2 0.01 0.009 1.8 1.22 1.0 0.07 7.2 10.7 72.6 62.6 42.4 30.1

    KM3512-24 PP Composite

    Flotation Feed 100.0 0.14 0.027 2.9 0.71 1.2 0.22 100 100 100 100 100 100

    Bulk Con 0.5 24.6 4.316 25.9 33.3 107 24.3 87.2 78.6 4.4 23.4 46.0 55.4

    Bulk 1st Clnr Tail 6.5 0.06 0.034 4.6 2.09 2.5 0.29 2.6 8.0 10.1 19.1 14.0 8.6

    Bulk Ro Tail 93.0 0.02 0.004 2.7 0.44 0.5 0.08 10.2 13.3 85.5 57.4 40.0 36.0

    KM3512-25 WR Composite

    Flotation Feed 100.0 0.20 0.017 2.5 2.50 2 0.21 100 100 100 100 100 100

    Bulk Con 1.0 17.5 1.502 24.9 38.8 82 13.5 91.9 89.4 10.5 16.1 53.8 67.2

    Bulk 1st Clnr Tail 5.9 0.11 0.013 13.0 13.9 5 0.36 3.1 4.3 30.9 32.7 16.8 10.0

    Bulk Ro Tail 93.1 0.01 0.001 1.6 1.37 1 0.05 4.9 6.4 58.6 51.2 29.4 22.8

    Product

  • 11

    4.0 Pilot Plant Testing

    Pilot plant testing was performed on three composites of Casino mineralization.

    The initial pilot plant calibration was conducted on a composite constructed from

    old sample from previous programs. The main campaigns were performed on two

    composites constructed from fresh drill core sample. The samples represented

    hypogene and supergene mineralization. Pilot runs P2 and P3 were on the PP

    Hypogene Composite, runs P4 and P5 were completed on the PP Supergene

    Composite.

    The primary objective of the pilot campaign was to produce tailings for

    environmental studies. Concentrate form the program was also used to

    investigate separation of copper and molybdenum. The flowsheet used to process

    the sample is shown in Figure 4, along with a summary of conditions and results.

    The primary mill was operated at a nominal 100 kg per hour; copper rougher

    flotation was performed in 6, 12 litre flotation cells. Pyrite flotation was

    conducted in another 6, 12 litre cells. Rougher concentrate was reground in a 2

    litre IsaMill and graded in a conventional first cleaner and column cell cleaner for

    stages two and three.

    Overall, the performance copper flotation circuit never stabilized. Copper

    recoveries from the feed to bulk concentrate ranged between 73 and 87; however,

    the concentrate grades were very low. The concentrates were very high in iron

    and sulphur, indicating pyrite as the principle diluent.

    The pyrite circuit used Potassium Amyl Xanthate (PAX) as the primary collector.

    The collector dosages were high to produce a low sulphur tailing required for the

    environmental sample. The PAX dosages were not optimized and it was likely

    that PAX was recycled to the copper circuit as part of the tailing water recycle.

    Elevated levels of PAX in the recycle would cause activation and flotation of

    pyrite in the copper circuit.

  • FIGURE 4PILOT PLANT PRODUCTION OF CONCENTRATE AND TAILINGS

    Pilot Plant Composites

    Note: a) Detailed test conditions can be found in Appendix V.b) Gold assays are in g/tonne, all others are in percent.

    12

    Bulk Concentrate Performance – Survey Periods

    Feed

    PyriteRougher

    BulkConcentrate

    Cu/MoRougher

    1st CleanerTail

    Stream pHReagents g/tonne

    FO 3418A 208 PAX

    Primary Grind 8.3-11.4 9 – 16 - - -

    Rougher 10.5-11.2 - 1-10 1-18 -

    Regrind 10.5-11.4 9-15 - - -

    Cleaners 9.2-11.4 - 1-8 0-17 -

    Pyrite Rougher 10.2-10.8 - - - 88-419

    Summary of Conditions

    PyriteConcentrate

    PyriteRougher

    Tail

    PG RG Cu Mo Au Cu Mo Au

    P2 167 21 9.9 0.54 8.7 77 59 66

    P2 216 31 16.5 0.53 14.8 73 43 56

    P2 180 43 8.8 0.38 9.1 76 53 76

    P2 221 129 21.5 0.59 22.5 75 24 62

    P3 242 187 10.9 1.11 10.9 84 67 73

    P3 253 51 7.5 1.05 9.7 86 75 80

    P3 280 60 5.8 0.90 7.1 87 75 75

    P3 - - 7.5 1.10 7.7 85 81 64

    P4 217 84 8.6 0.90 11 81 30 69

    P4 256 65 12.7 1.64 15.9 79 74 64

    P4 249 84 4.6 0.50 5.4 83 83 75

    P4 300 68 7.4 0.60 7.2 79 75 71

    P5 274 64 8.5 0.64 9.9 75 65 66

    P5 253 62 10 0.89 12.7 75 61 67

    P5 243 56 9.5 1.10 10.7 78 69 71

    P5 228 38 4.4 0.69 6.8 81 80 82

    Assay - percent of g/tonne Recovery - percentGrind Size mm K80Pilot

    Run

  • 13

    5.0 Copper – Molybdenum Separation

    The concentrate from the pilot plant was retreated to remove excess pyrite ahead

    of copper-molybdenum testing. This work was reported in pilot runs P6 to P8.

    While the concentrate grade improved, the bulk concentrate would be considered

    low grade.

    Despite the lower concentrate grade, the bulk concentrate from the P6 to P8

    campaigns was combined and a single cleaner test was conducted to evaluate the

    copper-molybdenum process. Conventional copper depression with Sodium

    Hydrosulphide (NaHS) and flotation with nitrogen was conducted. The

    flowsheet, reagent conditions and metallurgical balance for the test is displayed in

    Figure 5.

    As shown, the concentrate produced contained low levels of copper and was high

    grade. Molybdenum was 94 percent recovered into a concentrate grading 51

    percent molybdenite. This data indicates the molybdenum would respond well to

    a conventional molybdenum separation process.

  • FIGURE 5BATCH CLEANER METALLURGICAL PERFORMANCE

    Note: Detailed test conditions can be found in Appendix II.

    14

    Cleaner Test Conditions

    MolybdenumConcentrate

    BulkCleaner

    Tails

    CopperConcentrate

    Pilot BulkConcentrate

    Batch Cleaner Test Performance - Molybdenum

    63µm K80

    NaHS Fuel Oil MIBC Grind Cond. Float

    Feed - - - - - - 8.4 130

    Rougher 1 1680 20 - - 10 11 11.2 -580

    Regrind - - - 5 - - 8.9 -

    Cleaner 1 1400 60 60 - 7 8 10.7 -580

    Cleaner 2 1750 20 60 - 3 5 10.6 -575

    Cleaner 3 1750 12 60 - 3 3 10.7 -580

    Stage pH RedoxTime (minutes)Reagents Added g/tonne

    Mass

    percent Cu Mo Fe S Cu Mo Fe S

    Moly Concentrate 3.1 0.39 57.4 0.8 37.9 0.1 94.1 0.1 2.6

    Moly 2nd Clnr Tail 0.4 16.80 7.1 25.9 35.8 0.4 1.6 0.3 0.3

    Moly 1st Clnr Tail 2.7 17.80 1.2 30.3 38.4 2.9 1.7 2.5 2.3

    Moly Ro Concentrate 6.1 9.04 29.7 15.3 38.0 3.5 97.4 2.9 5.3

    Copper Concentrate 93.9 16.5 0.05 33.9 44.3 96.5 2.6 97.1 94.7

    Feed 100.0 16.0 1.87 32.8 43.9 100 100 100 100

    Assay - percent Distribution - percentProduct

  • 15

    6.0 Quality of the Concentrates

    The minor element concentrations of the concentrates were measured with

    element specific analyses to increase the accuracy. The results of the analyses are

    displayed for the composites tested by locked cycle in Table 2. To have sufficient

    sample to assay, cycles IV and V were combined. The following comments may

    be relevant when reviewing the table:

    - The bulk concentrates for some composites showed elevated levels of

    arsenic, lead and zinc. However, none of the levels measured would cause

    a significant barrier to marketability.

    - Silver levels in the bulk concentrate ranged from 82 to 126 g/tonne. At

    these levels, payment of silver might be possible.

    - The molybdenum concentrate was relatively free of deleterious elements.

    Arsenic, lead and zinc may be elements to reassess when more

    molybdenum concentrates become available. Rhenium in the concentrate

    was 134 g/tonne. See Appendix IV-Special Data for the Rhenium

    Certificate.

    - Fluorine assays were not reproducible and therefore not reported.

    Additional fluorine assays should be conducted when sample becomes

    available.

    - The minor element data should be reviewed by a specialist to provide

    specific advice on the current concentrate market.

  • 16

    Aluminum Al % Fusion ICP-OES 0.98 0.89 1.11 1.71

    Antimony Sb g/t 2 Acid ICP-OES 200 1000 70 100

    Arsenic As g/t 2 Acid ICP-OES 771 977 139 1659

    Bismuth Bi g/t 2 Acid ICP-OES 126 120 60 68

    Cadmium Cd g/t AR FAAS 70 120 50 30

    Calcium Ca % WR ICP-OES 0.38 0.20 0.15 0.06

    Carbon C % Leco 0.27 0.22 0.16 4.00

    Cobalt Co g/t AR FAAS 110 80 150 10

    Copper Cu % Titre 18.6 24.6 17.5 0.39

    Fluorine F g/t Fusion ISE 150 ND ND ND

    Gold Au g/t FA FAAS 15.6 24.3 13.5 1.85

    Iron Fe % AR FAAS 27.0 25.9 24.9 0.8

    Lead Pb g/t AR FAAS 400 740 240 240

    Magnesium Mg % Fusion ICP-OES 0.16 0.10 0.09

  • 17

    7.0 Conclusions and Recommendations

    The testing of three hypogene composites produced very good metallurgical

    performance, despite relatively low copper feed grades. On average, copper was

    90, 87 and 92 percent recovered into bulk concentrates for the IX, PP and WR

    composites, respectively. The concentrate grades were within expected ranges

    considering the high levels of molybdenum in the bulk concentrate. The WR

    Composite had lower concentrate grade perhaps due to pyrite.

