Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep...

43
Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas Tomar (PI) & Hongsuk Lee &Sudipta Biswas Prof. Jian Luo (co-PI) & Naixie Zhou School of Aeronautics and Astronautics, Purdue University University of California, San Diego & Clemson University Program Manager: Dr. Jason Hissam Grant No. : DEFE0011291

Transcript of Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep...

Page 1: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales

Prof. Vikas Tomar (PI) & Hongsuk Lee &Sudipta Biswas

Prof. Jian Luo (co-PI) & Naixie Zhou

School of Aeronautics and Astronautics, Purdue University

University of California, San Diego & Clemson University

Program Manager: Dr. Jason HissamGrant No. : DEFE0011291

Page 2: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Long Term Creep in Microstructures

Sobotka, 1985, AISI 316 LN Steel

Page 3: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Long Term Creep in Microstructures

Igarashi, 2011

Page 4: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Proposal Research Workflow

Nanocrystalline Ni and Bulk W Based Alloy Control Sample 

Preparation

Theoretical Framework to Characterize GB Segregation

In‐Situ Microstructural Testing of GB Evolution and Strength

Microstructure Level Multiscale Modeling to Predict Effect of GBs on Embrittlement, Creep, and rupture 

Task‐1

Task‐3

Task‐4

Task‐2

Page 5: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 1: Fabrication and Characterization of Control 

Samples

UC San Diego

Task 1, Part A: Nanocrystalline Ni and Ni‐W Foils (Synthesized by Electrodeposition)

Task 1, Part B: Bulk W based Alloys (Synthesized by Ball Milling + SPS)

Page 6: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 1: Fabrication and Characterization of Control Samples – Part APreparing Nanocrystalline Ni and Ni‐W Specimens 

for Mechanical Test

Chemicals Weight(g/L)NiSO4.6H2O 300NiCl2.6H2O 45H3BO3 45

Saccharine 5Sodium Lauryl Sulfonate(CH3(CH2)11OSO2Na)

0.25

Current Time (ms)

Peak(A/cm2)

ForwardsOn  5 0.4

off 15

Temperature: 65 ºC

Deposition time: 30 min to 2h

Power SuppliesEl‐Sherik, et al., J of Materials  Science  30, 5743 (1995)

1

Page 7: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Slide 6

1 Jian Luo, 4/17/2015

Page 8: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Free‐Standing Nanocrystalline Ni Specimens

free‐standing, mirror‐like

40 m

UniformCrack‐free

Nanocrystalline Ni

Cu Substrate(dissolved afterwards)

Grain Size (from the Scherrerequation) is ~18 nm.

The image of the “apple” from iPhone

30min 120min60min

20 μm

Page 9: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

p

Two‐step to Prepare Bulk Nanocrystalline W Alloys

NanocrystallinePowders

Bulk NanocrystallineMaterial

High Energy Ball Milling Spark Plasma Sintering

Pressureless Sintering

Page 10: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

W-5 at.% Ni W-5 at.% Co

W-5 at. % Re W-5 at.% Cu

1200⁰C, 5h 1200⁰C, 5h

1200⁰C, 5h 1200⁰C, 5h

Grain Size: 600 nm Grain Size: 820 nm

Grain Size: 2.2 μm Grain Size: 210 nm

(G) (H)

(I) (J)

Task 1: Fabrication and Characterization of Control Samples – Part B

Bulk Nanocrystalline W Alloys

Ball Milled Powder

Pressureless Sintered Samples

Page 11: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

W – Mn Pure W W – Ni

W – Re – NiW – Re W – Ti

1 μm

1 μm

1 μm

1 μm

1 μm

1 μm

Task 1: Fabrication and Characterization of Control Samples – Part B

Bulk Nanocrystalline W Alloys

Spark Plasma Sintered Samples

Page 12: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 1, Part B Extension – Testing of Bulk Nanocrystalline Specimen (Currently in Progress @ UCSD)

Creep Test Setup

INSTRON Instrument Equipped with Heating Furnace

Planned Experiments:• The creep tests for the specimens pure W, W‐5%Ni, W‐5%Ti, W‐5%Co, W‐5%Re and W‐5%Cu will be performed at elevated

temperature 400 ̊C and/or 750 ̊C.• Creep data will be collected to evaluate the mechanical properties of the W alloys with different doping elements.• Moreover, the microstructure evolution of creep tested W alloys specimens will be characterized by SEM and TEM.

Page 13: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

(a.)

(b.) (c.)

