Přednáška 5

21
Přednáška 5 Sémantický výklad PL1 (pokračování a opakování)

description

Přednáška 5. Sémantický výklad PL1 (pokračování a opako vání). Prázdné universum ?. Představme si interpretaci nad universem U =   x P( x ) je pravda či nepravda? - PowerPoint PPT Presentation

Transcript of Přednáška 5

Page 1: Přednáška 5

Přednáška 5

Sémantický výklad PL1

(pokračování a opakování)

Page 2: Přednáška 5

Přednáška 5 2

Prázdné universum ? Představme si interpretaci nad universem U = x P(x) je pravda či nepravda?

dle definice kvantifikátoru je to nepravda, neboť nenajdeme žádné individuum, které splňuje P, pak je ale pravda x P(x), tj. x P(x), ale to je nepravda – spor

Nebo je to pravda, protože neexistuje prvek univerza, který by neměl vlastnost P, pak ale má být také pravda x P(x), což je nepravda – spor

Podobně pro x P(x) dojdeme ke sporu, ať to chápeme jako pravda či nepravda

Proto volíme vždy neprázdné universum Logika pro pustý svět by byla nesmyslná

Page 3: Přednáška 5

3

Existenční kvantifikátor + implikace ?

Existuje někdo takový, že je-li to génius, pak jsou všichni géniové

Tato věta nemůže být nepravdivá ! |= x (G(x) x G(x)) V každé interpretaci I bude platit:

Je-li obor pravdivosti GU predikátu G roven celému universu (GU = U), pak je formule v I pravdivá, neboť je pravdivá podformule x G(x), tedy i G(x) x G(x).

Je-li GU vlastní podmnožinou U (GU U), pak stačí nalézt jeden prvek (valuaci x), který neleží v GU a formule G(x) x G(x) je v I pravdivá, neboť není pravdivý antecedent G(x).

Page 4: Přednáška 5

Přednáška 5 4

Existenční kvantifikátor + konjunkce !

Podobně formule x (P(x) Q(x)) je „skoro tautologie“. Je pravdivá v každé interpretaci I takové, že PU U, neboť pak je |=I P(x) Q(x) [e] pro e(x) PU

nebo QU = U, neboť pak je |=I P(x) Q(x) pro všechny valuace e

Tedy tato formule je nepravdivá pouze v takové I, kde PU = U a QU U.

Proto věty typu „Některá P jsou Q“ analyzujeme jako x (P(x) Q(x)).

Page 5: Přednáška 5

Přednáška 5 5

Všeobecný kvantifikátor + konjunkce ? Implikace !

x [P(x) Q(x)] je „skoro nesplnitelná“ ! Je nepravdivá v každé interpretaci I, ve které je

PU U nebo QU U. Tedy pravdivá je pouze v takové I, kde

PU = U a QU = U ! Proto věty typu „Všechna P jsou Q“ analyzujeme

jako x [P(x) Q(x)] Pro všechna individua platí, že je-li to P, pak je to

také Q. (Pak je PU QU – definice podmnožiny)

Page 6: Přednáška 5

Přednáška 5 6

Relace a vztahy

Výroky s jedno-argumentovým predikátem (charakterizujícím nějakou vlastnost) zkoumal již ve starověku Aristoteles.

Teprve Gottlob Frege (zakladatel moderní logiky) však zavedl formální predikátovou logiku (s poněkud jiným jazykem, než používáme dnes) s více-argumentovými predikáty (charakterizujícími vztahy) a kvantifikátory.

Page 7: Přednáška 5

Přednáška 5 7

Sémantické ověření správnosti úsudku

Kdo zná Marii a Karla, ten Marii lituje. x [(Z(x,m) Z(x,k)) L(x,m)]

Někteří nelitují Marii, ačkoliv ji znají. x [L(x,m) Z(x,m)]

|= Někdo zná Marii, ale ne Karla. x [Z(x,m) Z(x,k)]

Znázorníme, jaké budou obory pravdivosti predikátů Z a L, tj. relace ZU a LU, aby byly pravdivé premisy:

ZU = {…, i1,m, i1,k, i2,m, i2,k,…,,m,m,… }

1. premisa 2. premisa

LU = {…, i1,m, ...., i2,m,…........., ,m,m,… }

Page 8: Přednáška 5

8

Sémantické ověření správnosti úsudku

Kdo zná Marii a Karla, ten Marii lituje. x [(Z(x,m) Z(x,k)) L(x,m)]

Někteří nelitují Marii, ačkoliv ji znají. x [L(x,m) Z(x,m)]

|= Někdo zná Marii, ale ne Karla. x [Z(x,m) Z(x,k)]

Nyní dokážeme platnost sporem: předpokládejme, že všichni, kdo jsou ve vztahu Z k m (tedy i prvek )), jsou také v Z ke k (negace závěru).

ZU = {…, i1,m, i1,k, i2,m, i2,k,…,,m,m, ,,kk,, … }

1. p. 2. p. 1.p.