    Molybdenum was also well recovered to the bulk concentrate at 78, 79 and 89

    percent for the IX, PP and WR Composites, respectively. The high relative grade

    of molybdenum to copper in the feed resulted in concentrates containing between

    1.5 and 7.5 percent molybdenum in the concentrate. The gold in the feed was 57,

    55 and 67 percent recovered to the bulk concentrates for IX, PP and WR

    Composites, respectively. These results were in line with previous results.

    The metallurgical performance of these fresh drill composites were better than

    previously tested hypogene composites constructed of old drill core sample.

    Mineralogical assessment of the ground feed samples is recommended. If the

    fragmentation properties are similar to previously tested samples performed on

    old core, this would increase confidence that these latest results should be

    expected when treating fresh ore.

    The best metallurgical results (quoted above) were produced with a rougher

    regrind flowsheet. The first cleaner concentrate regrind circuit locked cycle tests

    produced inferior results; however, the tests were not fully optimized for reagents

    in the cleaner circuit. This first cleaner regrind circuit has lower capital and

    operating cost and, as previously shown, can provide similar metallurgical results

    when fully optimized.

    The pilot recessing of the hypogene and supergene composites was completed to

    produce tailings sample for environmental testing. This objective was effectively

    completed with the addition of a pyrite rougher circuit after the bulk copper-

  • 18

    molybdenum and gold circuit. Tailings samples of each composite were shipped

    to the required third party testing groups.

    Unfortunately, there was insufficient sample to stabilize bulk concentrate

    production for subsequent copper and molybdenum testing. The concentrate was

    consistently contaminated with pyrite, resulting in low concentrate grades.

    As per normal plant practice, tailings water in the pilot was recycled to the

    primary grinding mill. The addition of a pyrite recovery circuit and reagent

    (PAX) to recover pyrite was believed to have been the source of the problem.

    In an effort to derive some basic copper-molybdenum separation data, the bulk

    concentrate was further cleaned to reject pyrite. This concentrate was combined

    tested using a conventional copper-molybdenum separation process. The results

    should be used with caution as the bulk concentrate was essentially

    unrepresentative due to the additional cleaning stages.

  • APPENDIX I – KM3512

    SAMPLE ORIGIN

  • 1

    1.0 Sample Origin

    On July 19, 2012, half drill core intervals from several drill holes were received at

    ALS Metallurgy Kamloops for testing. The total weight of the shipment was

    approximately 3,524 kg. The drill core was identified by drill hole and sample ID

    number. Each sample was weighed; Table I-1 displays the details of the samples

    received and their respective weights.

    Based on instructions from the client, select intervals were crushed and screened

    to 6 mesh in preparation for compositing. Five separate composites were

    constructed for testing; three hypogene composites for bench testing and two for

    pilot plant testing. The details of the composite construction are displayed in

    Table I-2.

    Not all of the drill core was used, some intact drill core intervals were retained in

    storage.

    The hypogene composites used for laboratory testing were homogenized and

    rotary split into 2 kg charges for metallurgical testing. The charges were sealed

    into plastic bags under nitrogen. These samples were stored frozen until their

    subsequent use in the test program. Representative head assays of the composites

    are displayed in Table I-3.

    The pilot plant samples were crushed and screened to pass 5 mm. The samples

    were blended with a mechanical loader using a cone and quartering method. The

    samples were stored in plastic totes at ambient temperature prior to processing in

    the pilot plant.

    A commissioning composite was constructed from old test sample. This material,

    approximately 1,353 kg, was used to calibrate the grinding and mass flow rates in

    the pilot plant.