Task 2-High Temperature Nanoindentation Tests

Page 14: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 3: A New Theoretical Framework to Characterize GB Segregation 

UC San Diego

Task 3, Part A: The Classical GB Segregation Model (Assessments of W alloys with the Wynbaltt‐ChatainModel)

Task 3, Part B: Non‐Classical High‐T GB Segregation (Coupled with  GB Premelting/Interfacial Disordering

Page 15: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 3, Part A: Classical GB Segregation ModelAssessment of W based Alloys by the Wynblatt‐Chatain Model 

zv

zvzp

GB

Twisted angle Δθ

1 21

1

1 1

0.5 ( ) 2 1(1 )2

2 ( )

p v

BB AA v el Ssegv vi

iel S p i v i v i

zX z X z XQ e e z E

Q z X QzH

E zX z X z X z X

i = 1

i > 1

bonding energy difference strain energySolute‐dopant interactions 

exp1 1

segi i

i

X X HX X kT

A Mclean type segregation equation

Bulk compositionith layer composition

Segregation Enthalpy

2GB ii

X X GB absorption

Page 16: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

W‐Co (Co‐doped W) Alloy

0 1 2 3

0.4

0.6

0.8

1.0

GB/(

0) GB

X (%)0 1 2 3

0

1

2

3

4

(m

onol

ayer

s)

X (%)

2 4500

1000

1500

2000

2500

W

T (K)

Co (%)

solubility limit

BCC

BCC + Mu

BCC + Liq

Phase diagram

1250 K

1500 K1750 K

GB energy GB absorption

Page 17: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

W‐Cr Alloy

0 5 10 15 20 25

0.4

0.6

0.8

1.0

GB/(

0) GB

X (%)0 5 10 15 20 25

0

1

2

3

4

(m

onol

ayer

s)

X (%)

5 10 15 20500

1000

1500

2000

2500

W

T (K)

Cr (%)

Phase diagram

BCC

BCC#1 + BCC#2

1250 K

1500 K 1750 K

GB energy GB absorption

Page 18: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

0 2 4 6 8

0.6

0.8

1.0

GB/(

0) GB

X (%)

Phase diagram

1250 K

1500 K 1750 K

0 1 2 3 4 5 6 7 8 90

1

2

3

4

(m

onol

ayer

s)

X (%)

2 4 6 8500

1000

1500

2000

2500

W

T (K)

Fe (%)

BCC

BCC + Mu

BCC + Liq

GB energy GB absorption

W‐Fe Alloy

Page 19: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

2 4 6 8500

1000

1500

2000

2500

W

T (K)

Zr (%)

0 1 2 30

1

2

3

4

(m

onol

ayer

s)

X (%)0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

GB/(

0) GB

X (%)

1250 K

1500 K1750 K

Phase diagram

BCC

BCC + W2Zr

BCC + Liq

GB energy GB absorption

W‐Zr Alloy

Page 20: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 3: A New Theoretical Framework to Characterize  GB Segregation

Task 3, Part B: High‐T Segregation + GB Disordering 

Multiscale modeling to characterize microstructure‐dependent  creep Tomar et al. at Purdue

Develop a thermodynamic framework to predict a “new” type of high‐T(premelting‐like) GB segregationLuo et al. at Clemson/UCSD Discovered by the Luo group

Appl. Phys. Lett. 2005Acta Mater. 2007

Page 21: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Computed GB  Diagrams to RepresentLevels of GB Disorder

Prior Relevant StudiesThermodynamic Model for High-T GB Disordering

W‐Ni

See: related review article “Developing Interfacial Phase Diagrams for Applications in Activated Sintering and Beyond: Current Status and Future Directions”Journal of the American Ceramic Society95: 2358 (2012)

Page 22: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

The Model for Ternary Alloys

(0) (0), 2 / 3

0

C C C CGB i GB i i j i j

i i j

QX X XC V

(0)2 / 3

0

1 1 1.92

C fuse L L L L L C C Ccl cl i i j i j i j i j i j i j

i i j i j i jX H X X X X X RT

C V

(0)cl=2 GB

reference energyi‐j interfacial energy entropy due to near interface ordering

excessive interaction energyInterfacial energies

Bulk free energy of undercooled liquid

(mol) L Lamorph ( )L C

film i ii

G G X X

Miedema type model modified to use CALPHAD parameters

Multicomponent free energy function built  based on binary CALPHAD database

Page 23: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 3A: A New Theoretical Framework to Characterize  GB Segregation

The Effects of Co‐Doping on Enhancing or Suppressing GB Disorder

The effects of adding a co‐alloying element X to W‐Ni

Assumptions:

Xmix ideally with W and Ni

Xmix ideally with Ni and (   ‐ ) = +50 kJ/molBCCW-X L

W-XZhou & Luo,Acta Materialia 2015

Change the melting point of the co‐alloying element X

Page 24: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 3A: A New Theoretical Framework to Characterize  GB Segregation