LU = {…, i1,m, ..., i2,m,…................, ,m,m, ,m,m, … }

spor

Page 9: Přednáška 5

9

Gottlob Frege

1848 – 1925

Německý matematik, logik a filosof, působil na

universitě v Jeně.

Zakladatel moderní logiky

Page 10: Přednáška 5

10

Gottlob Frege Friedrich Ludwig Gottlob Frege (b. 1848, d. 1925) was a German

mathematician, logician, and philosopher who worked at the University of Jena.

Frege essentially reconceived the discipline of logic by constructing a formal system which, in effect, constituted the first ‘predicate calculus’. In this formal system, Frege developed an analysis of quantified statements and formalized the notion of a ‘proof’ in terms that are still accepted today.

Frege then demonstrated that one could use his system to resolve theoretical mathematical statements in terms of simpler logical and mathematical notions. Bertrand Russell showed that of the axioms that Frege later added to his system, in the attempt to derive significant parts of mathematics from logic, proved to be inconsistent.

Nevertheless, his definitions (of the predecessor relation and of the concept of natural number) and methods (for deriving the axioms of number theory) constituted a significant advance. To ground his views about the relationship of logic and mathematics, Frege conceived a comprehensive philosophy of language that many philosophers still find insightful. However, his lifelong project, of showing that mathematics was reducible to logic, was not successful.

Stanford Encyclopedia of Philosophy http://plato.stanford.edu/entries/frege/

Page 11: Přednáška 5

Přednáška 5 11

Bertrand Russell

1872-1970 Britský filosof, logik,

esejista

Page 12: Přednáška 5

Přednáška 5 12

Bertrand Russell

Bertrand Arthur William Russell (b.1872 - d.1970) was a British philosopher, logician, essayist, and social critic, best known for his work in mathematical logic and analytic philosophy. His most influential contributions include his defense of logicism (the view that mathematics is in some important sense reducible to logic), and his theories of definite descriptions and logical atomism. Along with G.E. Moore, Russell is generally recognized as one of the founders of analytic philosophy. Along with Kurt Gödel, he is also regularly credited with being one of the two most important logicians of the twentieth century.

Page 13: Přednáška 5

Kurt Gödel (1906-Brno, 1978-Princeton)

Největší logik 20. století, přítel A. Einsteina, proslavil se větami o neúplnosti teorie aritmetiky

Page 14: Přednáška 5

Přednáška 5 14

Russell's Paradox

Russell's paradox is the most famous of the logical or set-theoretical paradoxes. The paradox arises within naive set theory by considering the set of all sets that are not members of themselves. Such a set appears to be a member of itself if and only if it is not a member of itself, hence the paradox.

http://plato.stanford.edu/entries/russell-paradox/

Page 15: Přednáška 5

Přednáška 5 15

Russell's Paradox

Some sets, such as the set of all teacups, are not members of themselves. Other sets, such as the set of all non-teacups, are members of themselves. Call the set of all sets that are not members of themselves "R." If R is a member of itself, then by definition it must not be a member of itself. Similarly, if R is not a member of itself, then by definition it must be a member of itself. Discovered by Bertrand Russell in 1901, the paradox has prompted much work in logic, set theory and the philosophy and foundations of mathematics.

Page 16: Přednáška 5

Přednáška 5 16

Russell's Paradox

R – množina všech normálních množin, které nejsou prvky sebe sama

Otázka: Je R R? Je R normální? vede ke sporu. Symbolicky: xR (xx) – definice množiny R Položená otázka Je R R? vede ke sporné formuli

(kontradikci): RR RR, neboť: Odpověď Ano – R není normální (RR), pak dle

definice množiny R nemá být R prvkem R, tj. RR Odpověď Ne – R je normální (RR), pak je ale dle

definice RR (R je množina všech normálních množin)

Page 17: Přednáška 5

Přednáška 5 17

Russell wrote to Gottlob Frege with news of his paradox on June 16, 1902. The paradox was of significance to Frege's logical work since, in effect, it showed that the axioms Frege was using to formalize his logic were inconsistent.

Specifically, Frege's Rule V, which states that two sets are equal if and only if their corresponding functions coincide in values for all possible arguments, requires that an expression such as f(x) be considered both a function of the argument x and a function of the argument f. In effect, it was this ambiguity that allowed Russell to construct R in such a way that it could both be and not be a member of itself.

Page 18: Přednáška 5

18

Russell's Paradox

Russell's letter arrived just as the second volume of Frege's Grundgesetze der Arithmetik (The Basic Laws of Arithmetic, 1893, 1903) was in press. Immediately appreciating the difficulty the paradox posed, Frege added to the Grundgesetze a hastily composed appendix discussing Russell's discovery. In the appendix Frege observes that the consequences of Russell's paradox are not immediately clear. For example, "Is it always permissible to speak of the extension of a concept, of a class? And if not, how do we recognize the exceptional cases? Can we always infer from the extension of one concept's coinciding with that of a second, that every object which falls under the first concept also falls under the second? These are the questions," Frege notes, "raised by Mr Russell's communication." Because of these worries, Frege eventually felt forced to abandon many of his views about logic and mathematics.