  • 2

    I474982 CAS-088 91.00 92.62 1.62 4.0

    I474983 CAS-088 92.62 95.00 2.38 6.3

    I474984 CAS-088 95.00 98.00 3.00 7.7

    I474985 CAS-088 98.00 101.00 3.00 8.0

    I474986 CAS-088 101.00 102.31 1.31 3.7

    I474987 CAS-088 102.31 105.00 2.69 6.8

    I474988 CAS-088 105.00 108.00 3.00 7.7

    I474989 CAS-088 108.00 111.00 3.00 7.8

    I474990 CAS-088 111.00 114.00 3.00 7.5

    I474991 CAS-088 114.00 117.00 3.00 7.6

    I474992 CAS-088 117.00 120.00 3.00 7.8

    I474993 CAS-088 120.00 123.00 3.00 7.3

    I474994 CAS-088 123.00 125.00 2.00 5.5

    I474995 CAS-088 125.00 126.50 1.50 3.2

    I474996 CAS-088 126.50 129.00 2.50 6.9

    I474997 CAS-088 129.00 132.00 3.00 8.4

    I474998 CAS-088 132.00 135.00 3.00 7.8

    I474999 CAS-088 135.00 138.00 3.00 7.7

    I475000 CAS-088 138.00 141.00 3.00 8.4

    I477803 CAS-088 141.00 144.00 3.00 7.2

    I477804 CAS-088 144.00 147.00 3.00 9.0

    I477805 CAS-088 147.00 150.00 3.00 8.6

    I477806 CAS-088 150.00 153.00 3.00 7.0

    I477807 CAS-088 153.00 156.00 3.00 8.4

    I477808 CAS-088 156.00 159.00 3.00 7.1

    I477809 CAS-088 159.00 162.00 3.00 7.9

    I477810 CAS-088 162.00 165.00 3.00 7.5

    I477811 CAS-088 165.00 168.00 3.00 7.7

    I477812 CAS-088 168.00 171.00 3.00 8.1

    I477813 CAS-088 171.00 174.00 3.00 8.1

    I477814 CAS-088 174.00 177.00 3.00 8.1

    I477815 CAS-088 177.00 180.00 3.00 8.1

    I477816 CAS-088 180.00 183.00 3.00 7.9

    I477817 CAS-088 183.00 186.00 3.00 7.5

    I477818 CAS-088 186.00 189.00 3.00 7.5

    I477819 CAS-088 189.00 192.00 3.00 8.9

    I477820 CAS-088 192.00 195.00 3.00 8.0

    I477821 CAS-088 195.00 198.00 3.00 7.8

    I477822 CAS-088 198.00 201.00 3.00 7.4

    I477823 CAS-088 201.00 204.00 3.00 8.4

    I477824 CAS-088 204.00 207.00 3.00 8.2

    I477825 CAS-088 207.00 210.00 3.00 8.2

    I477826 CAS-088 210.00 213.00 3.00 7.6

    HoleSample From To Length Weight

    TABLE I-1

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

  • 3

    I477827 CAS-088 213.00 216.00 3.00 7.4

    I477828 CAS-088 216.00 219.00 3.00 7.5

    I477829 CAS-088 219.00 222.00 3.00 8.1

    I477830 CAS-088 222.00 225.00 3.00 7.9

    I477831 CAS-088 225.00 228.00 3.00 8.4

    I477832 CAS-088 228.00 231.00 3.00 8.2

    I477833 CAS-088 231.00 234.00 3.00 8.3

    I477834 CAS-088 234.00 237.00 3.00 8.2

    I477835 CAS-088 237.00 240.00 3.00 8.6

    I477836 CAS-088 240.00 243.00 3.00 8.7

    I477837 CAS-088 243.00 246.00 3.00 8.3

    I477838 CAS-088 246.00 249.00 3.00 7.0

    I477839 CAS-088 249.00 252.00 3.00 8.8

    I477840 CAS-088 252.00 255.00 3.00 9.2

    I477841 CAS-088 255.00 258.00 3.00 8.1

    I477842 CAS-088 258.00 261.00 3.00 7.8

    I477843 CAS-088 261.00 264.00 3.00 7.9

    I477844 CAS-088 264.00 267.00 3.00 7.5

    I477846 CAS-088 270.00 273.00 3.00 8.8

    I477847 CAS-088 273.00 276.00 3.00 8.5

    I477848 CAS-088 276.00 279.00 3.00 8.2

    I477849 CAS-088 279.00 282.00 3.00 8.3

    I477850 CAS-088 282.00 285.00 3.00 9.3

    I477853 CAS-088 285.00 288.00 3.00 7.9

    I477854 CAS-088 288.00 291.00 3.00 9.0

    I477855 CAS-088 291.00 294.00 3.00 8.4

    I477856 CAS-088 294.00 297.00 3.00 9.0

    I477857 CAS-088 297.00 300.00 3.00 7.7

    I477858 CAS-088 300.00 303.00 3.00 8.9

    I477859 CAS-088 303.00 306.00 3.00 7.6

    I477860 CAS-088 306.00 309.00 3.00 7.7

    I477861 CAS-088 309.00 311.81 2.81 7.7

    I477867 CAS-089 15.00 18.00 3.00 13.7

    I477868 CAS-089 18.00 21.00 3.00 13.7

    I477869 CAS-089 21.00 24.00 3.00 12.1

    I477870 CAS-089 24.00 27.00 3.00 14.9

    I477871 CAS-089 27.00 30.00 3.00 13.4

    I477872 CAS-089 30.00 33.00 3.00 13.2

    I477873 CAS-089 33.00 36.00 3.00 13.8

    I477874 CAS-089 36.00 39.00 3.00 13.8

    I477875 CAS-089 39.00 42.00 3.00 12.8

    I477876 CAS-089 42.00 45.00 3.00 7.5

    I477877 CAS-089 45.00 48.00 3.00 8.9

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 4

    I477878 CAS-089 48.00 51.00 3.00 8.1

    I477879 CAS-089 51.00 54.00 3.00 8.3

    I477880 CAS-089 54.00 57.00 3.00 6.6

    I477881 CAS-089 57.00 60.00 3.00 9.6

    I477882 CAS-089 60.00 63.00 3.00 7.7

    I477883 CAS-089 63.00 66.00 3.00 7.0

    I477884 CAS-089 66.00 69.00 3.00 7.3

    I477885 CAS-089 69.00 72.00 3.00 8.0

    I477886 CAS-089 72.00 75.00 3.00 5.0

    I477887 CAS-089 75.00 78.00 3.00 8.2

    I477888 CAS-089 78.00 81.00 3.00 7.6

    I477889 CAS-089 81.00 84.00 3.00 6.8

    I477890 CAS-089 84.00 87.00 3.00 7.7

    I477891 CAS-089 87.00 90.00 3.00 8.7

    I477892 CAS-089 90.00 93.00 3.00 8.1

    I477893 CAS-089 93.00 96.00 3.00 8.2

    I477894 CAS-089 96.00 99.00 3.00 7.9

    I477895 CAS-089 99.00 102.00 3.00 7.4

    I477896 CAS-089 102.00 105.00 3.00 7.8

    I477897 CAS-089 105.00 108.00 3.00 7.8

    I477898 CAS-089 108.00 111.00 3.00 7.8

    I477899 CAS-089 111.00 114.00 3.00 9.0

    I477900 CAS-089 114.00 117.00 3.00 7.0

    I477903 CAS-089 117.00 120.00 3.00 11.4

    I477904 CAS-089 120.00 123.00 3.00 6.3

    I477905 CAS-089 123.00 126.00 3.00 7.1

    I477906 CAS-089 126.00 129.00 3.00 7.9

    I477907 CAS-089 129.00 132.00 3.00 7.4

    I477908 CAS-089 132.00 135.00 3.00 7.7

    I477909 CAS-089 135.00 138.00 3.00 8.8

    I477910 CAS-089 138.00 141.00 3.00 8.0

    I477911 CAS-089 141.00 144.00 3.00 8.2

    I477912 CAS-089 144.00 147.00 3.00 7.5

    I477913 CAS-089 147.00 150.00 3.00 8.5

    I477914 CAS-089 150.00 153.00 3.00 7.8

    I477915 CAS-089 153.00 156.00 3.00 7.4

    I477916 CAS-089 156.00 159.00 3.00 8.4

    I477917 CAS-089 159.00 162.00 3.00 8.1

    I477918 CAS-089 162.00 165.00 3.00 7.9

    I477920 CAS-089 168.00 171.00 3.00 8.3

    I477921 CAS-089 171.00 174.00 3.00 7.5

    I477922 CAS-089 174.00 177.00 3.00 8.2

    I477923 CAS-089 177.00 180.00 3.00 8.4

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 5

    I477924 CAS-089 180.00 183.00 3.00 7.5

    I477925 CAS-089 183.00 186.00 3.00 8.5

    I477926 CAS-089 186.00 189.00 3.00 9.1

    I477927 CAS-089 189.00 190.50 1.50 3.6

    I477928 CAS-089 190.50 193.50 3.00 7.9

    I477929 CAS-089 193.50 196.50 3.00 9.0

    I477930 CAS-089 196.50 199.50 3.00 7.7

    I477931 CAS-089 199.50 202.50 3.00 8.5

    I477932 CAS-089 202.50 205.50 3.00 7.8

    I477933 CAS-089 205.50 208.50 3.00 8.3

    I477934 CAS-089 208.50 211.50 3.00 8.4

    I477935 CAS-089 211.50 214.50 3.00 8.1

    I477936 CAS-089 214.50 217.50 3.00 8.2

    I477937 CAS-089 217.50 220.50 3.00 7.5

    I477938 CAS-089 220.50 223.50 3.00 7.9

    I477939 CAS-089 223.50 226.50 3.00 8.8

    I477940 CAS-089 226.50 229.50 3.00 7.7

    I477941 CAS-089 229.50 232.50 3.00 7.4

    I477942 CAS-089 232.50 235.50 3.00 9.0

    I477943 CAS-089 235.50 238.50 3.00 7.9

    I477944 CAS-089 238.50 241.50 3.00 8.9

    I477945 CAS-089 241.50 244.50 3.00 8.3

    I477946 CAS-089 244.50 246.25 1.75 5.4

    I477947 CAS-089 246.25 248.00 1.75 3.9

    I477948 CAS-089 248.00 251.00 3.00 8.6

    I477949 CAS-089 251.00 254.00 3.00 8.1

    I477950 CAS-089 254.00 257.00 3.00 7.9

    I477953 CAS-089 257.00 260.00 3.00 7.8

    I477954 CAS-089 260.00 263.00 3.00 8.6

    I477956 CAS-089 266.00 269.00 3.00 8.2

    I477957 CAS-089 269.00 272.00 3.00 7.3

    I477958 CAS-089 272.00 275.00 3.00 8.9

    I477959 CAS-089 275.00 278.00 3.00 8.3

    I477960 CAS-089 278.00 281.00 3.00 9.0

    I477961 CAS-089 281.00 284.00 3.00 8.3

    I477962 CAS-089 284.00 287.00 3.00 8.0

    I477963 CAS-089 287.00 290.00 3.00 8.5

    I477964 CAS-089 290.00 293.00 3.00 8.7

    I477965 CAS-089 293.00 296.00 3.00 7.6

    I477966 CAS-089 296.00 299.00 3.00 8.4

    I477967 CAS-089 299.00 302.00 3.00 9.2

    I477968 CAS-089 302.00 305.00 3.00 9.0

    I477969 CAS-089 305.00 308.00 3.00 8.0

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 6

    I477970 CAS-089 308.00 311.00 3.00 8.1

    I477971 CAS-089 311.00 314.00 3.00 7.8

    I477972 CAS-089 314.00 317.00 3.00 8.5

    I477973 CAS-089 317.00 320.00 3.00 8.6

    I477974 CAS-089 320.00 323.00 3.00 8.5

    I477975 CAS-089 323.00 326.00 3.00 9.1

    I477976 CAS-089 326.00 329.00 3.00 9.1

    I477977 CAS-089 329.00 330.50 1.50 4.0

    I477978 CAS-089 330.50 332.23 1.73 4.9

    I477992 CAS-090 40.00 43.00 3.00 7.9

    I477995 CAS-090 49.00 52.00 3.00 8.2

    I479328 CAS-090 141.10 144.00 2.90 8.0

    I479329 CAS-090 144.00 147.00 3.00 8.3

    I479330 CAS-090 147.00 150.00 3.00 8.9

    I479331 CAS-090 150.00 153.00 3.00 8.9

    I479332 CAS-090 153.00 156.00 3.00 13.2

    I479333 CAS-090 156.00 159.00 3.00 5.9

    I479334 CAS-090 159.00 162.00 3.00 9.2

    I479335 CAS-090 162.00 165.00 3.00 8.7

    I479336 CAS-090 165.00 168.00 3.00 9.1