The Effects of Co‐Doping on Enhancing or Suppressing GB Disorder

Change W‐X interaction parameters

Zhou & Luo,Acta Materialia 2015

The effects of adding a co‐alloying element X to W‐Ni

Page 25: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Task 4: Multiscale Models for Rupture Strength and Long Term Creep

Quantum Mechanics Based on 

Thermodynamics

Models of Rupture Based on GB Strength

Models of Creep Evolution While Incorporating Interface Physics 

and Mechanics

Predictions Validated with in‐situ and ex‐situ experiments 

Page 26: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

[ Vivek K. Gupta and et al., 2007 ]

(100) (210)W+NI~0.6 nm

x

y

z

(100) (210)W+NI

NI W

Quantum mechanical calculation of GB Strength

time step: 5 a.u. , total 2000 steps

cutoff energy for wavefunction : 350 eV

Nose-Hoover thermostat : 300K, 400K, 500K, 600K

electronic fake mass for CPMD : 400 a.u.

number of k-points for integration over Brillouin zone : 32x32x32

Becquart and et al., 2006

Perdew and et al., 1996

Nose and Shuichi, 1984

Hoover and William, 1985

Monkhorst and Pack., 1996

Vanderbilt and David, 1990

Page 27: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Yield strength: at strain 4%, First peak: at strain 12%Yield strength and first peak’s values have dependent on the Ni volume fraction.Second peak: at strain 18%The second peak’s values are not depend on the Ni volume fraction.Ultimate tensile strength : strain of 12~18%The maximum tensile strength is not affected by Ni volume fraction for the unsaturated W-Ni.

[1] At strain of 0.18

[2] At strain of 0.12

[3] At strain of 0.04

[1][2]

[3]

Stress – strain relation (1) Unsaturated Ni - W

Page 28: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Yield strength: at strain 4%, First peak: at strain 16%Yield strength and first peak’s values have dependent on the Ni volume fraction.Second peak: at strain 24%The second peak’s values have the largest dependence on the Ni volume fraction.Ultimate tensile strength : strain of 16~24%The maximum tensile strength is not affected by Ni volume fraction for the saturated W-Ni.

[1][2]

[3]

[1] At strain of 0.24

[2] At strain of 0.16

[3] At strain of 0.04

(2) Saturated Ni - W

Page 29: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Saturated

Unsaturated

1.00

0.80

0.60

0.400.20

0.00

EL

EC

TR

ON

DE

NSI

TY1.00

0.80

0.60

0.400.20

0.00EL

EC

TR

ON

DE

NSI

TY

1.00

0.80

0.60

0.400.20

0.00

1.00

0.80

0.60

0.400.20

0.00

EL

EC

TR

ON

DE

NSI

TY

Electron density distribution

MAX. STRESS

DOS

MAX. STRESS

DOS

Unsaturated SaturatedElectron density of states (f-orbital)

EL

EC

TR

ON

DE

NSI

TY

Page 30: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Pure W

Unsaturated

Saturated

Pure W

Saturated

Unsaturated

Γ Η ΝΓPhonon dispersion

(ξξ0)

(ξ00)

Saturated

Unsaturated

Trend line

Trend line

max

wgntf

CDCE

ideal

,1max

: Maximum tensile strength of W-Ni alloy: Idealistic maximum tensile strength of W: Surface energy of W: Atomic level cohesive energy of W

ideal

CE

ntf ,

wg

Prediction of peak tensile strength

Page 31: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

0.6nm2nm

60nm

60nm

[ V. Gupta et al, 2007 ]135 μm

t = 10 μm

80 μm

Bi-granular model

Polycrystalline model

Continuum scale model(1) Nano-scale model

(2) Micro-scale model[ V. Gupta et al, 2007 ]

How does this prediction apply to continuum scale fracture?

Page 32: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Grain Grain boundary

Crack propagation of GB

4.5E-5 0.013 0.015 0.018Time-step increment

Material model of grains and GBs

[ V. Gupta et al, 2007 ]

Page 33: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Fracture toughness inside the GBFracture toughness in crack initiation

W AKS-W WL NI-W

200 nm GB

400 nm GB

800 nm GB

200 nm GB400 nm GB

800 nm GB

W : TungstenAKS-W : Potassium doped tungstenWL : Tungsten with 1 wt% La2O3

[ B. Gludovatz and et al., 2010 ]

Fracture toughness analysis

Page 34: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Effect of length-scale :

Brittleness index estimation

0.30.03 3

B = 3.3L-1/2

WC/Co [Evan and Charles, 1976]

WC [Lawn and Marshall, 1979]

0 3 2200 6000

NomenclatureB* brittleness index (no unit)L lengthscale (μm)T max. tensile strength (fracture strength)H hardness (GPa)Kc fracture toughness (MPa m^1/2)t GB thickness (μm)p Ni fraction (no unit)

LKHB

c 1* α = 3.3 for W-Ni

Brittleness index of GBs

Measurement of GB embrittlement has been obtained using the revised brittleness index. This provides an absolute range of qualitative measurement to describe the brittleness without considering the length scale limitations.