Of course, Russell also was concerned about the contradiction. Upon learning that Frege agreed with him about the significance of the result, he immediately began writing an appendix for his own soon-to-be-released Principles of Mathematics. Entitled "Appendix B: The Doctrine of Types," the appendix represents Russell's first detailed attempt at providing a principled method for avoiding what was soon to become known as "Russell's paradox."

Page 19: Přednáška 5

19

Russell's Paradox

The significance of Russell's paradox can be seen once it is realized that, using classical logic, all sentences follow from a contradiction. For example, assuming both P and ~P, any arbitrary proposition, Q, can be proved as follows: from P we obtain P Q by the rule of Addition; then from P Q and ~P we obtain Q by the rule of Disjunctive Syllogism. Because of this, and because set theory underlies all branches of mathematics, many people began to worry that, if set theory was inconsistent, no mathematical proof could be trusted completely.

Russell's paradox ultimately stems from the idea that any coherent condition may be used to determine a set. As a result, most attempts at resolving the paradox have concentrated on various ways of restricting the principles governing set existence found within naive set theory, particularly the so-called Comprehension (or Abstraction) axiom. This axiom in effect states that any propositional function, P(x), containing x as a free variable can be used to determine a set. In other words, corresponding to every propositional function, P(x), there will exist a set whose members are exactly those things, x, that have property P. It is now generally, although not universally, agreed that such an axiom must either be abandoned or modified.

Russell's own response to the paradox was his aptly named theory of types. Recognizing that self-reference lies at the heart of the paradox, Russell's basic idea is that we can avoid commitment to R (the set of all sets that are not members of themselves) by arranging all sentences (or, equivalently, all propositional functions) into a hierarchy. The lowest level of this hierarchy will consist of sentences about individuals. The next lowest level will consist of sentences about sets of individuals. The next lowest level will consist of sentences about sets of sets of individuals, and so on. It is then possible to refer to all objects for which a given condition (or predicate) holds only if they are all at the same level or of the same "type."

Page 20: Přednáška 5

20

Russell’s paradox – 3 solutions

Russell's own response to the paradox was his aptly named theory of types. Recognizing that self-reference lies at the heart of the paradox, Russell's basic idea is that we can avoid commitment to R (the set of all sets that are not members of themselves) by arranging all sentences (or, equivalently, all propositional functions) into a hierarchy. The lowest level of this hierarchy will consist of sentences about individuals. The next lowest level will consist of sentences about sets of individuals. The next lowest level will consist of sentences about sets of sets of individuals, and so on. It is then possible to refer to all objects for which a given condition (or predicate) holds only if they are all at the same level or of the same "type."

This solution to Russell's paradox is motivated in large part by the so-called vicious circle principle, a principle which, in effect, states that no propositional function can be defined prior to specifying the function's range. In other words, before a function can be defined, one first has to specify exactly those objects to which the function will apply. (For example, before defining the predicate "is a prime number," one first needs to define the range of objects that this predicate might be said to satisfy, namely the set, N, of natural numbers.) From this it follows that no function's range will ever be able to include any object defined in terms of the function itself. As a result, propositional functions (along with their corresponding propositions) will end up being arranged in a hierarchy of exactly the kind Russell proposes.

Page 21: Přednáška 5

21

Russell’s paradox – 3 solutions

Although Russell first introduced his theory of types in his 1903 Principles of Mathematics, type theory found its mature expression five years later in his 1908 article, "Mathematical Logic as Based on the Theory of Types," and in the monumental work he co-authored with Alfred North Whitehead, Principia Mathematica (1910, 1912, 1913). Russell's type theory thus appears in two versions: the "simple theory" of 1903 and the "ramified theory" of 1908. Both versions have been criticized for being too ad hoc to eliminate the paradox successfully. In addition, even if type theory is successful in eliminating Russell's paradox, it is likely to be ineffective at resolving other, unrelated paradoxes.

Other responses to Russell's paradox have included those of David Hilbert and the formalists (whose basic idea was to allow the use of only finite, well-defined and constructible objects, together with rules of inference deemed to be absolutely certain), and of Luitzen Brouwer and the intuitionists (whose basic idea was that one cannot assert the existence of a mathematical object unless one can also indicate how to go about constructing it).

Yet a fourth response was embodied in Ernst Zermelo's 1908 axiomatization of set theory. Zermelo's axioms were designed to resolve Russell's paradox by again restricting the Comprehension axiom in a manner not dissimilar to that proposed by Russell. ZF and ZFC (i.e., ZF supplemented by the Axiom of Choice), the two axiomatizations generally used today, are modifications of Zermelo's theory developed primarily by Abraham Fraenkel.