    I479337 CAS-090 168.00 171.00 3.00 9.5

    I479338 CAS-090 171.00 174.00 3.00 6.6

    I479339 CAS-090 174.00 177.00 3.00 9.9

    I479340 CAS-090 177.00 180.00 3.00 8.5

    I479341 CAS-090 180.00 183.00 3.00 9.7

    I479342 CAS-090 183.00 186.00 3.00 9.1

    I479343 CAS-090 186.00 189.00 3.00 8.6

    I479344 CAS-090 189.00 192.00 3.00 9.1

    I479345 CAS-090 192.00 195.00 3.00 8.8

    I479346 CAS-090 195.00 198.00 3.00 8.4

    I479347 CAS-090 198.00 201.00 3.00 8.7

    I479348 CAS-090 201.00 204.00 3.00 9.0

    I479349 CAS-090 204.00 207.00 3.00 9.2

    I479350 CAS-090 207.00 209.00 2.00 5.2

    I479353 CAS-090 209.00 212.00 3.00 10.4

    I479354 CAS-090 212.00 215.00 3.00 9.5

    I479355 CAS-090 215.00 218.00 3.00 8.6

    I479356 CAS-090 218.00 221.00 3.00 8.5

    I479357 CAS-090 221.00 224.00 3.00 8.7

    I479358 CAS-090 224.00 227.00 3.00 8.5

    I479359 CAS-090 227.00 230.00 3.00 9.4

    I479360 CAS-090 230.00 233.00 3.00 8.3

    I479361 CAS-090 233.00 236.00 3.00 9.3

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 7

    I479362 CAS-090 236.00 239.00 3.00 8.2

    I479363 CAS-090 239.00 242.00 3.00 9.5

    I479364 CAS-090 242.00 245.00 3.00 9.1

    I479365 CAS-090 245.00 248.00 3.00 8.8

    I479366 CAS-090 248.00 250.50 2.50 7.3

    I479367 CAS-090 250.50 253.50 3.00 9.4

    I479368 CAS-090 253.50 256.50 3.00 9.0

    I479369 CAS-090 256.50 259.50 3.00 9.5

    I479370 CAS-090 259.50 262.50 3.00 9.6

    I479371 CAS-090 262.50 265.50 3.00 9.3

    I479372 CAS-090 265.50 268.50 3.00 9.6

    I479373 CAS-090 268.50 271.50 3.00 9.2

    I479374 CAS-090 271.50 274.50 3.00 8.5

    I479375 CAS-090 274.50 276.00 1.50 4.3

    I479376 CAS-090 276.00 279.00 3.00 9.5

    I479377 CAS-090 279.00 282.00 3.00 8.8

    I479378 CAS-090 282.00 285.00 3.00 8.0

    I479379 CAS-090 285.00 288.00 3.00 8.5

    I479380 CAS-090 288.00 291.00 3.00 9.0

    I479381 CAS-090 291.00 294.00 3.00 8.4

    I479382 CAS-090 294.00 297.00 3.00 8.9

    I479383 CAS-090 297.00 300.00 3.00 9.5

    I479384 CAS-090 300.00 303.00 3.00 9.2

    I479385 CAS-090 303.00 306.00 3.00 9.5

    I479386 CAS-090 306.00 309.00 3.00 8.6

    I479387 CAS-090 309.00 312.00 3.00 8.7

    I479388 CAS-090 312.00 315.00 3.00 8.5

    I479389 CAS-090 315.00 318.00 3.00 9.0

    I479390 CAS-090 318.00 321.00 3.00 9.7

    I479391 CAS-090 321.00 324.00 3.00 9.3

    I479392 CAS-090 324.00 327.00 3.00 9.2

    I479393 CAS-090 327.00 330.00 3.00 8.2

    I479394 CAS-090 330.00 333.00 3.00 9.5

    I479395 CAS-090 333.00 335.28 2.28 6.4

    I479429 CAS-091 93.00 96.00 3.00 8.4

    I479430 CAS-091 96.00 99.00 3.00 9.3

    I479431 CAS-091 99.00 102.00 3.00 8.3

    I479432 CAS-091 102.00 105.00 3.00 8.9

    I479433 CAS-091 105.00 108.00 3.00 8.4

    I479434 CAS-091 108.00 111.00 3.00 8.6

    I479435 CAS-091 111.00 114.00 3.00 7.4

    I479436 CAS-091 114.00 116.00 2.00 5.6

    I479437 CAS-091 116.00 118.00 2.00 6.0

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 8

    I479438 CAS-091 118.00 121.00 3.00 8.5

    I479439 CAS-091 121.00 124.00 3.00 8.2

    I479440 CAS-091 124.00 127.00 3.00 9.4

    I479441 CAS-091 127.00 130.00 3.00 9.2

    I479442 CAS-091 130.00 133.00 3.00 9.3

    I479443 CAS-091 133.00 136.00 3.00 8.8

    I479444 CAS-091 136.00 138.00 2.00 5.9

    I479445 CAS-091 138.00 141.00 3.00 8.9

    I479446 CAS-091 141.00 144.00 3.00 10.2

    I479448 CAS-091 144.00 147.00 3.00 9.2

    I479449 CAS-091 147.00 150.00 3.00 8.3

    I479450 CAS-091 150.00 153.00 3.00 8.6

    I479453 CAS-091 153.00 156.00 3.00 8.4

    I479454 CAS-091 156.00 159.00 3.00 8.8

    I479455 CAS-091 159.00 162.00 3.00 8.9

    I479456 CAS-091 162.00 165.00 3.00 8.4

    I479457 CAS-091 165.00 168.00 3.00 9.2

    I479458 CAS-091 168.00 171.00 3.00 7.9

    I479459 CAS-091 171.00 174.00 3.00 8.2

    I479460 CAS-091 174.00 177.00 3.00 7.0

    I479461 CAS-091 177.00 180.00 3.00 8.4

    I479462 CAS-091 180.00 183.00 3.00 8.7

    I479463 CAS-091 183.00 186.00 3.00 8.6

    I479464 CAS-091 186.00 188.00 2.00 5.0

    I479465 CAS-091 188.00 190.00 2.00 6.3

    I479466 CAS-091 190.00 193.00 3.00 8.2

    I479467 CAS-091 193.00 196.00 3.00 9.3

    I479468 CAS-091 196.00 199.00 3.00 8.7

    I479469 CAS-091 199.00 202.00 3.00 8.5

    I479470 CAS-091 202.00 205.00 3.00 8.6

    I479471 CAS-091 205.00 208.00 3.00 9.1

    I479472 CAS-091 208.00 211.00 3.00 8.7

    I479473 CAS-091 211.00 214.00 3.00 9.3

    I479474 CAS-091 214.00 217.00 3.00 8.1

    I479475 CAS-091 217.00 220.00 3.00 8.6

    I479476 CAS-091 220.00 223.00 3.00 8.5

    I479477 CAS-091 223.00 226.00 3.00 8.5

    I479478 CAS-091 226.00 229.00 3.00 8.5

    I479479 CAS-091 229.00 232.00 3.00 8.4

    I479480 CAS-091 232.00 235.00 3.00 9.0

    I479481 CAS-091 235.00 238.00 3.00 8.8

    I479482 CAS-091 238.00 241.00 3.00 8.8

    I479483 CAS-091 241.00 244.00 3.00 9.2

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 9

    I479484 CAS-091 244.00 247.00 3.00 8.4

    I479485 CAS-091 247.00 250.00 3.00 8.6

    I479486 CAS-091 250.00 253.00 3.00 9.0

    I479487 CAS-091 253.00 256.00 3.00 8.4

    I479488 CAS-091 256.00 259.00 3.00 9.3

    I479489 CAS-091 259.00 262.00 3.00 9.0

    I479490 CAS-091 262.00 265.00 3.00 9.0

    I479491 CAS-091 265.00 268.00 3.00 8.5

    I479492 CAS-091 268.00 271.00 3.00 9.0

    I479493 CAS-091 271.00 274.00 3.00 8.3

    I479494 CAS-091 274.00 277.00 3.00 9.3

    I479495 CAS-091 277.00 280.00 3.00 8.6

    I479496 CAS-091 280.00 283.00 3.00 9.2

    I479497 CAS-091 283.00 286.00 3.00 9.0

    I479498 CAS-091 286.00 289.00 3.00 8.5

    I479499 CAS-091 289.00 292.00 3.00 9.0

    I479500 CAS-091 292.00 295.00 3.00 8.8

    I479503 CAS-091 295.00 297.18 2.18 6.6

    I479504 CAS-092 5.10 8.10 3.00 12.3

    I479505 CAS-092 8.10 11.10 3.00 10.1

    I479506 CAS-092 11.10 14.10 3.00 13.7

    I479507 CAS-092 14.10 17.10 3.00 14.0

    I479508 CAS-092 17.10 19.40 2.30 10.9

    I479509 CAS-092 19.40 22.40 3.00 14.1

    I479510 CAS-092 22.40 25.40 3.00 14.1

    I479511 CAS-092 25.40 28.40 3.00 12.3

    I479512 CAS-092 28.40 31.40 3.00 8.5

    I479513 CAS-092 31.40 34.40 3.00 8.0

    I479514 CAS-092 34.40 37.40 3.00 8.4

    I479515 CAS-092 37.40 40.40 3.00 8.7

    I479516 CAS-092 40.40 43.30 2.90 8.3

    I479517 CAS-092 43.30 46.30 3.00 9.2

    I479518 CAS-092 46.30 49.30 3.00 8.2

    I479519 CAS-092 49.30 52.30 3.00 9.4

    I479520 CAS-092 52.30 53.30 1.00 2.4

    I479521 CAS-092 53.30 56.30 3.00 8.5

    I479522 CAS-092 56.30 59.30 3.00 7.4

    I479523 CAS-092 59.30 62.30 3.00 8.7

    I479524 CAS-092 62.30 65.30 3.00 8.8

    I479525 CAS-092 65.30 68.30 3.00 8.5

    I479526 CAS-092 68.30 71.30 3.00 8.5

    I479527 CAS-092 71.30 74.30 3.00 8.2

    I479528 CAS-092 74.30 77.30 3.00 9.3

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 10

    I479529 CAS-092 77.30 80.30 3.00 8.5

    I479530 CAS-092 80.30 83.30 3.00 7.7

    I479531 CAS-092 83.30 86.30 3.00 8.2

    I479532 CAS-092 86.30 89.30 3.00 8.5

    I479533 CAS-092 89.30 92.30 3.00 7.4

    I479534 CAS-092 92.30 95.30 3.00 8.0

    I479535 CAS-092 95.30 98.30 3.00 8.3

    I479536 CAS-092 98.30 101.30 3.00 8.2

    I479537 CAS-092 101.30 104.30 3.00 8.3

    I479538 CAS-092 104.30 107.30 3.00 9.0

    I479539 CAS-092 107.30 110.30 3.00 8.6

    i479540 CAS-092 110.30 113.30 3.00 8.6

    I479541 CAS-092 113.30 116.30 3.00 8.8

    I479542 CAS-092 116.30 119.30 3.00 8.1

    I479543 CAS-092 119.30 122.30 3.00 9.4

    I479544 CAS-092 122.30 125.30 3.00 7.1

    I479545 CAS-092 125.30 128.30 3.00 8.5

    I479546 CAS-092 128.30 131.30 3.00 8.1

    I479547 CAS-092 131.30 134.30 3.00 8.3

    I479548 CAS-092 134.30 137.30 3.00 7.6

    I479549 CAS-092 137.30 140.30 3.00 7.8

    I479550 CAS-092 140.30 143.30 3.00 7.9

    I479553 CAS-092 143.30 146.30 3.00 7.8

    I479554 CAS-092 146.30 149.30 3.00 8.9

    I479555 CAS-092 149.30 152.30 3.00 7.8

    I479556 CAS-092 152.30 155.30 3.00 8.3

    I479557 CAS-092 155.30 158.30 3.00 8.6

    I479558 CAS-092 158.30 161.30 3.00 8.3

    I479559 CAS-092 161.30 164.30 3.00 8.8

    I479560 CAS-092 164.30 167.30 3.00 8.5

    I479561 CAS-092 167.30 170.30 3.00 9.1

    I479562 CAS-092 170.30 173.30 3.00 9.3

    I479563 CAS-092 173.30 176.30 3.00 8.5

    I479564 CAS-092 176.30 178.00 1.70 5.4

    I479565 CAS-092 178.00 181.00 3.00 7.9

    I479566 CAS-092 181.00 184.00 3.00 8.4

    I479567 CAS-092 184.00 187.00 3.00 8.9

    I479568 CAS-092 187.00 190.00 3.00 9.3

    I479569 CAS-092 190.00 193.00 3.00 8.8

    I479570 CAS-092 193.00 196.00 3.00 8.7

    I479571 CAS-092 196.00 199.00 3.00 9.1