Page 35: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

θ = 90 ̊ θ = 80 ̊ θ = 70 ̊ θ = 60 ̊ θ = 50 ̊

θ = 40 ̊ θ = 30 ̊ θ = 20 ̊ θ = 10 ̊

GB angle from -90 to 90 degree

Inter-granular failure is represented as 1Trans-granular failure is represented as -1

Crack propagation in different angled GBs

Failure index : An index (between -1 and 1) to describe failure type, which can be either inter-granular failure or trans-granular failure.

a = 4.45b = -4.2c = -0.00024

2cTTbaFIGrain

GB

Using the heavi-side function

0 ,10 ,1

][FIFI

FIH

Inter-granular failure

Trans-granular failure

Trans-granular failure

Page 36: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

[ Zbigniew Pedzich, 2012 ]

Validation and Conclusion

Perfect inter-granular failure has occurred.Contains crack path with maximum GB angle of 67 ̊. GB strength property can be predicted.

According to the failure index prediction, given microstructure has max. tensile strength ratio between GB and grain as

2cTTbaFIGrain

GB

.803.0 GrainGB TT

For various failed morphologies of polycrystalline W-Ni, GB’s strength property can be predicted using the derived failure type criteria.

Page 37: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Evolution: Previous Works Microstructure evolution has been observed through experimental studies 

Groza, 2000; Hong, 2003; Dahl, 2007

Simulation developed replicating the whole sintering process Maizza, 2007; Vanmeensel, 2005

Kinetic Monte Carlo simulation applied to microstructural evolution: Probabilistic approach, depends on random sampling Olevsky, 2004 

Phase field modeling has been done to identify sintering mechanisms, external loading not considered Wang, 2006; Liu, 2011; Deng, 2012 

Consolidation kinetics has been captured experimentally     Bruson, 1984; Grigoryev, 2009; Tang, 2013

Page 38: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Modelling Approach

Cahn Hilliard Allen-Cahn

Chemical Potential

Temp. Effect

Elastic Energy

Chemical Potential

Elastic Energy

Mobility as a fnof density & order param

Order paramto be obtained by solving AC eqn.

Eigen strain as a function of density and order parameter

Consideration of external pressure/loading

Plasticity not considered

Interfacial Energy

Interfacial Energy

Logerithmicfunction

Absolute temperature & boltzmanconstant to be multiplied

Constant co-efficient

Independent of CH eqtn

Eigen strain to be used

Captures effect of external loading

Modeling Approach

Page 39: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

• Rectangular grid will be created• Corresponding Element types will assigned

Mesh

• The phase field variables will be assigned• Initial structure is created with assigned initial condition• All the constants & their values can also be assigned in material section

Functions

• Define the total free energy expressions, use in‐built Allen‐Cahn & Cahn‐Hilliard equations• Calculate derivatives & give them as input

Kernels

• Define solver type: Finite Difference Method• Assign pre‐conditioning if required

Executioner

• Micro‐structural images• Plot for temporal evolution of phase field variable• Calculate evolution of grain size

Post‐process

Moose Simulation 

Page 40: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Simulation Details: Test Run

Simulation block: 100X60; Particle Radius: 20 & 20;

Grid Size: 0.5 

Total Time: 60 with Time Step: 1.0

Maximum displacement applied 35 µm 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

Applied Load

Time

T = 300 K

T = 1500 K

T = 300 K

Page 41: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Test Results: DensityVariation w/o load

Initial Condition Time = 0.5

Time = 20.5 Time = 60.0

Page 42: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Test Results: DensityVariation w/ load

Initial Condition Time = 1.0

Time = 14 Time = 35.0

Page 43: Predicting Microstructure-Creep Resistance …...2015/04/27  · Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloy over Multiple Time Scales Prof. Vikas

Summary

All Tasks on Schedule A Grain Boundary Diagram Based Approach for long 

term GB evolution identified A Brittleness Index parameter identified to predict 

effect of GB on microstructural Strength Control sample manufacturing process established In‐situ and ex‐situ experimentation protocols 

established 4 international journal publications, 1 PhD graduate, 3 

supported students with grant in second year