    I479572 CAS-092 199.00 202.00 3.00 8.8

    I479573 CAS-092 202.00 205.00 3.00 10.4

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 11

    I479574 CAS-092 205.00 207.00 2.00 4.8

    I479575 CAS-092 207.00 210.00 3.00 9.1

    I479576 CAS-092 210.00 213.00 3.00 8.2

    I479577 CAS-092 213.00 216.00 3.00 9.8

    I479578 CAS-092 216.00 219.00 3.00 9.2

    I479579 CAS-092 219.00 222.00 3.00 8.6

    I479580 CAS-092 222.00 225.00 3.00 8.7

    I479581 CAS-092 225.00 228.00 3.00 9.0

    I479582 CAS-092 228.00 231.00 3.00 8.6

    I479583 CAS-092 231.00 234.00 3.00 9.1

    I479584 CAS-092 234.00 237.00 3.00 9.3

    I479585 CAS-092 237.00 240.00 3.00 8.7

    I479586 CAS-092 240.00 243.00 3.00 9.0

    I479587 CAS-092 243.00 246.00 3.00 8.5

    I479588 CAS-092 246.00 249.00 3.00 9.5

    I479589 CAS-092 249.00 252.00 3.00 9.1

    I479590 CAS-092 252.00 255.00 3.00 8.6

    I479591 CAS-092 255.00 258.00 3.00 8.0

    I479592 CAS-092 258.00 261.00 3.00 9.3

    I479593 CAS-092 261.00 264.00 3.00 8.7

    I479594 CAS-092 264.00 267.00 3.00 9.1

    I479595 CAS-092 267.00 270.00 3.00 9.1

    I479596 CAS-092 270.00 273.00 3.00 7.9

    I479597 CAS-092 273.00 276.00 3.00 7.6

    I479598 CAS-092 276.00 279.00 3.00 9.7

    I479599 CAS-092 279.00 282.00 3.00 8.5

    I479600 CAS-092 282.00 285.00 3.00 8.9

    I479603 CAS-092 285.00 288.00 3.00 9.6

    I479604 CAS-092 288.00 291.00 3.00 8.5

    I479605 CAS-092 291.00 292.50 1.50 5.2

    I479606 CAS-092 292.50 294.13 1.63 5.2

    TABLE I-1 Continued

    MASS AND IDENTIFICATION OF SAMPLE RECEIVED

    Sample Hole From To Length Weight

  • 12

    I477829 CAS-088 219.00 222.00 8.1 Half Core

    I477835 CAS-088 237.00 240.00 8.6 Half Core

    I477841 CAS-088 255.00 258.00 8.1 Half Core

    I477847 CAS-088 273.00 276.00 8.5 Half Core

    I477855 CAS-088 291.00 294.00 8.4 Half Core

    I477861 CAS-088 309.00 311.81 7.7 Half Core

    I479379 CAS-090 285.00 288.00 8.5 Half Core

    I479381 CAS-090 291.00 294.00 8.4 Half Core

    I479383 CAS-090 297.00 300.00 9.5 Half Core

    I479385 CAS-090 303.00 306.00 9.5 Half Core

    I479387 CAS-090 309.00 312.00 8.7 Half Core

    I479389 CAS-090 315.00 318.00 9.0 Half Core

    I479391 CAS-090 321.00 324.00 9.3 Half Core

    I479393 CAS-090 327.00 330.00 8.2 Half Core

    I479395 CAS-090 333.00 335.28 6.4 Half Core

    I479479 CAS-091 229.00 232.00 8.4 Half Core

    I479483 CAS-091 241.00 244.00 9.2 Half Core

    I479487 CAS-091 253.00 256.00 8.4 Half Core

    I479491 CAS-091 265.00 268.00 8.5 Half Core

    I479495 CAS-091 277.00 280.00 8.6 Half Core

    I479499 CAS-091 289.00 292.00 9.0 Half Core

    I479584 CAS-092 234.00 237.00 9.3 Half Core

    I479588 CAS-092 246.00 249.00 9.5 Half Core

    I479592 CAS-092 258.00 261.00 9.3 Half Core

    I479596 CAS-092 270.00 273.00 7.9 Half Core

    I479600 CAS-092 282.00 285.00 8.9 Half Core

    I479606 CAS-092 292.50 294.13 5.2 Half Core

    TABLE I-2B

    COMPOSITE CONSTRUCTION

    WR Composite

    Sample IDWeight

    (kg)FormFrom ToHole

    TABLE I-2A

    COMPOSITE CONSTRUCTION

    Sample IDWeight

    (kg)Form

    IX Composite

    From ToHole

  • 13

    I477957 CAS-089 269.00 272.00 7.3 Half Core

    I477959 CAS-089 275.00 278.00 8.3 Half Core

    I477962 CAS-089 284.00 287.00 8.0 Half Core

    I477964 CAS-089 290.00 293.00 8.7 Half Core

    I477966 CAS-089 296.00 299.00 8.4 Half Core

    I477968 CAS-089 302.00 305.00 9.0 Half Core

    I477970 CAS-089 308.00 311.00 8.1 Half Core

    I477972 CAS-089 314.00 317.00 8.5 Half Core

    I477974 CAS-089 320.00 323.00 8.5 Half Core

    I477976 CAS-089 326.00 329.00 9.1 Half Core

    I477978 CAS-089 330.50 332.23 4.9 Half Core

    I477805 CAS-088 147.00 150.00 8.6 Half Core

    I477806 CAS-088 150.00 153.00 7.0 Half Core

    I477807 CAS-088 153.00 156.00 8.4 Half Core

    I477808 CAS-088 156.00 159.00 7.1 Half Core

    I477809 CAS-088 159.00 162.00 7.9 Half Core

    I477810 CAS-088 162.00 165.00 7.5 Half Core

    I477811 CAS-088 165.00 168.00 7.7 Half Core

    I477812 CAS-088 168.00 171.00 8.1 Half Core

    I477813 CAS-088 171.00 174.00 8.1 Half Core

    I477814 CAS-088 174.00 177.00 8.1 Half Core

    I477815 CAS-088 177.00 180.00 8.1 Half Core

    I477816 CAS-088 180.00 183.00 7.9 Half Core

    I477817 CAS-088 183.00 186.00 7.5 Half Core

    I477818 CAS-088 186.00 189.00 7.5 Half Core

    I477819 CAS-088 189.00 192.00 8.9 Half Core

    I477820 CAS-088 192.00 195.00 8.0 Half Core

    I477821 CAS-088 195.00 198.00 7.8 Half Core

    I477822 CAS-088 198.00 201.00 7.4 Half Core

    I477823 CAS-088 201.00 204.00 8.4 Half Core

    I477824 CAS-088 204.00 207.00 8.2 Half Core

    I477825 CAS-088 207.00 210.00 8.2 Half Core

    I477826 CAS-088 210.00 213.00 7.6 Half Core

    I477827 CAS-088 213.00 216.00 7.4 Half Core

    TABLE I-2C

    COMPOSITE CONSTRUCTION

    PP Composite

    Sample IDWeight

    (kg)FormFrom ToHole

    TABLE I-2D

    COMPOSITE CONSTRUCTION

    HYP PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 14

    I477828 CAS-088 216.00 219.00 7.5 Half Core

    I477830 CAS-088 222.00 225.00 7.9 Half Core

    I477831 CAS-088 225.00 228.00 8.4 Half Core

    I477832 CAS-088 228.00 231.00 8.2 Half Core

    I477833 CAS-088 231.00 234.00 8.3 Half Core

    I477834 CAS-088 234.00 237.00 8.2 Half Core

    I477836 CAS-088 240.00 243.00 8.7 Half Core

    I477837 CAS-088 243.00 246.00 8.3 Half Core

    I477838 CAS-088 246.00 249.00 7.0 Half Core

    I477839 CAS-088 249.00 252.00 8.8 Half Core

    I477840 CAS-088 252.00 255.00 9.2 Half Core

    I477842 CAS-088 258.00 261.00 7.8 Half Core

    I477843 CAS-088 261.00 264.00 7.9 Half Core

    I477844 CAS-088 264.00 267.00 7.5 Half Core

    I477846 CAS-088 270.00 273.00 8.8 Half Core

    I477848 CAS-088 276.00 279.00 8.2 Half Core

    I477849 CAS-088 279.00 282.00 8.3 Half Core

    I477850 CAS-088 282.00 285.00 9.3 Half Core

    I477853 CAS-088 285.00 288.00 7.9 Half Core

    I477854 CAS-088 288.00 291.00 9.0 Half Core

    I477856 CAS-088 294.00 297.00 9.0 Half Core

    I477857 CAS-088 297.00 300.00 7.7 Half Core

    I477858 CAS-088 300.00 303.00 8.9 Half Core

    I477859 CAS-088 303.00 306.00 7.6 Half Core

    I477860 CAS-088 306.00 309.00 7.7 Half Core

    I477948 CAS-089 248.00 251.00 8.6 Half Core

    I477949 CAS-089 251.00 254.00 8.1 Half Core

    I477950 CAS-089 254.00 257.00 7.9 Half Core

    I477953 CAS-089 257.00 260.00 7.8 Half Core

    I477954 CAS-089 260.00 263.00 8.6 Half Core

    I477956 CAS-089 266.00 269.00 8.2 Half Core

    I477958 CAS-089 272.00 275.00 8.9 Half Core

    I477960 CAS-089 278.00 281.00 9.0 Half Core

    I477961 CAS-089 281.00 284.00 8.3 Half Core

    I477963 CAS-089 287.00 290.00 8.5 Half Core

    I477965 CAS-089 293.00 296.00 7.6 Half Core

    I477967 CAS-089 299.00 302.00 9.2 Half Core

    I477969 CAS-089 305.00 308.00 8.0 Half Core

    I477971 CAS-089 311.00 314.00 7.8 Half Core

    I477973 CAS-089 317.00 320.00 8.6 Half Core

    I477975 CAS-089 323.00 326.00 9.1 Half Core

    I477977 CAS-089 329.00 330.50 4.0 Half Core

    TABLE I-2D Continued

    COMPOSITE CONSTRUCTION

    HYP PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 15

    I479376 CAS-090 276.00 279.00 9.5 Half Core

    I479377 CAS-090 279.00 282.00 8.8 Half Core

    I479378 CAS-090 282.00 285.00 8.0 Half Core

    I479380 CAS-090 288.00 291.00 9.0 Half Core

    I479382 CAS-090 294.00 297.00 8.9 Half Core

    I479384 CAS-090 300.00 303.00 9.2 Half Core

    I479386 CAS-090 306.00 309.00 8.6 Half Core

    I479388 CAS-090 312.00 315.00 8.5 Half Core

    I479390 CAS-090 318.00 321.00 9.7 Half Core

    I479392 CAS-090 324.00 327.00 9.2 Half Core

    I479394 CAS-090 330.00 333.00 9.5 Half Core

    I479465 CAS-091 188.00 190.00 6.3 Half Core

    I479466 CAS-091 190.00 193.00 8.2 Half Core

    I479467 CAS-091 193.00 196.00 9.3 Half Core

    I479468 CAS-091 196.00 199.00 8.7 Half Core

    I479469 CAS-091 199.00 202.00 8.5 Half Core

    I479470 CAS-091 202.00 205.00 8.6 Half Core

    I479471 CAS-091 205.00 208.00 9.1 Half Core

    I479472 CAS-091 208.00 211.00 8.7 Half Core

    I479473 CAS-091 211.00 214.00 9.3 Half Core

    I479474 CAS-091 214.00 217.00 8.1 Half Core

    I479475 CAS-091 217.00 220.00 8.6 Half Core

    I479476 CAS-091 220.00 223.00 8.5 Half Core

    I479477 CAS-091 223.00 226.00 8.5 Half Core

    I479478 CAS-091 226.00 229.00 8.5 Half Core

    I479480 CAS-091 232.00 235.00 9.0 Half Core

    I479481 CAS-091 235.00 238.00 8.8 Half Core

    I479482 CAS-091 238.00 241.00 8.8 Half Core

    I479484 CAS-091 244.00 247.00 8.4 Half Core

    I479485 CAS-091 247.00 250.00 8.6 Half Core

    I479486 CAS-091 250.00 253.00 9.0 Half Core

    I479488 CAS-091 256.00 259.00 9.3 Half Core

    I479489 CAS-091 259.00 262.00 9.0 Half Core

    I479490 CAS-091 262.00 265.00 9.0 Half Core

    I479492 CAS-091 268.00 271.00 9.0 Half Core

    I479493 CAS-091 271.00 274.00 8.3 Half Core

    I479494 CAS-091 274.00 277.00 9.3 Half Core

    I479496 CAS-091 280.00 283.00 9.2 Half Core

    I479497 CAS-091 283.00 286.00 9.0 Half Core

    I479498 CAS-091 286.00 289.00 8.5 Half Core

    I479500 CAS-091 292.00 295.00 8.8 Half Core

    I479503 CAS-091 295.00 297.18 6.6 Half Core

    TABLE I-2D Continued

    COMPOSITE CONSTRUCTION

    HYP PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 16

    I479565 CAS-092 178.00 181.00 7.9 Half Core

    I479566 CAS-092 181.00 184.00 8.4 Half Core

    I479567 CAS-092 184.00 187.00 8.9 Half Core

    I479568 CAS-092 187.00 190.00 9.3 Half Core

    I479569 CAS-092 190.00 193.00 8.8 Half Core

    I479570 CAS-092 193.00 196.00 8.7 Half Core

    I479571 CAS-092 196.00 199.00 9.1 Half Core

    I479572 CAS-092 199.00 202.00 8.8 Half Core

    I479573 CAS-092 202.00 205.00 10.4 Half Core

    I479574 CAS-092 205.00 207.00 4.8 Half Core

    I479575 CAS-092 207.00 210.00 9.1 Half Core

    I479576 CAS-092 210.00 213.00 8.2 Half Core

    I479577 CAS-092 213.00 216.00 9.8 Half Core

    I479578 CAS-092 216.00 219.00 9.2 Half Core

    I479579 CAS-092 219.00 222.00 8.6 Half Core

    I479580 CAS-092 222.00 225.00 8.7 Half Core

    I479581 CAS-092 225.00 228.00 9.0 Half Core

    I479582 CAS-092 228.00 231.00 8.6 Half Core

    I479583 CAS-092 231.00 234.00 9.1 Half Core

    I479585 CAS-092 237.00 240.00 8.7 Half Core

    I479586 CAS-092 240.00 243.00 9.0 Half Core

    I479587 CAS-092 243.00 246.00 8.5 Half Core

    I479589 CAS-092 249.00 252.00 9.1 Half Core

    I479590 CAS-092 252.00 255.00 8.6 Half Core

    I479591 CAS-092 255.00 258.00 8.0 Half Core

    I479593 CAS-092 261.00 264.00 8.7 Half Core

    I479594 CAS-092 264.00 267.00 9.1 Half Core

    I479595 CAS-092 267.00 270.00 9.1 Half Core

    I479597 CAS-092 273.00 276.00 7.6 Half Core

    I479598 CAS-092 276.00 279.00 9.7 Half Core

    I479599 CAS-092 279.00 282.00 8.5 Half Core

    I479603 CAS-092 285.00 288.00 9.6 Half Core

    I479604 CAS-092 288.00 291.00 8.5 Half Core

    I479605 CAS-092 291.00 292.50 5.2 Half Core

    TABLE I-2D Continued

    COMPOSITE CONSTRUCTION

    HYP PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 17

    I474992 CAS-088 117.00 120.00 7.8 Half Core

    I474993 CAS-088 120.00 123.00 7.3 Half Core

    I474994 CAS-088 123.00 125.00 5.5 Half Core

    I474996 CAS-088 126.50 129.00 6.9 Half Core

    I474997 CAS-088 129.00 132.00 8.4 Half Core

    I474998 CAS-088 132.00 135.00 7.8 Half Core

    I475000 CAS-088 138.00 141.00 8.4 Half Core

    I477803 CAS-088 141.00 144.00 7.2 Half Core

    I477804 CAS-088 144.00 147.00 9.0 Half Core

    I477927 CAS-089 189.00 190.50 3.6 Half Core

    I477928 CAS-089 190.50 193.50 7.9 Half Core

    I477929 CAS-089 193.50 196.50 9.0 Half Core

    I477931 CAS-089 199.50 202.50 8.5 Half Core

    I477932 CAS-089 202.50 205.50 7.8 Half Core

    I477933 CAS-089 205.50 208.50 8.3 Half Core

    I477935 CAS-089 211.50 214.50 8.1 Half Core

    I477936 CAS-089 214.50 217.50 8.2 Half Core

    I477937 CAS-089 217.50 220.50 7.5 Half Core

    I477939 CAS-089 223.50 226.50 8.8 Half Core

    I477940 CAS-089 226.50 229.50 7.7 Half Core

    I477941 CAS-089 229.50 232.50 7.4 Half Core

    I477943 CAS-089 235.50 238.50 7.9 Half Core

    I477944 CAS-089 238.50 241.50 8.9 Half Core

    I477945 CAS-089 241.50 244.50 8.3 Half Core

    I477946 CAS-089 244.50 246.25 5.4 Half Core

    I477947 CAS-089 246.25 248.00 3.9 Half Core

    I479328 CAS-090 141.10 144.00 8.0 Half Core

    I479329 CAS-090 144.00 147.00 8.3 Half Core

    I479330 CAS-090 147.00 150.00 8.9 Half Core

    I479331 CAS-090 150.00 153.00 8.9 Half Core

    I479332 CAS-090 153.00 156.00 13.2 Half Core

    I479333 CAS-090 156.00 159.00 5.9 Half Core

    I479335 CAS-090 162.00 165.00 8.7 Half Core

    I479336 CAS-090 165.00 168.00 9.1 Half Core

    I479337 CAS-090 168.00 171.00 9.5 Half Core

    I479338 CAS-090 171.00 174.00 6.6 Half Core

    I479339 CAS-090 174.00 177.00 9.9 Half Core

    I479340 CAS-090 177.00 180.00 8.5 Half Core

    I479341 CAS-090 180.00 183.00 9.7 Half Core

    I479342 CAS-090 183.00 186.00 9.1 Half Core

    I479343 CAS-090 186.00 189.00 8.6 Half Core

    I479344 CAS-090 189.00 192.00 9.1 Half Core

    TABLE I-2E

    COMPOSITE CONSTRUCTION

    SUS PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 18

    I479345 CAS-090 192.00 195.00 8.8 Half Core

    I479347 CAS-090 198.00 201.00 8.7 Half Core

    I479348 CAS-090 201.00 204.00 9.0 Half Core

    I479349 CAS-090 204.00 207.00 9.2 Half Core

    I479350 CAS-090 207.00 209.00 5.2 Half Core

    I479353 CAS-090 209.00 212.00 10.4 Half Core

    I479354 CAS-090 212.00 215.00 9.5 Half Core

    I479355 CAS-090 215.00 218.00 8.6 Half Core

    I479356 CAS-090 218.00 221.00 8.5 Half Core

    I479357 CAS-090 221.00 224.00 8.7 Half Core

    I479358 CAS-090 224.00 227.00 8.5 Half Core

    I479359 CAS-090 227.00 230.00 9.4 Half Core

    I479360 CAS-090 230.00 233.00 8.3 Half Core

    I479361 CAS-090 233.00 236.00 9.3 Half Core

    I479362 CAS-090 236.00 239.00 8.2 Half Core

    I479363 CAS-090 239.00 242.00 9.5 Half Core

    I479364 CAS-090 242.00 245.00 9.1 Half Core

    I479365 CAS-090 245.00 248.00 8.8 Half Core

    I479367 CAS-090 250.50 253.50 9.4 Half Core

    I479368 CAS-090 253.50 256.50 9.0 Half Core

    I479369 CAS-090 256.50 259.50 9.5 Half Core

    I479370 CAS-090 259.50 262.50 9.6 Half Core

    I479371 CAS-090 262.50 265.50 9.3 Half Core

    I479372 CAS-090 265.50 268.50 9.6 Half Core

    I479373 CAS-090 268.50 271.50 9.2 Half Core

    I479374 CAS-090 271.50 274.50 8.5 Half Core

    I479375 CAS-090 274.50 276.00 4.3 Half Core

    I479435 CAS-091 111.00 114.00 7.4 Half Core

    I479436 CAS-091 114.00 116.00 5.6 Half Core

    I479437 CAS-091 116.00 118.00 6.0 Half Core

    I479438 CAS-091 118.00 121.00 8.5 Half Core

    I479439 CAS-091 121.00 124.00 8.2 Half Core

    I479440 CAS-091 124.00 127.00 9.4 Half Core

    I479441 CAS-091 127.00 130.00 9.2 Half Core

    I479442 CAS-091 130.00 133.00 9.3 Half Core

    I479443 CAS-091 133.00 136.00 8.8 Half Core

    I479444 CAS-091 136.00 138.00 5.9 Half Core

    I479445 CAS-091 138.00 141.00 8.9 Half Core

    I479446 CAS-091 141.00 144.00 10.2 Half Core

    I479448 CAS-091 144.00 147.00 9.2 Half Core

    I479450 CAS-091 150.00 153.00 8.6 Half Core

    I479453 CAS-091 153.00 156.00 8.4 Half Core

    TABLE I-2E Continued

    COMPOSITE CONSTRUCTION

    SUS PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 19

    I479454 CAS-091 156.00 159.00 8.8 Half Core

    I479455 CAS-091 159.00 162.00 8.9 Half Core

    I479456 CAS-091 162.00 165.00 8.4 Half Core

    I479457 CAS-091 165.00 168.00 9.2 Half Core

    I479458 CAS-091 168.00 171.00 7.9 Half Core

    I479459 CAS-091 171.00 174.00 8.2 Half Core

    I479460 CAS-091 174.00 177.00 7.0 Half Core

    I479461 CAS-091 177.00 180.00 8.4 Half Core

    I479462 CAS-091 180.00 183.00 8.7 Half Core

    I479463 CAS-091 183.00 186.00 8.6 Half Core

    I479517 CAS-092 43.30 46.30 9.2 Half Core

    I479518 CAS-092 46.30 49.30 8.2 Half Core

    I479519 CAS-092 49.30 52.30 9.4 Half Core

    I479520 CAS-092 52.30 53.30 2.4 Half Core

    I479521 CAS-092 53.30 56.30 8.5 Half Core

    I479522 CAS-092 56.30 59.30 7.4 Half Core

    I479523 CAS-092 59.30 62.30 8.7 Half Core

    I479524 CAS-092 62.30 65.30 8.8 Half Core

    I479525 CAS-092 65.30 68.30 8.5 Half Core

    I479526 CAS-092 68.30 71.30 8.5 Half Core

    I479527 CAS-092 71.30 74.30 8.2 Half Core

    I479528 CAS-092 74.30 77.30 9.3 Half Core

    I479530 CAS-092 80.30 83.30 7.7 Half Core

    I479531 CAS-092 83.30 86.30 8.2 Half Core

    I479532 CAS-092 86.30 89.30 8.5 Half Core

    I479533 CAS-092 89.30 92.30 7.4 Half Core

    I479534 CAS-092 92.30 95.30 8.0 Half Core

    I479535 CAS-092 95.30 98.30 8.3 Half Core

    I479536 CAS-092 98.30 101.30 8.2 Half Core

    I479537 CAS-092 101.30 104.30 8.3 Half Core

    I479538 CAS-092 104.30 107.30 9.0 Half Core

    I479539 CAS-092 107.30 110.30 8.6 Half Core

    i479540 CAS-092 110.30 113.30 8.6 Half Core

    I479541 CAS-092 113.30 116.30 8.8 Half Core

    I479543 CAS-092 119.30 122.30 9.4 Half Core

    I479544 CAS-092 122.30 125.30 7.1 Half Core

    I479545 CAS-092 125.30 128.30 8.5 Half Core

    I479546 CAS-092 128.30 131.30 8.1 Half Core

    I479547 CAS-092 131.30 134.30 8.3 Half Core

    I479548 CAS-092 134.30 137.30 7.6 Half Core

    I479549 CAS-092 137.30 140.30 7.8 Half Core

    I479550 CAS-092 140.30 143.30 7.9 Half Core

    TABLE I-2E Continued

    COMPOSITE CONSTRUCTION

    SUS PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 20

    I479553 CAS-092 143.30 146.30 7.8 Half Core

    I479554 CAS-092 146.30 149.30 8.9 Half Core

    I479555 CAS-092 149.30 152.30 7.8 Half Core

    I479556 CAS-092 152.30 155.30 8.3 Half Core

    I479558 CAS-092 158.30 161.30 8.3 Half Core

    I479559 CAS-092 161.30 164.30 8.8 Half Core

    I479560 CAS-092 164.30 167.30 8.5 Half Core

    I479561 CAS-092 167.30 170.30 9.1 Half Core

    I479562 CAS-092 170.30 173.30 9.3 Half Core

    I479563 CAS-092 173.30 176.30 8.5 Half Core

    I479564 CAS-092 176.30 178.00 5.4 Half Core

    TABLE I-2E Continued

    COMPOSITE CONSTRUCTION

    SUS PP Composite

    Sample ID Hole From ToWeight

    (kg)Form

  • 21

    Cu Mo Fe Au CuOx CuCN S C Ag

    PP Composite 0.14 0.030 2.95 0.22 0.004 0.008 0.74 0.45 1

    IX Composite 0.17 0.071 2.39 0.22 0.006 0.012 2.06 0.31 2

    WR Composite 0.19 0.019 2.50 0.18 0.005 0.013 2.46 0.16 1

    HYP PP Composite 0.21 0.032 2.52 0.35 0.01 0.018 2.19 0.19 1

    SUS PP Composite 0.29 0.028 4.01 0.38 0.027 0.093 3.22 0.18 1

    Assay - percent or g/tonneSample

    TABLE I-3

    REPLICATE HEAD ASSAY DATA

  • APPENDIX II – KM3512

    FLOTATION TEST DATA

  • INDEX

    TEST PAGE

    1 Rougher Test – PP Composite.............................................................................1

    2 Rougher Test – WR Composite...........................................................................3

    3 Rougher Test – PP Composite.............................................................................5

    4 Rougher Test – WR Composite...........................................................................7

    5 Rougher Test – IX Composite.............................................................................9

    6 Rougher Test – WR Composite.........................................................................11

    7 Rougher Test – WR Composite.........................................................................13

    8 Rougher Test – IX Composite...........................................................................15

    9 Rougher Test – IX Composite...........................................................................17

    10 Rougher Test – PP Composite...........................................................................19

    11 Rougher Test – PP Composite...........................................................................21

    12 Cleaner Test – WR Composite..........................................................................23

    13 Cleaner Test – IX Composite ............................................................................25

    14 Cleaner Test – PP Composite............................................................................27

    15 Cleaner Test – WR Composite..........................................................................29

    16 Cleaner Test – IX Composite ............................................................................31

    17 Cleaner Test – PP Composite............................................................................33

    18 Locked Cycle Test – PP Composite ..................................................................35

    19 Locked Cycle Test – WR Composite ................................................................40

    20 Locked Cycle Test – IX Composite ..................................................................45

    21 Cleaner Test – IX Composite ............................................................................50

    22 Cleaner Test – IX Composite ............................................................................52

    23 Locked Cycle Test – IX Composite ..................................................................54

    24 Locked Cycle Test – PP Composite ..................................................................59

    25 Locked Cycle Test – WR Composite ................................................................64

    26 Rougher Test – IX Composite...........................................................................69

    27 Rougher Test – IX Composite...........................................................................71

    28 Rougher Test – PP Composite...........................................................................73

    29 Cleaner Test – P6 to P8 Cleaner Concentrate ...................................................75

  • 1

    DATE:

    PROJECT NO: KM3512-01

    PURPOSE: Preliminary Rougher Test.

    PROCEDURE: Perform a standard one product rougher test.

    FEED: 2 kg of PP Composite ore ground to a nominal 178mm K80.

    FLOWSHEET: 1

    Reagents Added g/tonne Time (minutes) pH

    Lime Fuel Oil 3418A 208 MIBC Grind Cond. Float

    Primary Grind 2000 10 11 11.1

    BULK CIRCUIT:

    Rougher 1 - 2 4 8 1 2 11.0Rougher 2 √ 2 4 - 1 2 11.0Rougher 3 √ 2 4 - 1 2 11.0Rougher 4 √ 1 2 8 1 3 11.0

    Flotation Data RougherFlotation Machine: D2A Mill:Cell Size in liters: 4.4 Charge/Material:Aspiration: Water:

    Water Type:Impeller Speed in rpm: 1100

    August 28, 2012

    Stage

    Fresh

    Air

    Grinding Data Primary GrindM3-Mild

    20kg-Mild1000 ml

  • 2

    KM3512-01 PP CompositeOverall Metallurgical Balance

    Product Weight Assay - percent or g/t Distribution - percent

    % grams Cu Mo Fe S Cu Mo Fe S

    Bulk Ro Con 1 1.7 32.9 6.90 1.099 10.2 11.00 79.1 65.1 5.7 24.6

    Bulk Ro Con 2 1.4 27.5 0.57 0.157 4.3 2.55 5.5 7.8 2.0 4.8

    Bulk Ro Con 3 1.5 30.5 0.19 0.031 3.2 1.21 2.0 1.7 1.7 2.5

    Bulk Ro Con 4 2.7 54.2 0.06 0.011 3.0 0.60 1.2 1.1 2.8 2.2

    Bulk RoTl 92.7 1837.3 0.02 0.007 2.8 0.53 12.2 24.3 87.8 65.9

    Feed 100.0 1982 0.14 0.028 3.0 0.74 100 100 100 100

    KM3512-01 PP CompositeCumulative Metallurgical Balance

    Cumulative Cum. Weight Assay - percent or g/t Distribution - percent

    Product % grams Cu Mo Fe S Cu Mo Fe S

    Product 1 1.7 32.9 6.90 1.099 10.2 11.00 79.1 65.1 5.7 24.6

    Product 1 to 2 3.0 60.4 4.02 0.670 7.5 7.15 84.6 72.9 7.7 29.4

    Product 1 to 3 4.6 90.9 2.73 0.456 6.1 5.16 86.6 74.6 9.4 31.9

    Product 1 to 4 7.3 145.1 1.74 0.290 4.9 3.46 87.8 75.7 12.2 34.1

    Product 5 92.7 1837.3 0.02 0.007 2.8 0.53 12.2 24.3 87.8 65.9

    Feed 100.0 1982 0.14 0.028 3.0 0.74 100 100 100 100

  • 3

    DATE:

    PROJECT NO: KM3512-02

    PURPOSE: Preliminary Rougher Test.

    PROCEDURE: Perform a standard one product rougher test.

    FEED: 2 kg of WR Composite ore ground to a nominal 178mm K80.

    FLOWSHEET: 1

    Reagents Added g/tonne Time (minutes) pH

    Lime Fuel Oil 3418A 208 MIBC Grind Cond. Float

    Primary Grind 2000 10 13 10.5

    BULK CIRCUIT:

    Rougher 1 1000 2 4 8 1 2 11.0Rougher 2 √ 2 4 - 1 2 11.0Rougher 3 - 1 2 8 1 2 11.0Rougher 4 - 1 2 - 1 2 11.0

    Flotation Data RougherFlotation Machine: D2A Mill:Cell Size in liters: 4.4 Charge/Material:Aspiration: Water:

    Water Type:Impeller Speed in rpm: 1100

    Air 1000 ml

    Fresh

    August 28, 2012

    Stage

    Grinding Data Primary GrindM3-Mild

    20kg-Mild

  • 4

    KM3512-02 WR CompositeOverall Metallurgical Balance

    Product Weight Assay - percent or g/t Distribution - percent

    % grams Cu Mo Fe S Cu Mo Fe S

    Bulk Ro Con 1 1.8 35.4 9.70 0.807 15.7 19.10 89.2 76.2 11.2 14.1

    Bulk Ro Con 2 1.1 22.1 0.54 0.079 9.9 8.41 3.1 4.7 4.4 3.9

    Bulk Ro Con 3 1.2 23.1 0.19 0.020 4.5 4.46 1.1 1.3 2.1 2.2

    Bulk Ro Con 4 1.3 26.6 0.09 0.013 2.4 2.30 0.6 0.9 1.3 1.3

    Bulk RoTl 94.6 1887.5 0.01 0.003 2.1 1.99 5.9 17.0 81.1 78.5

    Feed 100.0 1995 0.19 0.019 2.5 2.40 100 100 100 100

    KM3512-02 WR CompositeCumulative Metallurgical Balance

    Cumulative Cum. Weight Assay - percent or g/t Distribution - percent

    Product % grams Cu Mo Fe S Cu Mo Fe S

    Product 1 1.8 35.4 9.70 0.807 15.7 19.10 89.2 76.2 11.2 14.1

    Product 1 to 2 2.9 57.5 6.18 0.527 13.5 14.99 92.3 80.9 15.5 18.0

    Product 1 to 3 4.0 80.6 4.46 0.382 10.9 11.97 93.5 82.1 17.6 20.2

    Product 1 to 4 5.4 107.2 3.38 0.290 8.8 9.57 94.1 83.0 18.9 21.5

    Product 5 94.6 1887.5 0.01 0.003 2.1 1.99 5.9 17.0 81.1 78.5

    Feed 100.0 1995 0.19 0.019 2.5 2.40 100 100 100 100

  • 5

    DATE:

    PROJECT NO: KM3512-03

    PURPOSE: To Repeat Test 1 at a pH of 9.5.

    PROCEDURE: Perform a standard one product rougher test.

    FEED: 2 kg of PP Composite ore ground to a nominal 178mm K80.

    FLOWSHEET: 1

    Reagents Added g/tonne Time (minutes) pH

    Lime Fuel Oil 3418A 208 MIBC Grind Cond. Float

    Primary Grind 800 10 11 10.4

    BULK CIRCUIT:

    Rougher 1 - 2 4 23 1 2 9.8Rougher 2 - 2 4 - 1 2 9.6Rougher 3 - 2 4 - 1 2 9.5Rougher 4 √ 1 2 - 1 3 9.8

    Flotation Data RougherFlotation Machine: D2A Mill:Cell Size in liters: 4.4 Charge/Material:Aspiration: Water:

    Water Type:Impeller Speed in rpm: 1100

    Air 1000 ml

    Fresh

    August 30, 2012

    Stage

    Grinding Data Primary GrindM3-Mild

    20kg-Mild

  • 6

    KM3512-03 PP CompositeOverall Metallurgical Balance

    Product Weight Assay - percent or g/t Distribution - percent

    % grams Cu Mo Fe S Cu Mo Fe S

    Bulk Ro Con 1 2.2 44.3 4.00 0.93 10.3 13.0 74.1 76.3 7.6 38.3

    Bulk Ro Con 2 1.6 31.9 0.69 0.06 11.1 11.2 9.2 3.6 5.9 23.8

    Bulk Ro Con 3 1.5 30.1 0.21 0.02 7.2 5.48 2.6 0.9 3.6 11.0

    Bulk Ro Con 4 1.8 36.2 0.16 0.009 4.4 1.73 2.4 0.6 2.6 4.2

    Bulk RoTl 92.8 1846.8 0.02 0.005 2.6 0.19 11.6 18.5 80.2 22.7

    Feed 100.0 1989 0.12 0.027 3.0 0.76 100 100 100 100

    KM3512-03 PP CompositeCumulative Metallurgical Balance

    Cumulative Cum. Weight Assay - percent or g/t Distribution - percent

    Product % grams Cu Mo Fe S Cu Mo Fe S

    Product 1 2.2 44.3 4.00 0.93 10.3 13.0 74.1 76.3 7.6 38.3

    Product 1 to 2 3.8 76.2 2.61 0.57 10.6 12.2 83.3 79.9 13.5 62.1

    Product 1 to 3 5.3 106.3 1.93 0.41 9.7 10.3 86.0 80.8 17.2 73.1

    Product 1 to 4 7.2 142.5 1.48 0.31 8.3 8.15 88.4 81.5 19.8 77.3

    Product 5 92.8 1846.8 0.02 0.005 2.6 0.19 11.6 18.5 80.2 22.7

    Feed 100.0 1989 0.12 0.03 3.0 0.76 100 100 100 100

  • 7

    DATE:

    PROJECT NO: KM3512-04

    PURPOSE: To Repeat Test 2 at a pH of 9.5.

    PROCEDURE: Perform a standard one product rougher test.

    FEED: 2 kg of WR Composite ore ground to a nominal 178mm K80.

    FLOWSHEET: 1

    Reagents Added g/tonne Time (minutes) pH

    Lime Fuel Oil 3418A 208 MIBC Grind Cond. Float

    Primary Grind 600 10 13 9.5

    BULK CIRCUIT:

    Rougher 1 25 2 4 15 1 2 9.5Rougher 2 √ 2 4 8 1 2 9.5Rougher 3 - 1 2 - 1 2 9.5Rougher 4 - 1 2 - 1 2 9.5

    Flotation Data RougherFlotation Machine: D2A Mill:Cell Size in liters: 4.4 Charge/Material:Aspiration: Water:

    Water Type:Impeller Speed in rpm: 1100

    Air 1000 ml

    Fresh

    August 30, 2012

    Stage

    Grinding Data Primary GrindM3-Mild

    20kg-Mild

  • 8

    KM3512-04 WR CompositeOverall Metallurgical Balance

    Product Weight Assay - percent or g/t Distribution - percent

    % grams Cu Mo Fe S Cu Mo Fe S

    Bulk Ro Con 1 5.9 118.5 3.11 0.30 25.2 36.3 93.0 88.5 58.8 80.5

    Bulk Ro Con 2 1.2 23.1 0.30 0.02 12.2 12.6 1.7 1.2 5.6 5.4

    Bulk Ro Con 3 0.7 14.5 0.19 0.01 12.0 14.0 0.7 0.4 3.4 3.8

    Bulk Ro Con 4 0.5 10.3 0.15 0.009 11.4 12.6 0.4 0.2 2.3 2.4

    Bulk RoTl 91.7 1826.9 0.01 0.002 0.8 0.23 4.1 9.6 29.9 7.8

    Feed 100.0 1993 0.20 0.020 2.5 2.68 100 100 100 100

    KM3512-04 WR CompositeCumulative Metallurgical Balance

    Cumulative Cum. Weight Assay - percent or g/t Distribution - percent

    Product % grams Cu Mo Fe S Cu Mo Fe S

    Product 1 5.9 118.5 3.11 0.30 25.2 36.3 93.0 88.5 58.8 80.5

    Product 1 to 2 7.1 141.6 2.65 0.25 23.1 32.4 94.8 89.8 64.4 85.9

    Product 1 to 3 7.8 156.1 2.42 0.23 22.1 30.7 95.5 90.2 67.8 89.7

    Product 1 to 4 8.3 166.4 2.28 0.21 21.4 29.6 95.9 90.4 70.1 92.2

    Product 5 91.7 1826.9 0.01 0.002 0.8 0.23 4.1 9.6 29.9 7.8

    Feed 100.0 1993 0.20 0.02 2.5 2.68 100 100 100 100

  • 9

    DATE:

    PROJECT NO: KM3512-05

    PURPOSE: Preliminary Rougher Test.

    PROCEDURE: Perform a standard one product rougher test.

    FEED: 2 kg of IX Composite ore ground to a nominal 155mm K80.

    FLOWSHEET: 1

    Reagents Added g/tonne Time (minutes) pH

    Lime Fuel Oil 3418A 208 MIBC Grind Cond. Float

    Primary Grind 2000 10 14.5 11.4

    BULK CIRCUIT:

    Rougher 1 - 3 6 15 1 2 11.0Rougher 2 - 2 4 - 1 2 11.0Rougher 3 - 1 2 - 1 2 11.0Rougher 4 √ 20 40 - 1 2 11.0

    Flotation Data RougherFlotation Machine: D2A Mill:Cell Size in liters: 4.4 Charge/Material:Aspiration: Water:

    Water Type:Impeller Speed in rpm: 1100

    Air 1000 ml

    Fresh

    August 30, 2012

    Stage

    Grinding Data Primary GrindM3-Mild

    20kg-Mild

  • 10

    KM3512-05 IX CompositeOverall Metallurgical Balance

    Product Weight Assay - percent or g/t Distribution - percent

    % grams Cu Mo Fe S Cu Mo Fe S

    Bulk Ro Con 1 1.6 31.3 9.54 3.06 19.8 23.7 89.9 68.8 13.4 19.4

    Bulk Ro Con 2 0.8 15.4 0.55 0.47 16.9 16.8 2.6 5.2 5.6 6.8

    Bulk Ro Con 3 0.6 11.2 0.26 0.15 18.1 21.8 0.9 1.2 4.4 6.4

    Bulk Ro Con 4 2.7 52.8 0.10 0.04 19.4 23.9 1.6 1.4 22.1 33.0

    Bulk RoTl 94.4 1871.3 0.01 0.02 1.4 0.71 5.1 23.4 54.5 34.5

    Feed 100.0 1982 0.17 0.070 2.3 1.93 100 100 100 100

    KM3512-05 IX CompositeCumulative Metallurgical Balance

    Cumulative Cum. Weight Assay - percent or g/t Distribution - percent

    Product % grams Cu Mo Fe S Cu Mo Fe S

    Product 1 1.6 31.3 9.54 3.06 19.8 23.7 89.9 68.8 13.4 19.4

    Product 1 to 2 2.4 46.7 6.58 2.21 18.8 21.4 92.5 74.1 19.0 26.1

    Product 1 to 3 2.9 57.9 5.35 1.81 18.7 21.5 93.3 75.2 23.4 32.5

    Product 1 to 4 5.6 110.7 2.85 0.96 19.0 22.6 94.9 76.6 45.5 65.5

    Product 5 94.4 1871.3 0.01 0.02 1.4 0.71 5.1 23.4 54.5 34.5

    Feed 100.0 1982 0.17 0.07 2.3 1.93 100 100 100 100

  • 11

    DATE:

    PROJECT NO: KM3512-06

    PURPOSE: To Repeat Test 4 at a Coarser Primary Grind.

    PROCEDURE: Perform a standard one product rougher test.

    FEED: 2 kg of WR Composite ore ground to a nominal 211mm K80.

    FLOWSHEET: 1

    Reagents Added g/tonne Time (minutes) pH

    Lime Fuel Oil 3418A 208 MIBC Grind Cond. Float

    Primary Grind 600 10 11.5 9.4

    BULK CIRCUIT:

    Rougher 1 25 2 4 23 1 2 9.5Rougher 2 √ 2 4 - 1 2 9.5Rougher 3 √ 1 2 - 1 2 9.5Rougher 4 √ 1 2 - 1 2 9.5

    Flotation Data RougherFlotation Machine: D2A Mill:Cell Size in liters: 4.4 Charge/Material:Aspiration: Water:

    Water Type:Impeller Speed in rpm: 1100

    Air 1000 ml

    Fresh

    Stage

    Grinding Data Primary GrindM3-Mild

    20kg-Mild

    September 5, 2012

  • 12

    KM351